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Abstract

Background: Penicillin G acylase (PGA) is used industrially to catalyze the hydrolysis of penicillin G to obtain
6-aminopenicillanic acid. In Escherichia coli, the most-studied microorganism for PGA production, this enzyme
accumulates in the periplasmic cell space, and temperature plays an important role in the correct synthesis of its
subunits.

Results: This work investigates the influence of medium composition, cultivation strategy, and temperature on
PGA production by recombinant E. coli cells. Shake flask cultures carried out using induction temperatures
ranging from 18 to 28°C revealed that the specific enzyme activity achieved at 20°C (3000 IU gDCW-1) was 6-fold
higher than the value obtained at 28°C. Auto-induction and high cell density fed-batch bioreactor cultures were
performed using the selected induction temperature, with both defined and complex media, and IPTG and
lactose as inducers. Final biomass concentrations of 100 and 120 gDCW L-1, and maximum enzyme productivities of
7800 and 5556 IU L-1 h-1, were achieved for high cell density cultures using complex and defined media, respectively.

Conclusions: To the best of our knowledge, the volumetric enzyme activity and productivity values achieved using the
complex medium are the highest ever reported for PGA production using E. coli. Overall PGA recovery yields of 64 and
72% after purification were achieved for crude extracts obtained from cells cultivated in defined and complex media,
respectively. The complex medium was the most cost-effective for PGA production, and could be used in both high cell
density and straightforward auto-induction protocols.
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Background
Penicillin G acylase (PGA) is used industrially to catalyze
the hydrolysis of penicillin G to obtain 6-aminopenicillanic
acid (6-APA), which is a key intermediate for the synthesis
of β-lactam antibiotics [1]. These drugs account for the
largest fraction of global sales of antibiotics, and comprised
60% of the 5 × 107 kg/year produced worldwide in 2003
[1]. The production of semi-synthetic β-lactam antibiotics
requires ever-increasing quantities of PGA, and the annual
consumption of this enzyme is estimated to be in the range
of 10–30 million tons [2]. The unmet demand for PGA
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reproduction in any medium, provided the or
at an acceptable cost could be supplied by improving
the processes used for its production.
PGA can be produced by a variety of microorganisms,

including bacteria, fungi and yeasts. The microorganism
that has been most widely studied for this purpose is
Escherichia coli, which accumulates the enzyme in the
periplasmic cell space. The enzyme precursor is synthesized
as an inactive 96 kDa pre-pro-PA, which contains a signal
peptide at its N terminus [3] that mediates the translocation
of pro-PA into the periplasm. This intermediate is further
processed into α (23 kDa) and β (63 kDa) PGA chains
during autoproteolytic reactions [4].
In the past, PGA has mainly been manufactured by

fed-batch as well as by batch processes, using recombinant
E. coli, Bacillus megaterium, or Arthrobacter viscosus, and
sucrose or glucose as carbohydrate substrates [5].
Optimization of the performance of cultures for re-

combinant enzyme production has two main objectives:
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high-level gene expression, and intense formation of
biomass containing a high activity level of soluble, correctly-
folded intracellular enzyme [6].
Strategies for high-level gene expression involve increas-

ing the efficiency of one or more gene expression steps [3].
In the case of the pac gene, encoding penicillin G acylase
of E. coli, B. megaterium and other organisms [7,8], many
different procedures have been employed to this end.
The efficiency of transcription of the pac gene can be
genetically modulated by mutation or removal of the regu-
latory region, mutations in the transcription initiation
region, or by replacement of the pac promoter [9-11].
The post-translational processes, which are crucial for
obtaining soluble active PGA, have been investigated
to identify optimum host/vector combinations that can
efficiently produce the mature protein [3,6], with co-
expression of helper proteins that assist the formation
of correctly-folded active PGA [6,12] . In addition, cloning
the pac gene from different microorganisms in E. coli is
another strategy that has been used to improve enzyme
production [7,13,14].
Temperature plays a very important role in modulating

the expression of key genes involved in recombinant
protein production [15-17]. The rate of protein synthesis
is reduced at low temperatures, which increases the
formation of correctly-folded biomolecules [18]. Selection
of a suitable temperature is also crucial to ensure that
a balanced flux is maintained throughout the stages of
protein synthesis (transcription) and maturation (trans-
location and periplasmic processing), in order to avoid
accumulation of immature precursors and optimize ex-
pression of the pac gene [10]. Otherwise, the formation
of insoluble protein aggregates (inclusion bodies) can occur
[19]. Keilmann et al. [18] also reported that the initiation
step of translation of the pac mRNA is blocked at high
temperatures.
The production of PGA in bioreactor cultivations has

been widely studied using both batch [20-22] and high cell
density fed-batch cultures [6,23,24]. Fed-batch cultivation
is considered to be the most efficient process for the
production of inducible heterologous proteins, including
PGA, because the nutrient supply can be modulated to
firstly achieve high biomass formation and then proceed
with the induction [25]. However, performing a high cell
density culture (HCDC) is a challenge, mainly because
control of both the dissolved oxygen concentration and
the flow rate of the feed medium is problematic at high
biomass concentrations [24,26].
The auto-induction approach [27,28] offers an alternative

to fed-batch cultures. Biomass concentrations of up to
40 gDCW L-1 [29,30] can be obtained directly from batch
experiments employing a mixture of glucose, glycerol, and
lactose, with minimal requirements for handling of the
expression culture [31]. However, this strategy has not
yet been reported for PGA production in shake flask or
bioreactor cultures of recombinant E. coli.
The composition of the culture medium is another im-

portant consideration in design of a suitable cultivation
strategy, because it not only affects cell growth, but also
influences gene expression and, consequently, the pool
of proteins accumulated in the cells. Both defined and
complex media have been employed for PGA production,
but no reported studies have addressed the influence of
medium composition on the performance of processes
used for PGA recovery from cell lysates. In addition, the
composition of the medium, as well as the induction
strategy (especially the inducer selected), play important
roles in the post-induction cell response. So far, the
majority of published works have focused on the use of
isopropyl-β-D-thiogalactopyranoside (IPTG) as the in-
ducer [6,21,22,24]. Nonetheless, the fact that IPTG is
an expensive and potentially toxic chemical restricts its
application as an inducer in the industrial production of
recombinant proteins. Lactose, on the other hand, is an
inexpensive, natural, environmentally friendly inducer that
can be used in expression systems based on the lac
promoter. Despite these advantages, only one study has so
far considered PGA production induced by lactose [23].
With the goal of developing an optimized protocol for

PGA production, the main objectives of the present study
were therefore to: i) assess the influence of induction
phase temperature on PGA production; ii) compare auto-
induction and conventional fed-batch cultivation strategies
for PGA production in a bioreactor; and iii) analyze the in-
fluence of the culture medium composition and inducers
on protein synthesis and purification.

Results
Influence of temperature on PGA production
As already stated above, temperature plays an important
role in PGA synthesis by E. coli cells, and values between
22 and 37°C have been reported for the induction phase
[7,32]. Here, induction temperatures ranging from 18 to
28°C were tested in the shake flask cultures. Figure 1
shows the specific and volumetric enzyme activities after
24 h of induction at different temperatures. The specific
enzyme activity was ~3000 IU gDCW-1 at 20°C, ~2500 IU
gDCW-1 at 22 and 24°C, and decreased to less than
1000 IU gDCW-1 at 28°C. As expected, the final biomass
concentration increased at higher temperatures, ranging
from 2.3 (at 18°C) to 3.3 gDCW L-1 (at 28°C).
Despite the reduced biomass formation observed at

lower temperatures, the enzyme concentration per volume
of culture medium was significantly improved at 20°C. The
enzyme production achieved at this temperature was 2 to
3-fold superior to values reported in the literature [6,23,33],
probably due to the temperature employed during the
induction phase in the earlier studies, which ranged from
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Figure 1 Effect of induction temperature upon specific activity (Eq. 4) and volumetric enzyme activity (Eq. 5) of PGA produced by
recombinant E. coli grown in shake flasks containing LB medium after 24 h of induction. All experiments induced with 0.25 mM IPTG,
Tgrowth = 37°C, ODinduction = 1.5. Error bars for specific enzymatic activity, volumetric enzyme activity and biomass concentration are standard
deviations from triplicates. Means with different letters (a–e) differ significantly according to the Tukey’s test (p <0.05).

Figure 2 SDS-PAGE of cell lysates for recombinant E. coli grown
in shake flasks containing LB medium after 24 h of induction.
Experiments induced with 0.25 mM IPTG. (1) protein standards; (2)
insoluble proteins (28°C); (3) soluble proteins (28°C) (4) insoluble
proteins (20°C); (5) soluble proteins (20°C).
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28 to 30°C. Plasmid stability was also favored at 20°C, with
values of 70-80% obtained after 24 h of induction. When
a temperature of 24°C was used, plasmid retention de-
creased to 53% at the end of the induction period.
These results pointed out 20°C as the best temperature

for PGA production by rE. coli. This value is lower than the
optimum temperature (28°C and 22°C) identified by Cheng
et al. and Dai et al. [7,32], respectively, for maximizing PGA
production with IPTG as inducer. In these studies, con-
structs were based on plasmids pET24a and pMLB1023,
whereas in the present work, plasmid pT101/D-TOPO was
used. So, the results suggest that the optimum temperature
for PGA synthesis may also depend on the construct
(plasmid and gene). Further evidence of the strong influ-
ence of temperature on PGA synthesis was obtained from
the SDS-PAGE analyses of disrupted cells after 24 h of
induction at 28 and 20°C (Figure 2). An intense band
corresponding to pre-pro-enzyme (~90 kDa) was found
for the cells induced at 28°C, for both soluble and insoluble
fractions (lanes 2 and 3). The formation of large amounts
of pre-secretory product could be due to overloading of the
transportation machinery of the cell. As a result, untranslo-
cated pre-pro-enzyme may have accumulated and formed
aggregates of an inactive form of the enzyme [21]. On the
other hand, when the induction took place at 20°C,
subunits α and β were observed (lanes 4 and 5), but the
pre-pro-enzyme was not present.

Growth and protein production in bioreactor culture using
the auto-induction strategy
Before investigating an induction strategy for high cell
density cultures (HCDC) based on a low induction
temperature, the alternative auto-induction protocol was
used to perform bioreactor experiment B1 and validate
the shake flask results. Despite being frequently used for
protein production using T7-based E. coli expression
systems in shake flask cultures [27,34], only a few investiga-
tions have considered bioreactor cultures based on auto-
induction complex medium formulations [29,30,35].
Figure 3 shows the main results obtained for the auto-

induction culture. Intense biomass formation was observed
in the first 6 h of culture (μmax = 0.73 h-1), assisted by
the high growth temperature (37°C) and fueled by the
consumption of glucose and proteins/amino acids from
the yeast extract and tryptone (components of the com-
plex medium). Glucose prevents the uptake of lactose,
and its exhaustion (at ~6.5 h) signaled the beginning
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Figure 3 Growth, carbon sources consumption and PGA production by recombinant E. coli in intermittent fed-batch culture B1 with
auto-induction medium. Tgrowth = 37°C and Tinduction =20°C. Pulse of glycerol and lactose added after 15.5 h of culture. Error bars for cell viability
and specific enzymatic activity are standard deviations from triplicates.
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(tinduction = 0 h) of heterologous protein synthesis induced
by the lactose present in the medium to induce expression
[27]. Shortly after glucose depletion, the temperature was
reduced to 20°C to reproduce the induction strategy
selected from the shake flask results. The PGA specific
activity data (Figure 3) were indicative of fast enzyme
accumulation in the cells, reaching 2800 IU gDCW-1 after
17.5 h of induction. This value was similar to the maximum
specific activity observed in the flask experiments (Figure 1)
carried out at the same temperature (20°C).
The biomass concentration increased continuously up to

36 gDCW L-1, with a moderate growth rate (μ =~ 0.09 h-1)
after the temperature decrease (between 7 and 15 h), and
a slow growth rate (μ = ~ 0.02 h-1) during the last 12 h of
induction due to intensification of the metabolic burden
related to protein expression [36-38]. The permittivity
signal (Figure 3) closely followed the biomass formation
profile up to ~16 h of culture. The capacitance sensor
measures the dielectric permittivity produced by a polarized
cell membrane when it is subjected to low radio frequen-
cies. Since this only occurs for viable cells [39], the shift in
the permittivity curve reflected a decrease in the viable
cell concentration due to the stress associated with protein
production, as also shown by the c.f.u. counts [36]. The
measured loss of viability was also influenced by the de-
crease in the proportion of cells retaining the plasmid,
which changed from 90% (at 5.5-11.5 h of induction) to
85% (at 17.5 h of induction).
The scale-up auto-induction medium composition proved

to be effective. The high initial glucose concentration pre-
vented early protein expression, but did not cause formation
of high levels of inhibitory metabolites: the concentrations
of acetic, formic, and lactic acids remained below 2 g L-1

throughout the cultivation [40,41]. The low formation of
organic acids was assisted by the choice of glycerol as the
main carbon source. Together with glucose released by
lactose hydrolysis due to β-galactosidase, glycerol was
steadily consumed and both carbon sources were used
by the cells to support growth and protein production
during the entire induction phase. Galactose, which is
not assimilated by E. coli BL21(DE3) cells, accumulated
in the culture medium (data not shown). At 15.5 h of
cultivation, an additional pulse of a solution containing
lactose and glycerol was added in order to avoid limita-
tion of protein synthesis due to a lack of either carbon
source or inducer. Use of this simple cultivation strategy
yielded a bulk PGA volumetric enzyme activity exceeding
93775 IU L-1 within 17.5 h of induction, corresponding
to a productivity of 3907 IU L-1 h-1 (or 5358 IU L-1 h-1,
considering the elapsed induction period).

Growth and protein production for scaled-up high cell
density cultures
The lactose-based induction strategy was further scaled
up as a high cell density culture (HCDC) using complex
medium (culture B2). For comparison, a HCDC using
defined medium and IPTG as inducer (culture B3) was
also carried out. The feeding media for both fed-batch
cultures contained exclusively glycerol as carbon source
(Table 1), and were supplied following an exponential
profile (Equation 7) based on the actual growth rates, as
described below (Methods section). Induction was triggered
by pulses of lactose (B2) or IPTG (B3), shortly after the
temperature had been reduced to 20°C.



Table 1 Composition of media used in bioreactor
cultivations

Auto-
induction

Complex
media

Defined
media

Nutrient (g L-1) Batch Pulse Batch Fed-batch Batch Fed-batch

Glucose 10.0 — 10.0 — — —

Glycerol 60.0 258.3 40.0 800 40.0 800.0

Lactose 20 130.0 — — — —

Tryptone 10.0 10.0 10.0 10.0 — —

Yeast extract 5.0 5.0 5.0 5.0 — —

MgSO4.7H2O 0.5 0.5 0.5 40.0 1.6 20.0

KH2PO4 3.4 3.4 3.4 3.4 17.7 21.28

(NH4)2HPO4 — — — — 5.3 6.4

Na2HPO4.12H2O 9.0 9.0 9.0 9.0 — —

Citric acid — — — — 2.27 2.27

NH4Cl 2.7 2.7 2.7 2.7 — —

Na2SO4 0.7 0.7 0.7 0.7 — —

Thiamine — — — — 45.0 45.0

Auto-induction medium: cultivation B1; complex medium: cultivation B2;
defined medium: cultivation B3.
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The results obtained for the complex medium fed-batch
culture (B2) are shown in Figure 4. Due to the low solubil-
ity of lactose and the increasing biomass concentration,
the inducer was supplied in the form of multiple 400 mL
pulses of solutions containing 200 g L-1 lactose, which
were added after every 20 gDCW L-1 (~40 OD600nm units)
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medium. Tgrowth = 37°C and Tinduction = 20°C. Lactose pulses added at 8, 12
specific enzymatic activity are standard deviations from triplicates.
increase in the cell concentration. This strategy was based
on the results obtained in the previous auto-induction
culture (B1), relating biomass formation to lactose uptake
(Figure 3). Lactose concentration measures during culti-
vation B2 showed that, despite continuous hydrolysis of
lactose, it was possible to maintain a residual inducer
concentration capable of promoting pac gene expression
throughout the induction phase.
The cultivation strategy adopted was effective for both

biomass formation and enzyme production. The initial
growth phase was carried out at 37°C, lasted 7.3 h, and led
to a biomass formation of 33 gDCW L-1 (μmax = 0.68 h-1).
The continuous fed-batch phase was then started, and
supported continuous cell accumulation up to 105 gDCW
L-1 during the next 14.8 h, with high viability, as confirmed
by the permittivity data and the c.f.u counts. Enzyme
production started after the first pulse addition (at 8 h
of culture), at a biomass concentration of 54 gDCW L-1,
and the specific enzyme activity rapidly increased to
1800 IU gDCW-1 within the first 12 h of induction, with
complete hydrolysis of the lactose supplied. During the
last 10 h of induction, the enzyme synthesis rate slowed,
and the specific enzyme activity reached a final value of
2061 IU gDCW-1. This shift in the enzyme production
profile was mainly due to intensified stress associated
with protein synthesis [36], which caused a reduction in
plasmid retention from 97% (at 4-8 h of induction) to
89% (at 12 h of induction). Once again, the formation of
inhibitory metabolites was negligible (2.1 g L-1 acetate),
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despite glycerol accumulation during the first 4 h of
feeding [40,41]. It is also important to clarify that the
fluctuations in cell concentration and viability were caused
by the withdrawal of large volumes of culture medium
(~400 mL) prior to the addition of the lactose pulses, in
order to ensure that the reactor volume remained within
the operational range.
In summary, the lactose-based complex medium fed-

batch strategy yielded a PGA volumetric enzyme activity
equivalent to 208222 IU L-1 within 24 h of induction,
which corresponded to a productivity of 6941 IU L-1 h-1

(or 9465 IU L-1 h-1, considering the elapsed induction
period). These values are about twice those observed
for the B1 auto-induction culture, because the biomass
formation phase was extended in the continuous fed-batch
operation mode and occurred simultaneously with intense
protein production during the first 15 h of induction, due
to the low induction temperature employed.
The influence of inducer and medium composition on

PGA production and purification was assessed using con-
tinuous fed-batch cultivation B3 with defined medium
and IPTG as inducer. The main results are presented in
Figure 5. Glycerol was the only carbon source during the
initial batch and fed-batch phases. The feed supply was
initiated 10 h after the beginning of the culture, as soon as
the glycerol from the batch culture was exhausted, yielding
a biomass concentration of 18 gDCW L-1 and a maximum
specific growth rate of 0.45 h-1. The temperature was then
reduced from 37 to 20°C, and a pulse of IPTG was applied
at 13 h (at a biomass concentration of 54 gDCW L-1)
to initiate the induction phase. Despite the temperature
reduction, the cells continued to grow at a moderate rate
(~ 0.1 h-1), reaching 82 gDCW L-1 within 4 h of induction.
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Figure 5 Growth, glycerol consumption and PGA production by recom
Tgrowth = 37°C and Tinduction =20°C. Induction by IPTG pulse at t = 13 h. Fee
activity are standard deviations from triplicates.
The B2 and B3 continuous fed-batch cultures showed
equivalent performance (Figures 4 and 5) up to the mo-
ment of induction. Obviously, due to the inherently lower
biomass yield for the defined medium (YX/S values of 0.44
and 0.55 g g-1 were obtained for the defined and complex
media, respectively), in the case of culture B3 a longer
growth phase (13 h) was required before the desired
biomass concentration was attained (~54 g L-1) and the
induction phase could be initiated. However, throughout
the induction phase, the B3 culture showed fluctuations
on the permittivity data and accumulation of glycerol.
The instability can be partially attributed to the sudden
temperature decrease from 37°C to 20°C prior to IPTG
addition. Due to the reduced growth rate imposed at
20°C, glycerol started to accumulate in the broth. Glycerol
accumulation was probably even intensified by the salt
precipitation observed after the temperature decrease, due
to the low aqueous solubility of several of the defined
medium components, especially KH2PO4 (Table 1). In
such a situation, growth became limited by a nutrient
other than the carbon source. The accumulation of gly-
cerol at concentrations of up to approximately 80 g L-1

was tolerated by the cells [29], but inhibition occurred
when this value was exceeded, causing stagnation of
growth at between 16 and 25 h of cultivation. After
feeding was interrupted, the cells started to consume
the excess glycerol (and salts) accumulated in the medium,
and cell growth was restored at the end of induction
phase, leading to a final biomass concentration of 120
gDCW L-1. It is also noteworthy that, once again, despite
the high concentration of glycerol accumulated in the
medium, the concentration of the organic acids that are
commonly present did not exceed 2.5 g L-1. This is the
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main advantage of using glycerol as carbon source for
HCDC. In contrast to glucose, its uptake by the cells does
not trigger overflow metabolism and, as long as adequate
aeration conditions are provided, there is no risk of in-
hibition of growth or protein synthesis due to metabolite
formation [42].
The facts described above also affected protein produc-

tion. The specific enzyme activity increased to a maximum
of 1500 IU gDCW-1 after 12 h of induction, and subse-
quently decreased continuously. This activity level was
significantly lower than the maximum values observed
for experiments B1 and B2 (Figures 3 and 4), as well as
for the shake flask cultures performed using the same
induction temperature (Figure 1). The gradual decline
in the enzyme yield also showed a relationship with
plasmid stability, which diminished from 87% (after 5 h
of induction) to 75% (after 13 h of induction) and 65%
(after 19 h of induction, at the end of the cultivation).
Plasmid retention during this experiment was inferior
compared to the B1 and B2 cultures carried out with
complex medium, which showed retentions of >80% after
18 h of induction. It is known that plasmid stability is
generally favored in amino acid-enriched media [43].
Nevertheless, mainly due to the high final biomass con-
centration achieved, fed-batch cultivation B3 yielded a PGA
volumetric enzyme activity equivalent to 89000 IU L-1

within 24 h of induction, corresponding to a productivity
of 2393 IU L-1 h-1 (or 3680 IU L-1 h-1, considering the
elapsed induction period). On the other hand, care must
be taken before choosing the conventional defined high
cell density medium (HDF medium) [42] for heterologous
protein production when the synthesis is favored by low
temperature.
The electrophoresis results for the three bioreactor

cultures (Figure 6) showed that the fraction corresponding
to contaminant proteins present in the enzyme extracts is
β subunity

α subunity

B1 B2 B3
kDa

135
95
72

52

42

34

26

Figure 6 SDS-PAGE of clarified fraction obtained after lysis of
recombinant E. coli cells cultivated in different media after 24 h
of induction. B1: auto-induction; B2: Fed-batch with complex
medium and B3: Fed-batch with defined medium. All samples
contained 1 mg/mL of protein.
similar, regardless of either the cultivation strategy or
the inducer used. This was due to the low temperature
employed during the induction phase (20°C), which helped
to reduce the production of endogenous proteins by E. coli.

Partial purification of recombinant PGA from complex
and defined media cultivations
Besides identification of the most suitable cultivation
strategy for recombinant enzyme production, it is also
important to assess the impact of the chosen cultivation
protocol on the performance of the purification process.
One of the drawbacks often associated with the use of
complex medium is possible stimulation of the synthesis
of diverse contaminant proteins, which could impair puri-
fication of the target protein.
The results obtained for the partial purification of PGA

present in crude extracts obtained from cells grown in both
types of medium (complex and defined) are shown in
Table 2. The clarified extract generated from the cells culti-
vated in complex medium had a higher protein content,
and consequently a lower specific enzyme activity. This ex-
tract retained ~30% of the PGA activity initially present,
due to saturation of the resin. The recovery of PGA could
be improved by reducing the loading of enzyme per gram
of resin. Consequently, the global yields for the purification
process were 72 and 64% for the extracts derived from the
complex and defined media, respectively.
The eluted activity yields all exceeded 97%, indicative

of similar interactions between the resin and the clarified
fractions, irrespective of their source. Furthermore, the
salt concentration in the eluate buffer was satisfactory,
and almost all the recombinant PGA was detached, leading
to the high recovery observed in this step. Overall, 2.3-fold
and 2.8-fold purity increases were obtained for the ex-
tracts from the complex and defined media cultivations,
respectively.
These results are similar to those obtained by Pinotti

et al. [44], using the same protocol and resin for PGA
purification. Although higher purification factors have
been reported for penicillin acylase [45], the main objective
of this study was not to optimize the methodology, but
rather to compare the performance of the purification
process when handling cell lysates derived from cells
cultivated and induced under different conditions. The
results presented here demonstrate that cultivation in
complex medium is a better strategy for PGA production,
and does not jeopardize the performance of the purifica-
tion process.

Discussion
Comparison of enzyme production using different
cultivation strategies
A comparison of all the cultivation strategies, in terms of
enzyme production, is provided in Figure 7. As already



Table 2 Results obtained for the batch adsorption-desorption process of PGA from recombinant E. coli using the
Streamline SP XL resin at pH 4.8

Samples Cells harvested from complex medium Cells harvested from defined medium

Enz. Act.
(IU L-1)

Prot. Conc.
(mgprot L

-1)
Spec. Act.
(IU mgprot

-1 )
Enz. Act.
(IU L-1)

Prot. Conc.
(mgprot L

-1)
Spec. Act.
(IU mgprot

-1 )

Clarified 500 ± 45 480.8 ± 32.1 1.04 ± 0.70 420 ± 51 305.1 ± 15.6 1.38 ± 0.42

Extract 130 ± 21 213.1 ± 43.4 0.61 ± 0.07 150 ± 32 235.1 ± 43.1 0.64 ± 0.21

Washing 0.2 ± 0.1 3 ± 1 0.3 ± 0.2 0.2 ± 0.1 0.4 ± 0.1 0.1 ± 0.3

Eluate 1200 ± 82 510.6 ± 14.2 2.35 ± 0.03 893 ± 76 231.1 ± 16.2 3.86 ± 0.34

ηactel (%) 97 ± 2 99 ± 2

ηactads (%) 74 ± 6 64 ± 4

ηprocess (%) 72 ± 5 64 ± 6

P.F. 2.3 ± 0.3 2.8 ± 0.4
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mentioned, the continuous fed-batch strategy with complex
medium (experiment B2) provided the best volumetric
enzyme activity and productivity (Figures 7a and 7b).
The auto-induction culture (experiment B1) exhibited
a stationary protein productivity profile after 6.5 h of
induction (Figure 7b), because the biomass concentration
remained almost constant, while the specific enzyme activ-
ity increased linearly with induction time (Figure 3). Con-
versely, for the continuous fed-batch cultivation (B2), both
biomass concentration and specific PGA activity increased
during the first 16 h of induction (Figure 4), resulting in a
steeper increase in productivity (Figure 7b). Despite the low
induction temperature used, Figure 7b shows that 16 - 18 h
of lactose induction was sufficient to achieve high enzyme
productivity for both auto-induction (B1) and HCDC (B2)
strategies. Figure 7a shows that the initial rate of enzyme
accumulation was similar for HCDC cultures B2 and B3
during the first 13 h of induction, due to the increasing bio-
mass concentration and specific enzyme activity (Figures 4
and 5, respectively). The shift in the enzyme production
pattern observed in culture B3 after ~13 h of induction
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Figure 7 Profiles of (a) volumetric enzyme activity estimated from Eq
during induction phase. Error bars are standard deviations from triplicate
(Figure 7a) was caused by the decay in specific enzyme
activity, as shown in Figure 5, associated to plasmid in-
stability and viability loss. A similar trend can be seen in
the productivity curve obtained for culture B3 (Figure 7b).
Process economics is an important factor to be con-

sidered when selecting a cultivation strategy and a simple
estimate of the costs associated only to the different media
formulation, using the same approach described at [46],
was performed. The main results, summarized at Table 3,
point out the intermittent fed-batch auto-induction protocol
(B1) as the most cost-effective cultivation strategy, thanks
to its low media cost. Although the continuous fed-batch
strategy based on complex medium (B2) led to the highest
volumetric enzyme activity, superior production costs re-
lated to the large amount of reagents required to achieve
and maintain high cell densities restricted its economic
performance. Concerning the fed-batch strategy based on
defined medium (B3), the 3.4 fold increase of enzyme cost
is mainly due to the lower volumetric enzyme activity
achieved at this operation mode, since the cost of the
culture medium is similar to B2.
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Table 3 Total cost associated to media used at B1, B2 and B3 cultures and the corresponding estimate of the cost per
unit of PGA produced

Culture ID Batch ($) Pulse ($) Feed ($) Total ($) Total volume (L) Medium cost (per L) Vol Enz Act (U L-1) Enzyme cost ($ U-1)

B1 69.30 21.50 — 90.81 4.2 21.62 94000 0.00023

B2 55.23 16.11 321.06 392.40 5.6 70.10 208222 0.00034

B3 52.58 71.10 254.36 378.04 5.4 70.00 89000 0.00079
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Comparison of PGA expression for different clones of
recombinant E. coli
The most recent and relevant results reported for PGA
expression using different clones of E. coli and different
induction strategies are presented in Table 4. Due to the
high cell concentration reached, the volumetric enzyme
activity and productivity obtained in this work were
superior to all the values reported using rE. coli, in the
literature to date. The specific PGA activity (HCDC
and auto-induction) was higher than the best published
values [6,33]. These results demonstrate the importance of
identifying cultivation conditions that can contribute
to the twin goals of increased biomass formation and
enhanced gene expression. In the present study, the
use of a low induction temperature allied to a fed-batch
cultivation strategy using complex medium was crucial for
achievement of a superior enzyme titer and maximization
of productivity.
Conclusions
High enzyme concentration (208222 IU L-1) and product-
ivity (6941 IU L-1 h-1) were achieved for the continuous
fed-batch culture with complex medium. Using the
auto-induction strategy, both enzyme productivity and
concentration can be limited by the accumulation of bio-
mass that may occur in this operational mode. Nevertheless,
Table 4 PGA production in various E. coli expression systems
induction strategies

E. coli strain/construction Ind. Op. mode Tind (°C)
(

RE3/ pKA18 Phenyl acetic acid Batch 28

MDDP7/ pTrcKnPAC2902 IPTG Fed-batch 28

W3110/pPA102 Cheese whey Batch 29

9633/pGL-5 IPTG Fed-batch 30

BL21(DE3)/pET28b IPTG Batch 28

DH5α/ Psmlfpga IPTG Batch 30

DH5α/pET30b Constitutive Batch 28.5

BL21(DE3)/pT101/D-TOPO Lactose Continuous
fed-batch

20

BL21(DE3)/pT101/D-TOPO Lactose Intermittent
fed-batch

20

*Estimated from reported data.
NR Not reported.
it remains a very attractive approach, because an enzyme
extract with high PGA activity (130 IU per mL of centri-
fuged cell lysate) can be obtained in just 15 h of simple
batch culture, even without an additional pulse of lactose.
The results obtained indicate that the innovative high
cell density strategy used in this work, combining expo-
nential glycerol feeding, an intermittent lactose supply,
and a low induction temperature (20°C), is a promising
technique for on-demand penicillin G acylase produc-
tion by recombinant E. coli cells at lower production
cost.

Methods
Microorganism
Escherichia coli BL21 (DE3) was donated by the Laboratory
of Biochemistry, Department of Physiological Sciences,
UFSCar, São Carlos, Brazil. The pT101/D-TOPO plasmid
with the pac gene from E. coli ATCC11105 responsible
for PGA production [47,48] was kindly provided by the
Laboratory of Biocatalysis, ICP-CSIC, Madrid, Spain.
The transformation of E. coli was performed by heat
shock in the presence of CaCl2.

Culture media
Shake flask cultivations were carried out using LB medium
containing tryptone (10 g L-1), yeast extract (5 g L-1),
for bioreactor cultures carried out under different

[Biomass]
gDCW L-1)

EAsp

(IU DCW-1)
Vol. Enz.Act.
(IU mL-1)

Product.
(IU mL-1 h-1)

Ref.

5 1000 4.5 0.28* [33]

33 1020* 37.5 0.48* [6]

1.5 781 0.901 0.053* [23]

96.9* 157* 15 0.63* [24]

12 800 10 0.42* [21]

21.7* 153 mg gDCW-1 79.88 0.67* [22]

4.5 NA 43 2.58* [20]

100 2000 190 7.8 This work

38 2800 94 3.9 This work
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sodium chloride (10 g L-1), and ampicillin (100 μg mL-1),
at pH 7. For bioreactor cultures, intermittent fed-batch B1
was performed using auto-induction medium (adapted
from Studier and Silva et al. [27,29]) with pulse supplemen-
tation. Continuous fed-batch cultures B2 and B3 were car-
ried out using complex medium [29] and defined medium
[26], respectively. The compositions of all the media used
are provided in Table 1. Ampicillin (150 μg mL-1), 30%
propylene glycol antifoaming agent (1 mL L-1), and a
metal solution [29] were added to the media used for the
bioreactor cultivations.

Analytical methods
Cell concentration
During the bioreactor cultivations, the cell concentration
was monitored using measurements of the optical density
(OD) of the culture broth (λ = 600 nm), dry cell weight
(gDCW L-1) determinations, and viable cell counts (c.f.u.
mL-1), as well as by on-line recording of broth permittivity
(pF cm-1) using a biomass sensor [26]. In the shake flask
experiments, the cell concentration (CX) was related to
the optical density using the expression:

CX gDCW L‐1
� � ¼ 0:49� 0:01ð Þ � OD600 nmð Þ ð1Þ

Plasmid stability and cell viability
Diluted samples of culture broth were spread aseptically
onto plates of LB agar, in some cases supplemented with
ampicillin, and incubated for 16 h at 37°C. Cell viability
and plasmid stability were evaluated by counting the
final number of colonies formed [30].

Enzymatic activity and related variables
Samples were centrifuged at 10,000 × g for 5 min at 4°C,
re-suspended in 50 mM phosphate buffer (pH 7.5), and
disrupted by sonication using 6 pulses of 30 s (8-10
watts) at 20 mHz, with intervals of 20 s. After further
centrifugation at 14,000 × g for 20 min at 4°C, the super-
natant was collected and used for analyses of enzymatic
activity and total soluble protein concentration (Bradford
method [49]). In addition, SDS-PAGE [50] was employed
to identify the presence of inactive pre-pro-PA and the α
and β PGA subunits in the supernatant and pellet derived
from the cell lyses.
PGA activity was determined by hydrolysis of a chromo-

genic substrate, 1 mM 6-nitro-3-(phenylacetamido)benzoic
acid (NIPAB), in 0.1 M phosphate buffer (pH 7.5) at 37°C,
according to the method described by Kutzbach and
Rauenbus [51]. A calibration curve (Equation (2)) was pre-
pared to further convert PGA activity (in UNIPAB mL-1)
to the equivalent penicillin G activity (in IU mL-1). The
enzymatic reaction product (6-APA) was quantified
using the colorimetric method described by Balasingham
et al. [52].

EApenG ¼ 2:2� 0:1ð Þ � EANIPAB ð2Þ
The specific enzyme activities were expressed in terms

of the total soluble protein content (EAsp_Prot) and the cell
mass (EAsp_Biom) using Equations (3) and (4), respectively.
The corresponding enzyme concentrations (Cenz) and pro-
ductivities (Prenz) per volume of cultivation medium were
calculated using Equations (5) and (6), respectively. In these
expressions, EA (IU mL-1) is the enzyme activity obtained
from Equation (2), CX_sonic (gDCW L-1) is the biomass con-
centration in the disrupted cell suspension, CX (gDCW L-1)
is the biomass concentration in the cultivation broth,
and Δt is the elapsed cultivation time.

EAsp Prot U⋅mgprot
−1

� �
¼ EA

Csol prot
ð3Þ

EAsp Biom U⋅gDCW −1� � ¼ EA⋅1000
CX sonic

ð4Þ

Cenz U⋅L−1
� � ¼ EAsp Biom⋅CX ð5Þ

Prenz U⋅L−1⋅h−1
� � ¼ Cenz

Δt
ð6Þ

Concentrations of organic acids
The concentrations of organic acids were determined by
HPLC, with UV detection at 210 nm. The stationary
phase was an Aminex HPX-87H column (maintained at
50°C) and the mobile phase was 5 mM sulfuric acid, at a
flow rate of 0.6 mL min-1.

Partial purification of recombinant PGA
The purification procedure followed the protocol developed
by Pinotti et al. [44]. In brief, the biomass harvested at the
end of the cultivations in defined or complex media was
disrupted by sonication in 20 mM citrate buffer at pH 4.8
(used as the adsorption buffer) and centrifuged at 7000 × g
for 10 min to obtain the crude soluble enzyme extract.
PGA adsorption was carried out using Streamline SP cation
exchange resin. The desorption buffer employed for en-
zyme elution was 150 mM NaCl. The parameters ηprocess

(overall yield) and PF (purification factor) were used to
compare the performance of the purification process for
the different enzyme extracts. Full details of the calculation
procedures can be found in Pinotti et al. [44].

Experimental procedure
Preliminary shake flask cultures were conducted to assess
the influence of induction phase temperature on enzyme
production. Five conditions were investigated (in triplicate),
with temperatures ranging from 18 to 28°C. Intermittent



Table 5 Parameter values used for setting up the feeding
flow rate (Eq. 7) for fed-batch bioreactor cultures B2
(complex medium) and B3 (defined medium)

Parameter B2 B3

m (h-1) 0.001 0.05

YX/S (gDCW gsubstrate
-1 ) 0.717 0.485
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fed-batch (B1) and continuous fed-batch (B2 and B3) bio-
reactor cultures were carried out using the selected induc-
tion temperature and different induction strategies.

Shake flask cultures
The shake flask cultivations were carried out for ~30 h
using 1 L flasks containing 100 mL of LB medium, incu-
bated at 37°C with agitation at 250 rpm during the initial
growth phase. Once the OD600 of the culture reached 1.5,
the flasks were transferred to another incubator kept at the
desired temperature (18, 20, 22, 24 or 28°C), and induction
was performed by adding a pulse of 0.25 mM IPTG.

Bioreactor cultures
A 300 mL aliquot of exponentially-growing cell suspension
(OD600 ~2.0) was transferred to a 5 L laboratory bioreactor
containing 3.5 L of the complex or defined auto-induction
media described in Table 1. All cultivations were monitored
using SuperSys_HCDCR [26,53]. The temperature was
maintained at 37°C during the growth phase, and reduced
to 20°C prior to induction. The pH was maintained at 6.9
by addition of 28% (w/v) NH4OH solution. The dissolved
oxygen concentration was controlled at 30% of saturation
by automatically adjusting both the agitation speed (in the
range 200-600 rpm) and the composition of the gas stream
supplied to the bioreactor (by mixing pure oxygen with air).
The total inlet gas flow rate was maintained at 5 L min-1

using two mass flow controllers. The broth permittivity
was monitored using a biomass sensor (Fogale Nanotech),
as described by Horta et al. [26,53].
For the continuous fed-batch cultures (B2 and B3), the

exponential feed flow was initiated once the carbon
sources in the batch medium had been exhausted. The
feed flow rates of the complex (culture B2) or defined
(culture B3) media were calculated using Equation (7),
which assumes that the growth rate is only dependent
on the limiting substrate [54], and were automatically
controlled by the supervisory system [26].

F ¼ μ

Yx=s
þm

� �
⋅
Cxo−Vo

CSF−CSR
⋅ e μset−tð Þ ð7Þ

In Equation (7), F (L h-1) is the feed flow rate, μ (h-1)
is the actual specific growth rate, μSET (h-1) is the desired
specific growth rate, YX/S (gDCW gsubstrate

-1 ) is the biomass
yield coefficient, m (h-1) is the maintenance coefficient,
CX0 (gDCW L-1) and V0 (L) correspond to the cell con-
centration and volume, respectively, at the beginning of
the fed-batch phase, CSF (gsubstrate L-1) is the glycerol
concentration in the supplementary medium (Table 1),
CSR (gsubstrate L

-1) is the expected residual concentration
of glycerol in the reactor, and t (h) is the elapsed feeding
time. The parameters YX/S and m were estimated from
the previous batch data, and are included in Table 5.
Analogously, CSR was set to 5 g L-1, based on information
obtained in earlier experiments [29].
The exponential feeding profile was regulated using

SuperSys_HCDCR, which automatically re-tuned the par-
ameter μset every 10 min, using the values of μ inferred
from on-line permittivity measurements provided by the
capacitance biomass sensor [26].
In intermittent fed-batch culture B1, additional glycerol

and lactose were supplied as a pulse (Table 1) when the
OD600 value reached ~70, in order to provide enough
inducer and carbon source for the prolonged induction
phase, which lasted 24 h. In continuous fed-batch cultiva-
tions B2 and B3, the induction phase was started when
the OD600 reached ~100, and also lasted 24 h. For experi-
ment B3 (defined medium), the induction was performed
by adding an IPTG pulse (1 mM final concentration). For
experiment B2 (complex medium), induction was carried
out by adding multiple pulses of 400 mL of lactose solu-
tion (200 g L-1). In all bioreactor cultures, ampicillin
pulses were applied every 6 h after induction to maintain
selective pressure on the cells.
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