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Abstract

Epigenetics is a gene regulation mechanism that does not depend on genomic DNA sequences but depends on chemical
modification of genomic DNA and histone proteins around which DNA is wrapped. The failure of epigenetic mechanisms is
known to cause various congenital disorders. It is also known that the failures of epigenetic mechanisms causes various ac-
quired disorders since epigenetic modifications of the genome (i.e., “epigenome”) are more vulnerable to environmental
stress, such as malnutrition, environmental chemicals, and mental stress, than the “genome,” especially during the early
period of life. However, the epigenome has a reversible property since it is based on removable residues on genomic DNA.
Thus, environmentally induced epigenomic alterations can be potentially restored. In fact, some medicines, especially for
psychiatric diseases, are known to restore an altered epigenome, resulting in the correction of gene expression. Several lines
of evidence suggest that environmentally induced epigenomic alterations are not erased completely during gametogenesis,
but are transmitted to subsequent generations with disease phenotypes. In accordance with these understandings, I would
like to propose the development of epigenomic-based preemptive medicine that consists of the early detection of the devel-
opmental origins of diseases using epigenomic signatures and the early intervention that take advantages of the use of epi-
genomic reversibility.
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Introduction

Diabetes mellitus (DM) comprises a group of heterogeneous
metabolic disorders that share an increase in the concentration
of blood glucose. Both environmental and genetic factors are
thought to contribute to the occurrence of DM. A number of
studies have demonstrated that various environmental factors

including overeating, passive smoking in those who are not
themselves active smokers, and ambient air pollution such as
by PM2.5 induce systemic insulin resistance as a predisposition
to type 2 DM (T2DM) [1, 2].

As for genetic factors associated with DM, including matu-
rity onset diabetes of the young (MODY), several causative
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genes have been identified and >75 genetic variants. However,
mutations in genes associated with MODY are rare and whether
the identified common variants are causal and how these ge-
netic variants exert their effect on the pathogenesis of T2DM is
largely unknown [3, 4].

Several lines of evidence suggest that epigenetic alterations
induced by environmental factors (e.g. nutritional factors and
mental stress) during the fetal and neonatal periods are under-
lying mechanisms of the predisposition to T2DM [5–9].

A number of environmental factors are also known to be in-
volved in the pathogenesis of neurodevelopmental disorders
(NDs), such as inappropriate child rearing (e.g. child abuse and
malnutrition by the parents with mental problems) [10–13], viral
infections with rubella and cytomegalovirus, which induce im-
munological reactions in the brain [14–19], and environmental
chemicals such as endocrine-disrupting chemicals e.g. tobacco,
air pollutants, solvents, metals, pesticides, flame retardants,
non-stick chemicals, phthalates, and bisphenol A (BPA) [20].

As for genetic factors associated with NDs, causative genes
associated with brain function have been identified. Mutations
in genes encoding secreted proteins (e.g. RELN), cell adhesion
molecules (e.g. NLGN3 and NLGN4), receptors and transporters
(e.g. GRIN2A), synaptic scaffolding proteins (e.g. SHANK3 and
LIN7B), and actin cytoskeleton dynamics (e.g. TSC1 and TSC2)
[21–27]. These findings suggest that NDs can be recognized as
“synaptic disorders” [21, 28] (Fig. 1).

Unexpectedly, mutations have also been identified in
chromatin-remodeling factors that are apparently not involved
directly in brain function. These include methylated CpG-bind-
ing proteins [e.g. MEPC2 associated with Rett syndrome (RTT)],
DNA methyltransferases (e.g. DNMT3A associated with intellec-
tual disability with overgrowth), histone methyltransferase (e.g.
EHMT1 associated with Kleefstra syndrome), and chromatin re-
modeling proteins (chromodomain helicases) (e.g. CHD8 associ-
ated with an autistic disorder) [29–33]. These findings suggest

that NDs can also be recognized as “chromatin (a unit of DNA
and histone proteins that are chemically modified) disorders”
[24–35] (Fig. 1).

Recent studies revealed that ASC2 (a protein involved in cor-
tical neuronal migration and neurogenesis), which is associated
with a subtype of NDs binds to Polycomb repressive complex 1
(a chromatin remodeling protein) and controls the expression of
genes (e.g. neurocan) involved in axon guidance in the develop-
ing forebrain [36–40], suggesting that a close interaction be-
tween neuronal molecules and chromatin molecules is
essential for brain development and failure of this interaction
leads to misregulation of brain development-associated genes,
resulting in NDs.

In this review, I introduce various congenital disorders
caused by epigenetic misregulation and disorders caused by ac-
quired epigenetic misregulation and discuss epigenomic-based
preemptive medicine taking advantage of the use of the epige-
netic reversibility for patients with metabolic and NDs and for
future generations in terms of transgenerational epigenetic
inheritance.

Congenital Disorders Caused by Epigenetic
Misregulation

RTT is a representative ND characterized by repetitive and ste-
reotypic hand movements, seizures, gait ataxia, and autistic
features, which is caused by mutations in the gene encoding
methyl-CpG-binding protein 2 (MeCP2) [29]. Since RTT is an X-
linked dominant disorder, the affected patients are females. In
males, the disorder is thought be embryonic lethal, although in
rare cases, male RTT patients have been reported [41].

The MeCP2 protein binds methylated DNA regions and con-
trols the expression of a number of genes including synapse-
associated genes such as BDNF, DLX5, ID, CRH, IGFBP3, CDKL1,
PCDHB1, and PCDH7 by interacting with histone deacetylases in

Figure 1: Mutations in the genes encoding proteins associated with synaptic function are found in a subset of patients with NDs. Mutations in the genes encoding chro-

matin-associated proteins are found in a subset of patients with NDs via misregulation of synapse-associated genes. Various types of environmental stress affect the

function of chromatin-associated genes. All of these genetic alterations and epigenetic misregulation by environmental stresses lead to the misregulation of brain

function
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neuronal cells and brain tissue [42–52], resulting in the regula-
tion of excitatory synaptic strength [53] (Fig. 1).

Instead of studying the inaccessible brain cells of RTT pa-
tients during development, neural cells can be generated by us-
ing induced pluripotent stem cell (iPSC) technology. Several
iPSC studies demonstrated that RTT neurons have abnormali-
ties in maturation [54–56] and differentiation, in which a subset
of glia cell-specific genes, such as GFAP, are aberrantly ex-
pressed due to de-suppression because of a deficiency of MeCP2
[57] (Fig. 2).

The brain is a gene-dosage-sensitive organ in which either
under-expression due to mutation or deletion of a gene or over-
expression due to duplication of the same gene results in neuro-
logical abnormalities. The effects of aberrant gene expression
are exemplified by conditions such as Pelizaeus–Merzbacher
disease, a severe congenital myelination disorder associated
with deletion, mutation, or duplication of PLP1 [58], lissence-
phaly, a severe congenital neural migration disorder associated
with either deletion or duplication of LIS1 (PAFAH1B1) [59, 60],
Charcot–Marie–Tooth disease, an adult-onset neuromuscular
disease associated with mutation or duplication of PMP22 [61],
and Parkinson’s disease associated with either mutation or
multiplication of SNCA [62].

Similarly, not only mutations in MECP2 but also duplication
of MECP2 cause severe mental retardation especially in males
[63] and cognitive impairment with learning difficulties and
speech delay in females [64]. The over-dosage effect of Mecp2
has been found in transgenic mice and monkeys that show mo-
tor coordination deficits, heightened anxiety, and impairments
of learning and memory. These animals also exhibit various be-
havioral problems such as a higher frequency of repetitive cir-
cular locomotion, increased stress responses, stereotypic
cognitive behaviors, and reduced interactions with other ani-
mals [65, 66].

These findings results from genetic and epigenetic studies
suggest that the brain is extremely sensitive to the dosage of
proteins associated with synaptic or neuronal function, such as
BDNF and LIS1, and is also sensitive to the dosage of proteins
associated with chromatin structure or epigenetic gene regula-
tion such as MeCP2, and further indicate that the brain is an

organ that requires strict gene control to maintain the corrected
levels of proteins associated with brain function.

ICF syndrome, which is characterized by Immunodeficiency
(e.g., IgG and IgA), Centromere instability (breakage of the peri-
centric heterochromatic regions of chromosomes 1, 9, and 16
due to abnormally low levels of DNA methylation), and Facial
anomalies, is a congenital autosomal recessive disorder caused
by mutations in the DNA methyltransferase gene, DNMT3B,
which lead to de-suppression due to hypomethylation of genes
[67, 68] (Fig. 2). A recent study demonstrated a hypomethylation
pattern in mesenchymal stem cells differentiated from iPSCs of
ICF patients, which is potentially associated with immunologi-
cal pathogenesis [69].

Prader–Willi syndrome (PWS) is a congenital epigenetic dis-
order characterized by muscle hypotonia during infancy, crypt-
orchidism (in boys), short stature, small hands and feet,
hyperphagia starting from childhood and subsequent obesity
and T2DM in adulthood, and various neurodevelopmental fea-
tures such as obsessive–compulsive disorder. PWS is not caused
by abnormalities in a single epigenetic molecule, but is caused
by an abnormal epigenomic pattern in which the expressed pa-
ternal genes, located on chromosome 15q12, are missing physi-
cally or functionally due to paternal deletion or uniparental
maternal disomy, respectively [70–73]; PWS patients have only
maternally inherited genes on chromosome 15q12 that are im-
printed (methylated) and are thus not expressed (Fig. 2).

Angelman syndrome, characterized by severe intellectual
disability and intractable epilepsy with puppet-like ataxic
movements and paroxysms of laughter, is another epigenetic
disorder caused by an abnormal epigenomic pattern in which
the expressed maternal allele of UBE3A, located on chromosome
15q12, is missing physically or functionally due to maternal de-
letion or uniparental paternal disomy, respectively [74].
Conversely, over-dosage of the expressed genes located on the
maternal chromosome due to chromosomal duplication or trip-
lication causes autistic-like features [75]. Is interesting to note
that assisted reproductive technologies (e.g. in vitro fertilization
and intracytoplasmic sperm injection), which are used widely
due to increases in age at the time of conception of the first
child, alter DNA methylation status at loci and are potentially
involved in an increased risk of Beckwith–Wiedemann syn-
drome, a congenital epigenetic disorder characterized by over-
growth in the fetal period with an increased risk of childhood
cancer [76, 77].

Acquired Disorders Caused by Epigenetic
Misregulation

In the concept of gene–environment interactions for common
diseases including metabolic and NDs, the combination of heri-
tability (G: genetic factor such as a single nucleotide polymor-
phism) and experience (E: environmental factor), that is, the “G
� E” model, has been used where G and E contribute indepen-
dently to disease occurrence. I would like to propose an “E � G”
model, in which E changes G dynamically, where G is not a ge-
nomic DNA sequence (i.e. the genome) but genomic DNA and
histone protein modifications (i.e. the epigenome) [78]. I would
like to show examples that underlie this new model, in which
environmental factors alter the epigenome of individuals,
changing their health status.

Epidemiological studies of populations affected by famines
in the Netherlands and China demonstrated that the generation
with a lower birth weight than normal had an increased risk for

Figure 2: Epigenetic misregulation in congenital epigenetic disorders and ac-

quired epigenetic disorders. (A) Abnormalities in a methylated CpG binding pro-

tein or a DNA methyltransferase result in Rett syndrome or ICF syndrome,

respectively. An aberrant genomic pattern due to failure of genomic imprinting

results in Prader-Willi syndrome. (B) Environmental factors alter epigenomic

status, resulting in predispositions to various common disorders
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obesity, DM, and mental disorders [79, 80]. These studies sug-
gested that the number of patients with DM and an ND might
increased in Japan because the rate of low birth weight infants
has increased over the past 30 years due to the increase of
young women who diet even while pregnant and the directions
of obstetricians to minimize pregnancy weight gain to avoid a
hard labor and reduce the risk of gestational DM [79].
Furthermore, recent epigenetic studies demonstrated that mal-
nutrition with insufficient folic acid intake during pregnancy in-
duced lower DNA methylation in genes (e.g. PPARa) in the liver
of rat offspring [5, 6]. Similar low levels of DNA methylation
were observed in the peripheral blood of individuals who lived
through the Dutch famine [81]. Conversely, periconceptional
micronutrient supplementation, including folate, zinc, and vita-
mins A, B, C, and D, increased DNA methylation levels in hu-
man offspring [82]. This kind of scientific study to clarify the
mechanism of the occurrence of “adult diseases” during the
early period of life for early intervention is referred to as
“Developmental Origins of Heath and Disease” [83].

In addition to malnutrition, a number of environmental
chemicals have been shown to alter the epigenome. For exam-
ple, prenatal exposure to BPA, a chemical with reproductive tox-
icity that induces growth alterations and immune
dysregulation, alters DNA methylation in fetal brain and in
mast cells and liver of offspring [84–86]; prenatal exposure to
polybrominated diphenyl ethers, which are used as flame retar-
dants, decreases DNA methylation of TNFa and increases TNFa

(a proinflammatory molecule) expression in cord blood [87]; pre-
natal exposure to tobacco smoking alters DNA methylation of
AHRR, MYO1G, CYP1A1, and CNTNAP2 in cord blood; and these
altered DNA methylation patterns were observed in the periph-
eral blood of their children born to smoking mothers at the age
of 17 years and may be associated with diseases, such as bron-
chial asthma [88]. These findings suggest that DNA methylation
is changeable during the early periods of life, and these changes
can persist for a long period after birth and can be associated
with disease phenotypes.

Similar to patients with DM, the number of children with
NDs has increased in England [89] (prevalence from 1/2,500 to 1/
86) and other countries over the last 50 years. The rate of af-
fected children has reached 100 (range, 34–264) per 10 000 chil-
dren [90–94]. For these increases, twin studies have implicated
the influence of environmental factors in the development of
NDs [95–97].

The epigenome, characterized by epigenetic mechanisms,
acts as a “physical receptor” for environmental stresses. In fact,
epigenomic differences are more markedly different in older
monozygotic twins than in younger monozygotic twins [98],
and differential epigenomic patterns have been observed be-
tween discordant monozygotic twins with RTT, a representative
ND as mentioned above, in which abnormal epigenomic pat-
terns that lead to aberrant synaptic gene expression were ob-
served in the RTT twin with the more severe phenotype [99]. A
previous rat study demonstrated that exposure to short-term
postnatal stress by separating offspring from their mother in-
duced hypermethylation within the promoter region of NR3C1,
which encodes a glucocorticoid receptor hormone associated
with resilience, in the hippocampal region of the offspring,
which leads to life-long abnormal behavior [7]. Furthermore, re-
cent human studies also demonstrated that ice storm stress in
1998 in Quebec during pregnancy altered DNA methylation of
immunological genes in the peripheral blood of the offspring
[100], and severe maternal stress that causes depression during
pregnancy alters DNA methylation in imprinted IGF2 and

GNASXL in cord blood [101] and in NR3C1 and BDNF in the buccal
mucosa of 2-month-old infants [102, 103].

All of these findings indicate that the epigenome is vulnera-
ble to environmental stress during the early period of life, envi-
ronmental stress-induced epigenomic alterations can alter or
modify phenotypes, and the recent increase of ND patients may
be caused by epigenomic alterations induced by environmental
and social stress to children and/or mothers.

Epigenomic-Based Preemptive Medicine

For adult-onset diseases, physicians make a diagnosis based on
the guidelines established for each disease. In these cases, diag-
nosis is made at a later stage of development after the patient
fulfills the criteria for each adult disease (e.g. blood sugar and
HbA1c levels for T2DM). Furthermore, gold standard therapeutic
protocols are strictly determined in the guidelines, regardless of
a patient’s individual genetic background, which may influence
the effectiveness of the administered drugs. In this context,
“personalized medicine” has been proposed as the application
of treatments that take into consideration each patient’s genetic
background.

“Preemptive medicine” is a type of personalized medicine
that is based on the individual and is thus different from
population-based preventive medicine that started as a means
to prevent the spread of infectious diseases (it is now moving
toward the prevention of adults diseases). In preemptive medi-
cine, a practical approach is to detect high-risk individuals by
screening with a blood biomarker, which includes genetic and
epigenetic information, and to intervene in high-risk individ-
uals at the preclinical stage to prevent serious events, such as
T2DM, Alzheimer’s disease, osteoporosis, and coronary heart
disease [104].

Such a preemptive approach based on an epigenomic
marker has already been started for PWS, one of the congenital
epigenetic disorders mentioned above. High-risk individuals
(i.e. PWS patients) are identified by an abnormal pattern of
SNRPN promoter methylation in peripheral blood during in-
fancy, and a variety of physical and drug treatments are pro-
vided to the individuals to prevent future symptoms (e.g.
obesity and T2DM).

For example, a program of a well-balanced low-calorie diet
and regular exercise is applied to prevent weight gain by hyper-
phagia and the subsequent development of obesity, which be-
gins at 2–4 years of age [105]. Physical therapy for patients
younger than 3 years of age improves muscle strength and en-
courages the achievement of developmental milestones, and
daily muscle training increases physical activity and lean body
mass in older patients [106]. Growth hormone treatment nor-
malizes height, increases lean body mass, decreases fat mass,
and increases mobility, which are beneficial to weight manage-
ment [107]; a longitudinal study demonstrated that growth hor-
mone treatment normalized stature and improved weight and
body composition in PWS patients compared to non-growth
hormone-treated PWS patients [108, 109]. Furthermore, a recent
randomized controlled trial revealed that physical training
combined with growth hormone further improved muscle
thickness, which was matched by an increase in muscle
strength and motor development in infants with PWS [110].
Growth hormone treatment further improves language skills in
infancy, cognitive skills in childhood, and mental speed, mental
flexibility, motor performance and ability to adapt to society in
adulthood [111–115]. Therefore, epigenomic-based preemptive
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medicine is effective for patients with PWS although the num-
ber of PWS patients is limited.

In order to establish a preemptive program for acquired dis-
orders similar to that for PWS, it will be necessary to identify
“epigenomic signatures” that are modified by environmental
factors and can be detected in peripheral blood. In fact, mental
stress-induced hypermethylation of the brain-derived neurotro-
phic factor (Bdnf) gene was demonstrated in the hippocampal
region of a mouse model of depression [116]. Subsequently, ab-
normal DNA methylation of BDNF was proposed as an epige-
nomic blood marker for the individuals with major depression
[117]. Abnormal DNA methylation of FHL2, ZNF518B, GNPNAT1,
and HLTF was also proposed as an epigenomic blood marker for
individuals with T2DM [118]. Furthermore, it was demonstrated
recently that exposure to BPA during the prenatal period in-
duced lasting DNA methylation changes in Bdnf in the hippo-
campus and blood in mice, and that exposure to high levels of
BPA in utero induced DNA methylation changes in human cord
blood [119]. These findings suggest that methylation in the
blood may be used as a predictor of methylation in the brain
and indicate that DNA methylation in the peripheral blood can
be a useful biomarker for the detection of psychopathology.

It was reported recently that epigenomic restoration of his-
tone acetylation can be achieved by the administration of psy-
chotropic drugs, such as valproic acid and imipramine [116, 120,
121]. A recent epidemiological study further demonstrated that
supplementation of folic acid during pregnancy, which is an im-
portant nutrient for DNA methylation, reduced the risk of NDs
in the offspring [122]. Studies using RTT or Mecp2-duplication
mouse models have demonstrated that genetic supplementa-
tion of MeCP2, bone marrow transplantation, antisense oligonu-
cleotides, or deep brain electrical stimulation after birth
successfully attenuates neurological symptoms [123–126].
These findings support the notion that the phenotypes of NDs
caused by epigenetic dysregulation are reversible and thus
treatable. In this context, drugs are under development by
many pharmacological companies taking advantage of the use
of epigenomic reversibility.

Studies using mouse models also suggest that the clinical
features of a congenital epigenomic disorder can be ameliorated
not only by the administration of “ultimately designed” epige-
nomic drugs but also by providing a better nurturing environ-
ment. For example, environmental enrichment with larger-
sized home cages containing a variety of objects including run-
ning wheels, improved motor coordination with a slight in-
crease in BDNF protein levels in the cerebellum, rescued
memory deficits in the Morris water maze, and decreased
anxiety-related behavior in RTT model (heterozygous Mecp2þ/-)
female mice [127, 128]. Similarly, environmental enrichment
improved locomotor activity with reduced ventricular volume
and decreased the expression of synaptic markers, such as syn-
aptophysin and PSD95 in the hypothalamus and syntaxin 1a
and synaptotagmin [129, 130]. The precise molecular mecha-
nism underlying the environmental enrichment effect remains
to be elucidated, but it is intriguing to think that the epigenomic
status of MeCP2-target synaptic genes may be restored by envi-
ronmental enrichment.

Conclusions

In this article, I introduced congenital disorders with epigenetic
abnormalities caused by genetic alterations such as RTT and
PWS and acquired disorders with environmentally induced epi-
genomic abnormalities. Furthermore, I discussed the concept of

epigenomic-based preemptive medicine, taking advantage of
the use of epigenomic reversibility.

Several lines of evidence suggest that environmental stress
that alters a phenotype affect not only the exposed individual but
also subsequent progeny for successive generations. In other
words, ancestral experiences could influence subsequent genera-
tions, the concept of which is termed “transgenerational inheri-
tance.” Furthermore, environmental factors such as endocrine-
disrupting chemicals and nutrition do not promote genetic muta-
tions but instead promote epigenetic changes; the permanent
programming of an altered epigenome in the germline can allow
for the transmission of transgenerational epigenetic phenotypic
variations and subsequent disease risk [131, 132].

The evidence supports the theory of Lamarckian inheritance
in which an organism can pass on phenotypes that it acquired
during its lifetime to its offspring. More precisely, a hypothesis
has emerged that environmental stress results in epigenetic
changes at some loci in the genome and these can escape the
epigenetic reprogramming that normally occurs between gener-
ations [133, 134].

Short-term postnatal mental stress by separating offspring
from their mother alters DNA methylation not only in the brain
but also in the sperm of male offspring, and then, the environ-
mentally induced epigenetic and expression alterations of Crfr2
are transmitted up to the third generation (F1 sperm and F2
brain) along with behavioral abnormalities [135]. Furthermore,
exposure to prenatal stress induces changes in DNA methyla-
tion and micro-RNA expression in the placenta and brain,
which leads to an increase in risk for NDs, schizophrenia, and
anxiety- or depression-related disorders later in life [136].

Exposure to an environmental chemical (e.g. vinclozolin)
during embryonic gonadal sex determination can alter male
germ-line epigenetics, and the alteration of DNA methylation in
the germ line appears to result in the transmission of transge-
nerational adult-onset diseases, such as spermatogenic defects,
prostate and kidney diseases, and cancer [137]. A recent study
demonstrated that exposure to BPA in early life induces glucose
intolerance and b-cell dysfunction, with hypermethylation and
associated decreased expression of Igf2 in the islets of male F2
offspring; this suggests that exposure to BPA during early life
can result in the generational transmission of glucose intoler-
ance and b-cell dysfunction through the male germ line by an
epigenetic mechanism [138].

However, evidence that such effects persist in subsequent
generations has been inconclusive [133, 139, 140]. These effects
must be observed in the F3 generation to be considered transge-
nerational because the in utero nature of the ancestral perturba-
tion affects not only the somatic and germ cells of the developing
F1 fetus but also the germ cells of the F2 generation [132]. In this
context, a recent study demonstrated that !treatment of pregnant
mice with methoxychlor altered the methylation of all genes ex-
amined in the F1 offspring, but these effects disappeared gradu-
ally from F1 to F3 [141]. This suggests that transgenerational
epigenetic inheritance is not “solid (complete)” genetic inheri-
tance but “soft (incomplete)” epigenomic inheritance [142, 143].
Nevertheless, epigenomic-based preemptive medicine will be im-
portant not only for the exposed first generation but also for sub-
sequent successive generations in terms of disrupting the vertical
transmission of epigenomic disorders.
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