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Abstract
Loss of developmental stability can lead to deviations from bilateral symmetry (i.e. 
Fluctuating Asymmetry -  FA), and is thought to be caused by environmental and ge-
netic factors associated with habitat loss and stress. Therefore, levels of FA might 
be a valuable tool to monitor wild populations if FA serves as an indicator of expo-
sure to stress due to impacts of habitat loss and fragmentation. In studies examin-
ing FA and habitat fragmentation, FA levels are often explained by loss of genetic 
variation, though few studies have addressed FA’s use as indicator of environmen-
tal impact. Here, we investigated whether habitat loss, genetic variation, and/or 
inbreeding affect the developmental instability in Brazilian Atlantic forest popula-
tions of a Neotropical water rat (Nectomys squamipes). We sampled individuals from 
eight sites within Atlantic forest remnants with different amounts of available forest 
habitat and assessed FA levels with geometric morphometric techniques using adult 
mandibles. We used observed heterozygosity (Ho) and inbreeding coefficient (Fis), 
from seven microsatellite markers, as a proxy of genetic variation at individual and 
population levels. Populations were not significantly different for shape or size FA 
levels. Furthermore, interindividual variation in both shape and size FA levels and in-
terpopulational differences in size FA levels were best explained by chance. However, 
habitat amount was negatively associated with both interpopulational variance and 
average shape FA levels. This association was stronger in populations living in areas 
with <28% of forest cover, which presented higher variance and higher average FA, 
suggesting that Nectomys squamipes might have a tolerance threshold to small avail-
ability of habitat. Our work is one of the first to use FA to address environmental 
stress caused by habitat loss in small mammal populations from a Neotropical biome. 
We suggest that shape FA might serve as a conservation tool to monitor human im-
pact on natural animal populations.

http://www.ecolevol.org
https://orcid.org/0000-0003-2619-1573
https://orcid.org/0000-0003-4185-4312
mailto:
https://orcid.org/0000-0002-7287-9435
https://orcid.org/0000-0002-4923-2334
http://creativecommons.org/licenses/by/4.0/
mailto:lsm1@williams.edu


     |  7081CACCAVO et Al.

1  | INTRODUC TION

Anthropogenic degradation of natural habitats has been one of the 
major causes of biodiversity decline worldwide (Haddad et al., 2015). 
Deforestation has reduced the amount of natural habitat available 
to forest- dependent species, leaving the remaining forest cover 
fragmented into a series of patches with varying configurations of 
connectivity, size, and shape. While there is an ongoing debate on 
whether fragmentation “per se” is a major driver of biodiversity loss 
(Fahrig, 2019; Fletcher et al., 2018; Jackson & Fahrig, 2016; Püttker 
et al., 2020), an emerging consensus has been achieved around 
the negative effects of natural habitat loss on species richness in 
communities (Banks- Leite et al., 2014; Fahrig, 2013; Martin, 2018; 
Watling et al., 2020).

The direct effects of habitat loss on biodiversity, named the 
Habitat Amount Hypothesis (HAH, Fahrig, 2013), states that the 
species richness in a given sampling site increases according to the 
amount of habitat in the local landscape. Aside from the habitat 
amount in the landscape, no other effects from the habitat patch 
where the sampling site is located are expected to influence spe-
cies richness (Fahrig, 2013). While the HAH has been extensively 
tested in community studies (Fahrig, 2017, 2019; Martin, 2018; 
Saura, 2021), less is known about the effects of varying amounts of 
forest cover on stress indicators of forest- dependent species.

Factors reducing the efficient use of energy available for growth 
and reproduction are sources of stress that compromise the long- 
term viability of populations (Escós et al., 2000; Graham et al., 2010). 
Stress usually affects the development of individuals by disturbing 
their canalization mechanism— that is, the buffering against environ-
mental variations during the developmental process leading to the 
formation of an optimal and stable phenotype in natural populations 
(Waddington, 1942)— increasing the likelihood of deviations from 
the optimum phenotype and giving rise to developmental instability 
(Klingenberg & Nijhout, 1999; Palmer, 1996). In organisms that have 
defined symmetric patterns, this developmental instability leads to 
small and random shifts from the perfect symmetry and is known 
as Fluctuating Asymmetry (Palmer, 1994; Tomkins & Kotiaho, 2001).

Several studies have documented a positive relationship be-
tween Fluctuating Asymmetry (FA) and stress levels in populations 
of many species (Anciães & Marini, 2000; Hoelzel et al., 2002; 
Leamy et al., 1999; McKenzie & Clarke, 1988; Pankakoski, 1985; 
Parsons, 1990, 1992; Sarre, 1996; Schmeller et al., 2011). Higher 
FA levels have been found in populations of birds, voles (Marchand 
et al., 2003), field mice (Maestri et al., 2015), shrews (Sánchez- 
Chardi et al., 2013), and lizards (Lazić et al., 2015) living in dis-
turbed or less suitable habitats, as well as in populations of shrews 
(White & Searle, 2008) and roe deer (Zachos et al., 2007) exhibit-
ing reduced genetic variation (see reviews in Benítez et al., 2020; 

Klingenberg, 2015). Therefore, populations in optimal conditions 
tend to exhibit low FA levels, while those exposed to stressful con-
ditions have higher levels of average FA (Shadrina & Vol'pert, 2016). 
These observations suggest FA as a useful indicator of stress caused 
by both environmental and/or genetic factors (Graham et al., 2010; 
Oleksyk et al., 2004).

One of the most dramatic examples of large- scale anthropogenic 
environmental changes in the world's tropical forests is that of the 
Brazilian Atlantic forest. This forest once covered 150 million hect-
ares along the coastal region in Brazil, but today it retains only 28% 
of its original cover (Rezende et al., 2018). Most of this remaining 
forest is highly fragmented, and 80% of its fragments are fewer than 
50 hectares and are located, on average, 1440m far from each other 
(Ribeiro et al., 2009). Along with deforestation, Brazilian Atlantic 
forest is threatened by additional factors, such as the presence of 
invasive alien species and proximity to areas with intense human ac-
tivity. As an example, the wild pig (Sus scrofa) competes with and 
reduces population sizes of several native mammals in Atlantic for-
est remnants (Hegel et al., 2019). In addition, proximity to humans 
may promote the occurrence of epizootic events in wild populations, 
as observed with malaria and yellow fever in non- human primates 
(Buery et al., 2017; Moreno et al., 2013). Another threat is the exten-
sive presence of domestic cats and dogs in remnant forest patches 
in proximity to human houses and cropland/pasture (Paschoal 
et al., 2018). These large domestic animals compete with the local 
fauna for territory, increase predation of small to medium size verte-
brates, and transmit pathogens (de Almeida Curi et al., 2010; Lessa 
et al., 2016; Paschoal et al., 2016; Srbek- Araujo & Chiarello, 2008).

Few studies assessed the effects of habitat loss on developmen-
tal instability in Brazilian Atlantic forest organisms. Some results 
indicate a negative relationship between size of forest remnants 
and FA, suggesting that populations in larger remnants present 
lower FA levels than populations in smaller forest patches (Anciães 
& Marini, 2000; Coda et al., 2017; Lens et al., 1999). Other results 
indicated a negative relationship between FA and climatic suitabil-
ity, suggesting higher developmental instability in less favorable cli-
mates (Maestri et al., 2015). These studies speculated that genetic 
factors (e.g., inbreeding) might be involved in FA variation, although 
they did not directly measure genetic variation nor considered the 
influence of landscape factors, such as the amount of habitat, as pre-
dicted by HAH.

In this study, we evaluated whether habitat loss and/or genetic 
variation affect the developmental instability of a Neotropical 
small mammal, the water rat Nectomys squamipes (Brants, 1827). 
This rodent (Figure 1) is widely distributed throughout remnants 
of Atlantic forest, especially in forests with less dense vegetation 
cover, small water bodies (Galliez & Fernandez, 2012; Prevedello 
et al., 2010), and wet soils (Ernest & Mares, 1986). In forested areas, 
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the species preferably inhabits flooded areas and riverine habi-
tats (Alho, 1982), being classified as a habitat specialist (Bonvicino 
et al., 2002). Because of its dependence on wet habitats, Nectomys 
squamipes has low dispersal capacity in dry fragmented landscapes 
but is able to disperse up to about 520m among forest fragments 
if appropriate habitats are present (Passamani & Fernandez, 2011a, 
2011b; Passamani & Ribeiro, 2009; Pires et al., 2002). Water rats 
are also hosts to several ecto and endoparasites, some of them ex-
otic, such as the bilharzia- causing trematode Schistosoma mansoni, 
which consistently uses N. squamipes as a secondary host (D’Andrea 
et al., 2000; Gentile et al., 2006). Its strong dependency on forested 
habitats, low vagility, and vulnerability to invasive pathogens makes 
water rats good models to assess the effects of forest reduction and 
fragmentation on FA.

Here, we test whether forested habitat amount affects the lev-
els of Fluctuating Asymmetry in Nectomys squamipes’ mandible size 
and shape. We also evaluate whether FA is influenced by the het-
erozygosity levels and inbreeding of individuals and populations. We 
report no relationship between heterozygosity and FA levels, but a 
negative relationship between habitat amount and average mandible 
shape FA. Our results are important to understand the effects of re-
duced natural ecosystems availability on the morphological variabil-
ity and viability of populations of wild mammals and to evaluate the 
use of these approaches in species and habitats from Neotropical 
biomes.

2  | MATERIAL S AND METHODS

2.1 | Age and sexual variation

We examined mandibles from 87 specimens collected in eight dif-
ferent sites within Atlantic forest remnants in the state of Rio de 
Janeiro, Brazil (Figure 2, Table 1).

The specimens examined are deposited in the collections of 
mammals of Museu Nacional (MN) and of Instituto de Biodiversidade 
e Sustentabilidade de Macaé (NUPEM), Universidade Federal do Rio 
de Janeiro (Museum accession number for each specimen is given in 
the Appendix). The individuals had their age class estimated using 
eruption and wear of the molars and, to minimize possible onto-
genetic effects in FA patterns, only adults were included (i.e., in-
dividuals with all molars erupted and with signs of wear). Because 
studies of morphological variation in the genus Nectomys suggest 
the absence of secondary sexual dimorphism (Coutinho et al., 2013; 
Stein, 1988), we pooled males and females for our analyses.

2.2 | Habitat amount

Image classification— We used Landsat satellite images recorded dur-
ing the specimen collection year to calculate habitat amount for each 
site. We trimmed each image to the region of interest and classified 
habitat coverage with Landcover Signature Classification (LSC); re-
gions with signature overlap or that could not be classified using LSC 
were classified using Maximum likelihood with threshold of 0.05. We 
then grouped the coverage categories, forming an image with a bi-
nary classification, that is, “habitat” (forests and encompassed small 
waterbodies) and “nonhabitat” (open areas, extensive water masses, 
croplands, and other anthropic land covers). For image acquisition 
and classification, we used the Semi- Automatic Classification Plugin 
(Congedo, 2013) from the QGIS software.

To estimate the radius used to calculate habitat coverage, we cal-
culated the scale effect of habitat amount, that is, the extent of the 
landscape in which the habitat amount best predicts the effects on 
the populations of N. squamipes. The determination of scale effect 
followed the procedure suggested by Melo et al. (2017). We obtained 
home range values for N. squamipes from Bergallo and Magnusson 
(2004) and Ernest and Mares (1986). From these home range values, 
we estimated the maximum dispersal distances following Bowman 
et al. (2002) and the possible amplitudes for the scale effect using 
the Jackson and Fahrig (2012) method (see Table 2). Among the val-
ues obtained, we selected four values as radius for estimates of hab-
itat amount: 264, 562, 938, and 1426 m. We selected a wide range 
of biologically relevant radius (within dispersal capacity) to evaluate 
their potential effect in habitat amount estimates.

For each site, we calculated the percentage of habitat amount 
with Landscape Ecology Statistics v. 1.9.8 (Jung, 2016) plugin for 
Qgis based on distance buffers from collection site coordinates 
using the four scale values given above (Table 3).

2.3 | Digitalization and FA calculation

To assess FA levels, we focused on mandibles, a morphological sys-
tem extensively used in morphological integration and FA studies 
(e.g., Klingenberg et al., 2003; Leamy, 1993; Leamy et al., 2015). 
Mandibles constitute symmetric structures with well- known 

F I G U R E  1   Individual of Nectomys squamipes captured at 
Restinga de Jurubatiba National Park, Rio de Janeiro, Brazil. 
Photograph by Pablo R. Gonçalves
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TA B L E  1   Collection location, coordinates, collection date, sample size (N) and number of genotyped individuals (Ng). * = Obtained from 
Almeida et al., 2005

Location Coordinates Date N Ng

1 –  Barra de Maricá, Maricá County 22°57'20.70"S;
42°50'0.00"W

1988 8 — 

2 –  Fazenda Rosimary, Cachoeiras de Macacu County 22°28'60.00"S;
42°51'0.00"W

2000 9 — 

3 –  Restinga de Jurubatiba National Park, Lagomar (Parque Nacional da Restinga de 
Jurubatiba, PNRJ Macaé), Macaé County

22°18'7.41"S;
42° 0'18.39"W

2014– 2015 11 7

4 –  Restinga de Jurubatiba National Park, Fazenda São Lázaro (PNRJ Carapebus), 
Carapebus County

22°15'9.14"S;
41°39'22.03"W

2007– 2012 11 6

5 –  Vale do Pamparrão, Sumidouro County 22°2'46.00"S; 
42°41'21.00"W

2000 15 18*

6 –  Cabiúnas, Macaé County 22°17'28.57"S;
41°43'40.89"W

2007– 2011 11 10

7 –  Municipal Natural Park Fazenda Atalaia (Parque Natural Municipal Fazenda Atalaia, 
PNMF Atalaia), Macaé County

22°18'7.41"S;
42° 0'18.39"W

2007– 2011 13 12

8 –  União Biological Reserve (Reserva Biológica União, ReBio União), Casimiro de 
Abreu County

22°24'26.10"S;
42° 1'44.88"W

2007 9 8*

F I G U R E  2   Populations samples from Atlantic forest remnants in Rio de Janeiro state. 1— Barra de Maricá; 2— Fazenda Rosimary; 3— PNRJ 
Lagomar (Macaé); 4— PNRJ São Lázaro (Carapebus); 5— Vale do Pamparrão; 6— Cabiúnas; 7— PNMF Atalaia; 8— ReBio União. ES: Espírito 
Santo state; MG: Minas Gerais state; RJ: Rio de Janeiro state; SP: São Paulo state. Gray areas represent the Atlantic forest fragments. 
Shapefile obtained at mapas.sosma.org.br
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developmental basis and a small number of landmarks can repre-
sent their general shape in a geometric morphometrics context. We 
used FA indexes based on geometric morphometric data, applicable 
to museum specimens and already used in studies involving FA in 
small mammals (Maestri et al., 2015; Marchand et al., 2003; Oleksyk 
et al., 2004).

We digitized mandibles from digital photographs taken with a 
Panasonic Lumix DMC- FZ47 camera positioned with a tripod and 
with the hemimandible laid on a surface and supported by the third 
lower molar and the angular process, so that the view to be photo-
graphed (i.e., the external left or right lateral side), was parallel to the 
camera lens. We centered all specimens to avoid image distortions 
and did not use zoom. We photographed each hemimandible two 
times to calculate positioning error (as in Klingenberg, 2015).

For each photograph, we input 10 anatomical landmarks 
(Figure 3) using software TPSDIG2 (Rohlf, 2006). We calculated 
measurement errors in anatomical landmarks inputting landmarks 
three times for each image and 12 times for each individual (3 inputs 
for landmarks in 2 mandible sides and 2 pictures each).

We overlapped landmark configurations of all individuals using 
the Procrustes method (Klingenberg & McIntyre, 1998). We an-
alyzed the presence of FA for mandible shape with a Procrustes 
ANOVA (Klingenberg & McIntyre, 1998) and the presence of FA for 
size with a One- Way ANOVA. For both analyses, we used landmark 

inputs as error I and images as error II. Following the recommenda-
tions of Klingenberg (2015), we classified presence of FA when the 
effect between the factors “individual” and “side” had a p < .05 and 
the F value of this interaction was more than 10 times greater than 
the F value for the error.

For FA in mandible shape and size, we calculated individual in-
dexes and used them for comparisons of FA levels among popula-
tions. For shape, we used Mahalanobis FA score generated from 
Procrustes ANOVA (see Klingenberg & Monteiro, 2005). For size, the 
generated FA index is univariate, based on centroid size of landmarks 
configuration, and shows positive and negative values depending on 
which side is larger (Palmer & Strobeck, 1986, 2003). To improve 
the comparisons among samples, we used the absolute values, con-
sidering deviations of the symmetric configuration independent of 
direction. We used the software MORPHO J (Klingenberg, 2008) for 
all treatments of geometric morphometric data, including Procrustes 
ANOVA, one- way ANOVA and calculation of FA indexes.

TA B L E  2   Home Range and other habitat measurements of Nectomys squamipes used to calculate the scale effect. Bold values were 
used to estimate habitat amount. BS: Breeding Season; NBS: Nonbreeding Season. HR: Home range. LD: Linear distance. MDD: Maximum 
dispersal distance

Source HR (m2) LD (m)
MDD (m) 
[40 × LD]

Scale effect

Min (MDD 30%)
Max (MDD 
50%)

Ernst and Mares (1986) General 2,200 46.9 1,876.2 562.8 938.1

Bergallo and 
Magnusson (2004)

Male –  BS 5,084.8 71.3 2,852.3 855.7 1,426.2

Female –  BS 1,260.2 35.5 1,420.0 426.0 710.0

Male –  NBS 1,829.7 42.8 1,711.0 513.3 855.5

Female –  NBS 486.7 22.1 882.5 264.7 441.2

TA B L E  3   Habitat amount estimates, using the selected scale 
effect values, for each collection site in Atlantic forest

Collection sites
264m 
(%)

562m 
(%)

938m 
(%)

1426m 
(%)

1–  Barra de Maricá 18.86 16.85 14.91 11.33

2–  Fazenda Rosimary 28.15 42.46 63.87 76.73

3–  PNRJ Macaé 39.26 48.08 46.63 40.23

4–  PNRJ Carapebus 66.25 57.71 34.76 22.01

5–  Vale do Pamparrão 71.02 48.49 38.61 31.24

6–  Cabiúnas 73.22 32.93 23.07 17.95

7–  PNMF Atalaia 99.59 99.54 94.87 84.27

8–  ReBio União 100.00 99.72 98.78 93.42 F I G U R E  3   Lateral view of a Nectomys squamipes mandible, 
showing the 10 landmarks used in this work. 1) Anterior edge 
of the incisive alveolus; 2) Most posterior point of the diastema; 
3) Junction between the mandible and the m1 root; 4) Junction 
between the molar base and the coronoid process; 5) Most 
posterior point at the articular process; 6) Most anterior point in 
the angular notch; 7) Most posterior point at the angular process; 8) 
Angular process base; 9) Inner edge of the mandibular symphysis; 
10) Posterior edge of the incisive alveolus
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2.4 | Assessing genetic variation

We extracted DNA from liver tissue samples of specimens using a 
Qiagen DNeasy tissue mini kit (Qiagen) and used seven polymor-
phic microsatellite loci following Almeida et al. (2000) and Maroja 
et al. (2003). Genotyping was carried out at Cornell Life Sciences Core 
Laboratory Center on an ABI 4,200 sequencer (Applied Biosystems) 
using the GeneScan 500 LIZ Size Standard (Applied Biosystems). We 
used Geneious 9.1.8 (Biomatters) to score peaks and assign geno-
types. In Arlequin 3.5 software (Excoffier & Lischer, 2010), we tested 
linkage disequilibrium for all pairs of loci using 10.000 permutations 
(Lewontin & Kojima, 1960; Slatkin, 1994; Slatkin & Excoffier, 1996) 
as well as Hardy- Weinberg equilibrium according to Levene (1949) 
and to Guo and Thompson (1992), using 1,000 interactions. We used 
observed heterozygosity (Ho) per individual and population as the 
genetic variation index.

We collected genotypic data for 35 individuals that were also 
measured for FA from four localities: PNRJ Macaé (n = 7), PNRJ 
Carapebus (n = 6), Cabiúnas (n = 10), and PNMF Atalaia (n = 12) 
localities (Table 1) and obtained population level data from ReBio 
União (n = 8) and Vale do Pamparrão (n = 18) from Almeida 
et al. (2005). We used Genepop (Raymond & Rousset, 1995; 
Rousset, 2008) to calculate observed heterozygosity and Fis as a 
proxy for inbreeding.

2.5 | Comparing FA among different sites

We tested the effect of the populations on the FA of Nectomys 
squamipes, using one- way ANOVA (for normally distributed 
data) or Kruskal– Wallis ANOVA for non- parametric data, using 
Statistica v. 8.0 (Statsoft, 2007), with significance level of 
p < .05.

2.6 | Habitat amount and FA

We analyzed the relationship between habitat amount and popula-
tion FA, based on mean mandible FA for both shape and size, using 
Pearson correlations. In addition to population FA, we also tested 
the correlation between individual mandible shape/size FA and habi-
tat amount.

2.7 | Assessing relevance of different factors to FA

We tested whether individual levels of FA were associated with (a) 
habitat amount and/or other biological factors such as (b) sex, (c) size, 
and (d) genetic variation. We also tested whether population levels of 
FA could be explained by (a) habitat amount, (b) population genetic 
variability (Ho), and (c) population inbreeding (Fis). In both cases, we 
evaluated the relevance of each factor (predictive variable) to FA lev-
els (response variable) by comparing a general linear model containing 
the predictive factors of interest against an intercept- only model (null 
model). Owing to the limited sample sizes, all models were bivariate, 
with FA values as the normally distributed response variable and the 
factor of interest as the predictor variable. We used likelihood- ratio 
tests (LRT) to assess the goodness of fit of the null and candidate mod-
els. To assess statistical significance, we used Bonferroni corrected alfa 
values for individual (α = .01) and populational (α = .0125) analyses.

For Pearson correlations and the LRT analysis, we used R 
v.3.6 (R Core Team, 2014). Finally, we generated Kernel Density 
plots for mandible size and shape FA using the package ggplotgUI 
(Stulp, 2019) in r.

3  | RESULTS

3.1 | Fluctuating asymmetry in Nectomys squamipes

Both Procrustes ANOVA and one- way ANOVA indicated significant 
variation for the “individual” effect, suggesting that FA in mandibles 
shape and size exhibit interindividual variation (Table 4). Procustes 
ANOVA also indicated significant variation for “side,” suggesting that 
Directional Asymmetry is present in mandibles shape.

The interaction “individual × side”, indicative of FA, was signifi-
cant for both Procrustes ANOVA and one- way ANOVA. The F values 
for the factor “individual × side” were 10 times greater than that ob-
served for Error (Table 4), suggesting that the FA levels in mandibles 
are substantial.

3.2 | FA variation in Nectomys squamipes

Populations presented similar variances for size FA values, with 
means varying between 0.10 and 0.13, except for samples from 

Effect

Size Shape

SS df F p SS df F p

Individual 5,277.58 85 632.58 <.0001 1.02 1,360 10.27 <.0001

Side 0.06 1 0.59 .45 0.01 16 6.55 <.0001

Ind. × Side 8.34 85 22.71 <.0001 0.10 1,360 8.89 <.0001

Error 1 1.49 344 0.02 1 0.04 5,504 0.63 1

Residual 141.11 519 0.11 8,304

TA B L E  4   Procrustes ANOVA for FA in 
Nectomys squamipes mandible size (left) 
and shape (right). SS: sum of squares; 
df: degrees of freedom; Ind: Individual. 
Significant values are in bold
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PNMF Atalaia (mean = 0.2) and Barra de Maricá (means = 0.23), that 
had higher means (Table 5). On the other hand, means of FA val-
ues related to mandible shape varied gradually between 2.07 (ReBio 
União) and 2.39 (Barra de Maricá) (Table 5). Differences in FA among 
populations were not significant (Figure 4) for either size (size [KW- H 

(7.86) = 13.78; p = .05] or shape [F (7.78) = 0.60; p = .75]). However, 
populations did differ on FA shape variance. While most populations 
presented variances between 0.11 and 0.27, Cabiúnas exhibited a 
variance of 0.08 while Barra de Maricá a variance of 0.78, a value at 
least twice as large as the other populations (Table 5).

TA B L E  5   Descriptive statistics (mean ± σ2 [min– max]) of FA indexes for mandible size (module of centroid size) and shape (Mahalanobis 
FA score) for the eight populations of Nectomys squamipes, along with other populational parameters: observed heterozygosity (Ho), 
inbreeding coefficient (Fis), size ratio (given by the percentage of small individuals), and sex ratio (given by the percentage of males). 
σ2 = variance. The % of habitat is the one calculated with the smallest scale effect radius (264 m)

Population (%Habitat) Ho Fis Size ratio Sex ratio Size FA Shape FA

1 –  Barra de Maricá 
(18.86%)

— — 62.5% 50.0% 0.23 ± 0.02 [0.03– 0.49] 2.39 ± 0.78 [1.24– 3.97]

2 –  Fazenda Rosimary 
(28.15%)

— — 55.55% 66.7% 0.12 ± 0.01 [0.02– 0.28] 2.28 ± 0.19 [1.64– 3.21]

3 –  PNRJ Macaé (39.26%) 0.84 0.03 30.0% 50.0% 0.13 ± 0.01 [0.04– 0.35] 2.37 ± 0.20 [1.68– 3.07]

4 –  PNRJ Carapebus 
(66.25%)

0.83 0.09 36.4% 63.6% 0.11 ± 0.01
[0.00– 0.35]

2.29 ± 0.11 [1.72– 2.89]

5 –  Vale do Pamparrão 
(71.02%)

0.82 0.02 46.7% 73.3% 0.13 ± 0.02 [0.01– 0.48] 2.18 ± 0.17 [1.62– 2.95]

6 –  Cabiúnas (73.22%) 0.70 0.12 63,6% 72.7% 0.10 ± 0.01 [0.03– 0.25] 2.21 ± 0.08 [1.85– 2.67]

7 –  PNMF Atalaia (99.59%) 0.83 0.00 30.8% 61.5% 0.20 ± 0.01 [0.05– 0.44] 2.18 ± 0.27 [1.33– 3.02]

8 –  ReBio União (100%) 0.77 0.06 88.9% 66.7% 0.11 ± 0.01 [0.03– 0.32] 2.07 ± 0.14 [1.58– 2.71]

F I G U R E  4   Density distribution of 
fluctuating asymmetry of mandible shape 
(Mahalanobis FA score) and size (Centroid 
size FA) scores in eight populations of 
Nectomys squamipes. Sites: 1— Barra de 
Maricá; 2— Fazenda Rosimary; 3— PNRJ 
Lagomar (Macaé); 4— PNRJ São Lázaro 
(Carapebus); 5— Vale do Pamparrão; 
6— Cabiúnas; 7— PNMF Atalaia; 8— ReBio 
União. Darker colors represent lower 
habitat amount whereas lighter colors 
represent higher habitat amount. Habitat 
amount shown as a percentage in a radius 
of 264 m of the collection site
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3.3 | Habitat amount and FA

We tested the relationship between FA, both in size and shape, and 
habitat amount. We used mean FA values and percentiles of habitat 
available in each site calculated using scale effect values (Table 3). 
Only percentages calculated using a radius of 264m showed a sig-
nificant correlation with FA values. Populational FA indexes for man-
dible size were not correlated with habitat amount (r = −.22; p = .59; 
Figure 4). However, FA indexes for mandible shape exhibited signifi-
cant and strong negative correlation (r = −.88; p = .00) with habitat 
amount percentiles, suggesting that, in sites with more habitat avail-
able, such as PNMF Atalaia and ReBio União, mean FA values were 
lower than the observed in sites with less habitat available, such as 

in Barra de Maricá (Figure 5). Considering individual FA scores, no 
correlation was observed between size (r = −.04; p = .72) or shape 
FA (r = −.19; p = .08) and habitat availability.

LRT (Table 6) for individual levels suggested that shape FA levels 
in Nectomys squamipes samples could not be explained by any bio-
logical factor (i.e., sex, body size, or heterozygosity). For size FA lev-
els, most biological factors were also not significant. Heterozygosity 
(Table 6) was not significant for either FA shape or size, suggesting 
that neither individual nor populational FA levels are associated with 
genetic diversity. For populational FA in size (Table 6), neither habitat 
amount, population heterozygosity, nor inbreeding were significant. 
In contrast, habitat availability was significantly associated with 
shape FA levels of populations (p = .00), suggesting that higher hab-
itat amount is associated with a reduced populational FA in shape.

4  | DISCUSSION

Here, we show that the substantial Fluctuating Asymmetry (FA) in 
Nectomys squamipes mandibles is associated with habitat amount, 
at least regarding mandible shape FA at the population level. Apart 
from habitat amount, no other biological factors (sex, size, genetic 
variation, and inbreeding) were associated with mandible shape FA. 
These results suggest that although N. squamipes is still present in 
landscapes with low forest cover, its populations might already show 
the phenotypic effects of environmental stressors, which precede 
declines in local adaptive values. Therefore, FA measures from sci-
entific collections might be promising as a method to monitor popu-
lations under various environmental conditions and through time, 
helping biodiversity conservation efforts (Williams, 2000).

4.1 | Detection of FA levels and its relationships 
with habitat amount and genetic variation

In FA studies, comparisons among populations are based on dif-
ferences in their variances. Therefore, these studies depend on an 
accurate measure of variance and, consequently, on the number of 
samples (Graham et al., 2010). Because our sample size is limited, 
our power to detect differences between individuals and popula-
tions might be low (see Palmer & Strobeck, 1986 , 2003). However, 
despite this limitation, we did detect an association between FA 
variances and habitat amount. For mandible shape, seven of the 
eight populations presented similar variances, while the popula-
tion of Barra de Maricá presented the highest variance, three times 
greater than the second highest variance. This locality has the lowest 
habitat amount, only 18%, while the other localities present more 
than 28% habitat amount. It is possible that N. squamipes exhibits 
a certain developmental tolerance up to a certain habitat amount 
threshold, below which more individuals would depart from the 
mean FA levels. Landscape ecology studies have demonstrated that 
community integrity of Atlantic forest vertebrates is generally pre-
served until 24%– 33% (~30%) of forest cover, beyond which further 

F I G U R E  5   Relationship between habitat amount (measured 
as percentage in a radius of 264 m of the collection site) and 
fluctuating asymmetry (Mahalanobis FA score) of mandible shape 
in eight populations of Nectomys squamipes. Regression line shown 
in blue and confidence interval in grey. Sites: 1— Barra de Maricá; 
2— Fazenda Rosimary;3— PNRJ Lagomar (Macaé); 4— PNRJ São 
Lázaro (Carapebus);5— Vale do Pamparrão; 6— Cabiúnas; 7— PNMF 
Atalaia; 8— ReBio União

TA B L E  6   Likelihood- ratio tests comparing different factors with 
a null model as an explanation for individual (Ind.) and populational 
(Pop.) FA levels in Nectomys squamipes populations. Bold values 
represent significant p values (p < .01 for individual analysis and 
<.0125 for populational analysis)

Factors

Shape FA Size FA

χ2 p value χ2
p 
value

Ind –  habitat 
amount

3.15 .07 0.13 .77

Ind –  sex 1.70 .43 0.29 .86

Ind –  body size 0.88 .35 5.66 .02

Ind –  HO 0.08 .77 2.60 .10

Pop –  Habitat 
amount

12.00 .00 0.41 .52

Pop –  HO 0.83 .36 1.90 .17

Pop –  Fis 0.01 .92 5.36 .02
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habitat loss causes sharp declines in species richness and abrupt 
increases in local extinction risks for forest specialists (Banks- Leite 
et al., 2014; Estavillo et al., 2013; Pardini et al., 2010). Therefore, as 
a forest- dependent species, N. squamipes might face more stress-
ful conditions in landscapes below 30% of forest cover, signaling 
higher populational levels of FA, as observed in the Barra de Maricá 
population.

Landscapes produced by deforestation usually include an exten-
sive matrix of anthropogenic habitats, such as roads, cropland, urban, 
and/or industrial areas. In these landscapes, populations of forest- 
dwelling species are more vulnerable to a number of environmen-
tal threats (Graham et al., 2010), such as invasive species (Doherty 
et al., 2017), pathogens (Smith et al., 2009; Tompkins et al., 2011), 
and pollutants (Gall et al., 2015). Decreased habitat amount might 
also lead to increased local population densities resulting in more 
resource competition, territorial disputes, predation pressure, and 
conditions that might affect developmental stability and increase FA 
levels (Badyaev et al., 2000; Møller & Swaddle, 1997). Furthermore, 
degraded Atlantic forest remnants facilitate exposure of wildlife 
to domestic animals increasing parasitic infections, such as schis-
tosomiasis. This introduced human parasite is often present in N. 
squamipes populations living in small forest patches near rural and 
peri- urban areas (Gentile et al., 2006). Parasite infection is a known 
stress factor that has been shown to increase fluctuating asymmetry 
levels (Barnard et al., 2002; Møller & Swaddle, 1997).

Some studies reporting relationships between FA levels and hab-
itat availability or quality presume that the increase in developmen-
tal instability is caused by loss of genetic variation in populations 
(e.g. Anciães & Marini, 2000). This assumption is based on the ex-
pectation that inbreeding reduces canalization and increases devel-
opmental instability, but the evidence linking FA to heterozygosity 
is weak (Britten, 1996; Pertoldi et al., 2006; Vøllestad et al., 1999). 
We did not detect relationships between populational or individual 
level FA with observed heterozygosity or Fis, suggesting that loss 
of genetic variation or inbreeding did not explain the occurrence of 
highly asymmetric individuals in populations. The heterozygosity 
levels observed were generally high (as in other studies, see Almeida 
et al., 2005), suggesting that the populations studied did not expe-
rience severe loss of genetic diversity. The relationship between 
genetic variation and FA levels might be non- linear and difficult to 
detect in populations maintaining high genetic diversity. White and 
Searle (2008), for instance, reported that lack of habitat becomes 
relevant only in very small populations suffering from inbreeding 
depression. In a survey of island populations of the common shrew 
(Sorex araneus), White and Searle (2008) recovered a positive cor-
relation between FA and genetic diversity. However, this relation-
ship was driven by a single small island population exhibiting both 
the highest FA and lowest expected heterozygosity. It is possible 
that, if we had genetic data for the population of Barra de Maricá, 
our results would uncover a similar relationship. Further studies 
including more samples from low- diversity (and/or small habitat 
amount) populations are needed to test the hypothesis of genetic 
diversity as a cause of FA.

It is interesting that, in contrast to the patterns of populational 
FA levels, individual FA levels were not related to habitat amount 
or to genetic variation, suggesting that they are best explained by 
chance. The lack of correlations was due to the pervasive occur-
rence of symmetrical individuals in populations with low habitat 
amount, and of asymmetrical individuals with high heterozygosity. 
The first case is clearly illustrated by the population of Barra de 
Maricá, which exhibits very symmetrical individuals together with 
the most asymmetrical ones, increasing the FA mean and variance of 
the population. In the second case, it could be argued that the micro-
satellite loci variation assessed by us do not adequately represents 
genome wide diversity (Zachos et al., 2007). If FA is associated to 
variation in a few key loci not included in the genotyping (Vangestel 
et al., 2011), it would not be possible to detect correlations between 
heterozygosity and individual FA. Despite these uncertainties, our 
results suggest that FA might be more appropriate as a populational 
rather than individual indicator of stress and that further research is 
needed on the relationship between FA and heterozygosity.

4.2 | Fluctuating asymmetry and conservation

Several studies have suggested the use of Fluctuating Asymmetry 
as a potential indicator for environmental stresses (e.g., Leamy 
et al., 1999; Marchand et al., 2003; Oleksyk et al., 2004), including 
habitat loss and fragmentation (Anciães & Marini, 2000; Wauters 
et al., 1996). The ability to detect stress prior to its more severe 
consequences, such as changes in the adaptive value, presence of 
large deformations and severe population size declines (Sarre & 
Dearn, 1991), suggest that FA studies might be used for monitoring 
endangered species (Schmeller et al., 2011). Furthermore, while our 
study employed methods only suitable to museum specimens, sev-
eral studies using live individuals have also reported a positive rela-
tionship between environmental stress and the increase of FA levels 
in small mammal populations (Coda et al., 2016; Hopton et al., 2009; 
Wauters et al., 1996).

The present study is among the few to use Fluctuating 
Asymmetry levels as indicators of environmental stress for small 
Neotropical mammals. In addition, it is one of the first to investigate 
such relationships for sigmodontine rodents in remnants of Atlantic 
forest using museum collections to access the consequences of 
anthropogenic and environmental impacts in natural populations 
(Askay et al., 2014; Maestri et al., 2015). Despite the small sample 
sizes inherent in studies with mammals, we were able to show a re-
lationship between habitat amount and the magnitude of mandible 
asymmetry, providing support for the use of this methodology as 
indicator of environmental stress caused by habitat restriction in 
Neotropical small mammals.
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