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A B S T R A C T

Biological production of chemicals is an attractive alternative to petrochemical-based production, due to advantages in environmental impact and the spectrum of
feasible targets. However, engineering microbial strains to overproduce a compound of interest can be a long, costly and painstaking process. If production can be
coupled to cell growth it is possible to use adaptive laboratory evolution to increase the production rate. Strategies for coupling production to growth, however, are
often not trivial to find. Here we present OptCouple, a constraint-based modeling algorithm to simultaneously identify combinations of gene knockouts, insertions and
medium supplements that lead to growth-coupled production of a target compound. We validated the algorithm by showing that it can find novel strategies that are
growth-coupled in silico for a compound that has not been coupled to growth previously, as well as reproduce known growth-coupled strain designs for two different
target compounds. Furthermore, we used OptCouple to construct an alternative design with potential for higher production. We provide an efficient and easy-to-use
implementation of the OptCouple algorithm in the cameo Python package for computational strain design.
1. Introduction

The use of microorganisms as cell factories offers the possibility of
producing a wide range of chemicals from renewable sources, as well as
manufacturing natural compounds too complicated for chemical syn-
thesis in large amounts (Becker and Wittmann, 2015). However, suc-
cessfully engineering microorganisms to produce a target compound
most often requires trial-and-error experimentation with different
possible pathways, and even when production is achieved, many itera-
tions of subsequent optimization are usually necessary to increase pro-
duction rate and yield to satisfy industrial needs (Lee and Kim, 2015).

One strategy for optimizing chemical production in microbial strains
is to utilize the power of natural selection in adaptive laboratory evolu-
tion (ALE) experiments (Portnoy et al., 2011; Shepelin et al., 2018). This
allows the identification of mutant strains with enhanced viability under
the evolution conditions. The inherent selection for cells that are able to
grow faster than the rest of the population makes it easy to optimize for
characteristics such as product tolerance or substrate utilization, while
directly improving production characteristics such as production rate,
titer and yield is more difficult (Hansen et al., 2017; Shepelin et al.,
2018). Indeed, with the advent of more and more methods, models, and
databases for automated running and analysis of ALE experiments, such
as eVOLVER (Wong et al., 2018), ALEsim (LaCroix et al., 2017), and
ALEdb (Phaneuf et al., 2018), the need for new selective pressures by
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clever strain and experimental design becomes the primary challenge for
evolutionary strain engineering.

Using evolution to improve biochemical production rates can be ach-
ieved by coupling production to growth, i.e. ensuring that production is a
necessary by-product of cell growth, such that adaptations that increase the
growth rate of the cells will also increase production. For a review of ex-
amples of successful growth-coupling for biochemical production, see e.g.
Shepelin et al. (2018). A recent successful example is the growth-coupling
of itaconic acid production in Escherichia coli by four gene deletions, a
downregulation, and glutamate supplementation that ensure formation of
itaconic acid to prevent accumulation of PEP inside the cell (Harder et al.,
2016). The designwas aidedby the computation ofminimal cut sets (MCS),
which are sets of gene knockouts that will prevent all undesirable flux
distributions whilemaintaining the ability to produce the target compound
(Klamt and Gilles, 2004; von Kamp and Klamt, 2014).

Since growth-coupling strategies are not always obvious from looking
at a metabolic map of the microorganism, it is beneficial to use genome-
scale metabolic models together with computational methods like the
MCS framework, to quickly search the design space for strain modifica-
tions that can potentially make production growth-coupled. One of the
first computational methods for predicting strategies for improving bio-
production was OptKnock (Burgard et al., 2003). OptKnock uses a
mixed integer linear programming (MILP) formulation to predict gene
knockouts that allow higher production under growth-optimal
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conditions. While the predictions made by OptKnock will allow for
increased production, they will not necessarily make production
growth-coupled, as alternative pathways can be used instead. The algo-
rithm RobustKnock (Tepper and Shlomi, 2009) seeks to solve this
problem by predicting knock-out combinations that maximize the mini-
mal production under optimal growth. The more recent algorithm gcOpt
(Alter et al., 2018) is similar to RobustKnock, but requires a fixed growth
rate to be set, allowing the formulation to be simplified. In addition to
finding gene knockouts, there are also algorithms, e.g. the RobOKoD
algorithm (Stanford et al., 2015), that attempt to increase production
rates by predicting native genes to under- and overexpress. However,
growth-coupling a production pathway alleviates the need for such
expression level perturbations, since these can be optimized subse-
quently by means of ALE (Shepelin et al., 2018).

It has been shown that almost all metabolites in E. coli can be growth-
coupled through knockouts, but in many cases this would require dele-
tion of an infeasible number of genes (von Kamp and Klamt, 2017).
Growth coupling may be easier to achieve by inserting heterologous
genes that alter host metabolism in addition to knocking out native
genes. The algorithm OptStrain (Pharkya et al., 2004) predicts both
knockouts and insertions for increasing production, but does so in a
two-step process. First, heterologous reactions that enable or improve the
production capabilities are identified from a database of known re-
actions. This can be a novel production pathway or stoichiometrically
favourable alternate reactions. Subsequently, knockouts that increase the
possible production yield at maximal growth are identified using the
OptKnock algorithm. With a two-step procedure like OptStrain, it is only
possible to find heterologous genes and knockouts that improve pro-
duction independently of each other. To solve this problem the algorithm
SimOptStrain (Kim et al., 2011) does simultaneous prediction of gene
insertions and knockouts. This enables the identification of heterologous
gene insertions that have beneficial effects, only in the presence of spe-
cific knockouts. An example of a design where heterologous genes and
knockouts are combined is the growth-coupling of product methylation
in a cysteine auxotrophic E. coli strain described by Luo and Hansen
(2018). Insertion of CYS3 and CYS4 from Saccharomyces cerevisiae enable
cysteine synthesis from supplemented methionine through a pathway
that requires flux through S-adenosylmethionine (SAM)-dependent
methyltransferase reactions. As seen in this design as well as the previ-
ously mentioned itaconic acid production design, growth-coupling stra-
tegies can result in auxotrophies, such that the growth medium must be
supplemented with additional nutrients, i.e. methionine and glutamate,
respectively. Although auxotrophies are generally undesirable in pro-
duction processes as the addition of a supplement can incur a significant
extra cost, auxotrophic growth-coupled strains can still be very useful in
the strain development phase, particularly in combination with ALE
(Shepelin et al., 2018). The recent algorithm SelFi (Hassanpour et al.,
2017) attempts to couple growth to the flux catalysed by a target enzyme
by constructing a carbon supply pathway including the target reaction
and disabling alternative carbon supply pathways. This is done using a
combination of knockouts and heterologous gene insertions as well as
medium supplements. However, similar to OptStrain this is done in a
two-step process, potentially excluding some designs. Furthermore, since
growth coupling is achieved by constructing a new carbon supply
pathway, the scope of target reactions is limited to reactions that can
feasibly be incorporated into such a pathway.

Here we introduce OptCouple, an algorithm that simultaneously finds
gene knockouts, insertions and modifications to the growth medium that
result in coupling the production of a target chemical to growth in micro-
organisms. We have validated OptCouple by showing that it can predict
known successful growth-couplingdesigns for the commonproductionhost
E. coli and have used it to predict novel growth-coupling strategies.

2. Materials and methods

All computations were carried out in Python 3.6.4. A list of installed
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packages and an implementation of the entire prediction workflow, and
scripts for the described analyses can be found in the supplementary
material. Simulations were done using the iJO1366 genome-scale
reconstruction of E. coli (Orth et al., 2011) as well as the reduced ECo-
liCore2 model (H€adicke and Klamt, 2017). Simulations were performed
with a maximum glucose uptake rate of 10 mmol/gDW/h and a
maximum oxygen uptake of 1000 mmol/gDW/h.
2.1. MILP-based optimization of growth-coupling potential

The following section will go through the mathematical optimization
problem forming the core of OptCouple. For the full mathematical
formulation, see supplementary materials.

Growth-coupling potential can be defined as the increase in maximal
growth rate obtained when allowing flux through the target reaction, i.e.
the reaction producing the chemical of interest.

The symbol M is used to denote a full metabolic model with metab-
olites mi8 i 2 N and reactions rj 8 j 2 R, the target reaction, rtarget , with
the biomass reaction, rbiomass, as the objective function, while the symbol
M* is used to denote the metabolic model without the target reaction.

If we use f to denote objective function of a problem, the growth-
coupling potential, U, can be mathematically described as:

U ¼ bf ðMÞ � bf �M*� (1)

where bf is used to denote the optimal objective value of a problem.
Every linear optimization problem can be converted into a dual

problem (Ignizio and Cavalier, 1994), which will be denoted by a
D-subscript, i.e.MD. One property of duality in linear optimization is that
the dual problem will have the same optimal objective value as the pri-
mal, however ifM is a maximization problem,MD will be a minimization
problem, and vice versa.

Each potential perturbation, i.e. gene knock-out, knock-in, as well as
addition of a growthmedium supplement, can be represented by a binary
variable, yj 2 Y 8 j 2 R, controlling the flux of the reaction associated
with the given perturbation, i.e. native reactions, heterologous reactions
and exchange reactions, for knockouts, knock-ins and medium supple-
ments, respectively. Additional coupling constraints are added to ensure
that a given reaction can only carry flux when its corresponding
perturbation variable, yj, has a value of 1 (see supplementary material).

The goal is to formulate an optimization problem that optimizes U, by
finding an optimal combination of values for the control variables, Y and
reaction fluxes, v:

MaximizeY ;v bf ðMÞ � bf �M*� (2)

This can be formulated as a bi-level optimization problem:

(3)

The bi-level formulation can be interpreted as finding the combina-
tion of control values that allows the highest growth-coupling potential,



Fig. 1. Visual depiction of the growth-coupling potential on a produc-
tion envelope.
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subject to the constraints that the fluxes (v) ofM andM* must be optimal
for growth (under the given control variable values). The two inner
optimization problems are fully specified in equations (S1) and (S2) in
the supplementary material.

The bi-level formulation can be converted into a single optimization
problem by replacing M* with its dual form, M*

D:

MaximizeY ;v f ðMÞ � f
�
M*

D

�
(4)

Since M is a maximization problem and M*
D is a minimization problem,

maximizing this expression automatically ensures that f ðMÞ ¼ bf ðMÞ and
f ðM*

DÞ ¼ bf ðM*
DÞ, and since the optimal objective value of a dual problem

is the same as the optimal objective value of its primal, the expression
bf ðMÞ � bf ðM*

DÞ still corresponds to the growth-coupling potential. A full
mathematical formulation of equation (4) can be found in equation (S4)
in the supplementary material.

To maintain computational feasibility of the problem, maximum
numbers of knock-outs, insertions and media modifications, respectively,
can be set as constraints on the binary variables.

OptCouple is implemented in the cameo Python package (Cardoso
et al., 2018) for computational strain design (https://github.com/biosust
ain/cameo), and an implementation can also be found in the supple-
mentary material.

2.2. Selecting allowed gene insertions and medium supplements

The set of allowed heterologous gene insertions was obtained from
metanetx (Moretti et al., 2016), through the universal model interface of
the Python package cameo (Cardoso et al., 2018). Only reactions with a
cross-reference to the BiGG database were used. To avoid drastically
increasing running times due to the large pool of heterologous reactions,
the list of allowed insertions was reduced according to the number of
allowed simultaneous insertions. If a single insertion was allowed, only
reactions with metabolites native to the host were allowed. For higher
numbers of allowed insertions, the heterologous reaction network was
pruned such that only reactions whose metabolites could be reached with
the allowed number of inserted reactions were included. The list of
allowed medium modifications is specified manually. For all predictions
described in this work the list comprised fructose, lactate, acetate, and all
20 standard proteinogenic L-amino acids.

2.3. Running MILP optimizations

The MILP problems were optimized using the Gurobi solver (ver
7.5.2) through the optlang interface (Jensen et al., 2017). The computa-
tions were run on nodes of an HPC cluster equipped with Intel Xeon
2660v3 processors and 128 GB memory. The problems were solved to
optimality, and subsequently reoptimized using Gurobi's solution pool
feature to collect additional optimal and sub-optimal integer solutions.
The second optimization was run with a time-limit approximately ten
times the running time of the first optimization, up to a maximumof 30 h.
For problems that could not be solved to optimality within 30 h, only as
many suboptimal solutions as possible were collected from the second
run. Each problem was optimized multiple times and the identified so-
lutions from each run were all pooled together to increase the number of
obtained solutions. Since the identification of integer solutions is not
deterministic, and since multiple solutions from the same run tend to be
similar, this allowed a more diverse sampling of the solution space.

2.4. Reducing solution redundancy

With other MILP-based algorithms like OptKnock (Burgard et al.,
2003), a common practice is to gradually increase the number of allowed
knockouts, to avoid getting solutions with unnecessary knockouts. With
three different upper limits on modifications (for knockouts, gene
3

insertions and medium supplements, respectively), such a strategy is
significantly more time-consuming. Instead, a postprocessing workflow
was used to identify the predicted modifications in each solution that do
not contribute to growth-coupling. Each solution was simulated, and
each modification was removed one at a time. If a modification could be
excluded without eliminating growth-coupling, it was removed from the
solution. Solutions that could be reduced to the same set of modifications
were merged into a single solution. The remaining solutions were sum-
marized by production and growth rates, as well as a production enve-
lope plot.

3. Calculation

OptCouple is based on an MILP formulation, conceptually similar to
the formulations used in existing algorithms like OptKnock, RobustKnock
and SimOptStrain. MILP formulations are an efficient way of optimizing
an objective function over a combinatorial space, such as the space of
possible genetic modifications. The objective function of OptCouple is
the growth-coupling potential (Fig. 1), defined as the amount with which
the maximal growth rate will be decreased by preventing the target
compound from being produced. Using the broadest definition of growth-
coupling, sometimes called weak growth-coupling, namely that optimal
growth requires a non-zero production flux (Feist et al., 2010; Klamt and
Mahadevan, 2015), production is growth-coupled if and only if the
growth-coupling potential is strictly positive. Optimizing for the
growth-coupling potential ensures that the predicted strain designs and
medium conditions will be easy to evolve with ALE to increase produc-
tion, as the producing strains will have a large advantage over the
non-producing strains. The algorithm RobustKnock maximises the min-
imum production at optimal growth instead, which also ensures
growth-coupling, however the difference in growth rate between pro-
ducers and non-producers can sometimes be marginal.

Most previous methods try to find the single most optimal solution
based on the chosen objective function. Since the most optimal solution
(regardless of the objective function) might not be practically feasible for
a strain engineering project, OptCouple uses an alternate approach to
generate a large pool of different growth-coupled designs. These solu-
tions can then be evaluated based on multiple parameters in order to find
candidate strategies to implement in vivo. The workflow of OptCouple is
shown in Fig. 2. In step 1, before running the MILP optimization, a
metabolic model must be chosen, as well as the reaction to optimize.
Furthermore, the universe of modifications must be defined. This in-
cludes deciding which native reactions may be knocked out, which het-
erologous reactions can be added, and which modifications to the
medium are allowed. In step 2, the MILP problem is formulated, with
binary variables to represent the allowed modifications. In step 3, the

https://github.com/biosustain/cameo
https://github.com/biosustain/cameo


Fig. 2. Overview of the workflow used for predicting growth-coupling designs with OptCouple.

Table 1
Overview of selected predicted growth-coupling strategies for the three test
cases. For each design is shown the required modifications, the production rate
and yield at optimal growth (mmol/gDW/h and mol/mol glucose) and the
growth-coupling potential, U, i.e. the difference in maximal growth rate between
producers and non-producers. The knocked out and inserted reactions are
denoted by their BIGG identifiers. The supplements are denoted by standard
three-letter amino acid abbreviations.

Knockouts Insertions Supplements Production
rate

Yield U

Propionic acid:
ACCOAL,
SUCOAS,
AKGDH

0.50 0.05 0.95

MCITD, MTHFC,
PFL

0.90 0.09 0.91

Itaconic acid:
GLUDy, ICL,
SUCOAS

L-glu 7.64 0.764 1.10

GLNS, ICL,
SUCOAS

L-gln 0.24 0.024 1.11

ACKr, AKGDH,
ICL, PGL, POX

L-ile 5.68 0.568 0.29

AKGDH,
G6PDH2r, ICL,
MDH, MGSA,
PYK

L-asp 6.32 0.632 0.60

Product methylation:
SERAT CYSTL,

CYSTGL
L-met 0.10 0.01 1.02

ASPTA AHSERL2,
HSERTA

L-met 2.69 0.269 0.97
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problem is solved using a dedicated MILP solver. Since the mathemati-
cally optimal solution is not necessarily the best strategy for a given
metabolic engineering project, multiple solutions are identified in a
single run, with high computational efficiency by using a solver with the
capacity to find “solution pools”. Step 4 involves analysing the solutions
found in step 3 and selecting one or more candidate strategies. Before
manual inspection the number of solutions is automatically reduced by
merging redundant solutions, i.e. separate solutions with only trivial
differences, and ranking e.g. by growth-coupling potential or potential
production rate.

4. Results and discussion

Initial testing of OptCouple was done to validate the novel objective
function based on growth-coupling potential, and its ability to predict
strain designs that are growth-coupled in silico. For this case, we chose
propionic acid, which is an industrially relevant chemical that has not yet
been produced biologically in economically viable amounts (Eş et al.,
2017), and for which growth-coupling in E. coli has not been demon-
strated. Furthermore, propionic acid is a native metabolite of E. coli,
avoiding the necessity of first identifying or predicting a production
pathway. OptCouple was run with a maximum of three knockouts, three
insertions and one medium supplement, using a demand reaction for
propionic acid as target. After removing redundancies in the predictions,
two promising designs were identified, as seen in Table 1, which both
produce propionic acid using the propionyl-CoA succinate
CoA-transferase (PPCSCT) reaction. The first design, which is illustrated
in Fig. 3, achieves growth-coupling by establishing propionic acid as a
by-product of the supply of succinyl-CoA, which is a precursor for the
biomass components methionine, lysine and murein. This is done by
knocking out the native routes of producing succinyl-CoA (AKGDH and
SUCOAS) as well as the recycling reaction for propionic acid (ACCOAL).
The second design couples the PPCSCT reaction to the biosynthesis of
NAD, establishing production of propionic acid as a by-product.

Both of the strain designs for propionic acid lead to growth-coupling
4

through non-obvious combinations of knockouts, but only require
knockouts. To demonstrate the full potential of OptCouple and to test its
ability to predict designs that are growth-coupled in vivo, we further



Fig. 3. Overview of the designs predicted with OptCouple for growth-coupling of propionic acid. A) Pathway map of one of the predicted designs. Propionic acid
production is coupled to succinyl-CoA production through the propanoyl-CoA succinate CoA-transferase. Alternative routes to succinyl-CoA are knocked out. B)
Production envelope for the design shown in A. C) Production envelope of the second growth-coupled design, which couples production of propionic acid to the
biosynthesis of NAD.
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evaluated the algorithm by its ability to identify known and experi-
mentally validated growth-coupling strategies that require knockouts as
well as medium supplements and gene insertions. We chose to use the
itaconic acid growth-coupling of Harder et al. (2016) (requiring knock-
outs and medium supplement) as well as the product methylation
growth-coupling of Luo and Hansen (2018) (requiring knockouts, me-
dium supplement and gene insertions). Heterologous production of ita-
conic acid in E. coli can be achieved by the insertion of a single
heterologous gene, cadA (Aspergillus terreus), encoding an enzyme that
decarboxylates aconitic acid into itaconic acid (Harder et al., 2016).
Growth-coupling has been realised by Harder et al. (2016) by knocking
out the genes encoding isocitrate lyase, succinyl-CoA synthase, pyruvate
kinase and phosphotransacetylase, as well as down-regulating isocitrate
dehydrogenase. Additionally, Harder et al. (2016) inserted an ortholo-
gous citrate synthase to prevent allosteric regulation, but since the
constraint-based modeling framework used here does not account for
regulation, this modification was disregarded. When these modifications
are applied to the iJO1366 genome-scale model of E. coli no
growth-coupling is seen, as maximal growth does not allow for any
production of itaconic acid. In order to attempt to reproduce the design,
we chose to use the reduced metabolic model EColiCore2 (H€adicke and
Klamt, 2017) instead. When the modifications from Harder et al. (2016)
5

are introduced into this model, optimal growth does allow for production
of itaconic acid, although it is not required.

The itaconic acid-producing reaction was added to the model prior to
running OptCouple, as the scope of this work was not to predict pro-
duction pathways, but to identify growth-coupling strategies for an
existing pathway. The algorithm was run, allowing up to six knockouts
and a single medium supplement. A selection of the solutions is shown in
Table 1. The majority of the identified designs contained modifications
that are consistent with the design by Harder et al. (2016), as shown in
Fig. 4. This includes disrupting the TCA cycle downstream of aconitate,
the glyoxylate shunt, as well as reactions that can act as a sink for py-
ruvate or acetyl-CoA. Additionally, the algorithm suggested the addition
of glutamate or glutamine to the medium, as also required in the design
by Harder et al. (2016). The similarities between these results and the
design by Harder et al. (2016) provided an indication that OptCouple can
be used to predict combinations of knockouts and medium supplements
and create functional strategies for coupling chemical production to
growth.

While the results obtained for growth-coupling of itaconic acid
demonstrated the utility of the algorithm for predicting knockouts and
mediummodifications, they did not require prediction of gene insertions.
To test the ability of OptCouple to predict such modifications, the



Fig. 4. Overview of the itaconic acid growth-coupling designs. A) Metabolic map of reactions relevant to itaconic acid production. The red crosses are reactions that
were knocked out by Harder et al. (2016). The reactions whose names are written in blue are reactions that were commonly knocked out in the designs predicted by
OptCouple. B) Production envelope of the design by Harder et al. (2016). Knockouts: PYK, PTAr, ICL, SUCOAS. Medium supplement: L-glutamate. C) Production
envelope of one of the growth-coupled designs predicted by OptCouple. Knockouts: ICL, SUCOAS, GLUDy. Medium supplement: L-glutamate. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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product methylation growth-coupling design of Luo and Hansen (2018)
was used. This time the iJO1366 genome-scale model was chosen, as the
modifications suggested by Luo and Hansen (2018) do confer
growth-coupling in this context. To predict designs for product methyl-
ation, a dummy reaction converting SAM into S-adenosylhomocysteine
(SAH) and an exportable methyl group metabolite was created and used
as target reaction. The algorithm was run with a single knockout, two
insertions and one medium supplement allowed. Among the predicted
strategies we found a design that consisted of the exact same combination
of modifications as suggested by Luo and Hansen (2018), while designs
with several minor variations were also predicted. These variations
consisted of different knockouts or insertions but resulted in the same
general mechanism of growth-coupling, by requiring product methyl-
ation to convert SAM into SAH as part of the conversion of supplemented
methionine into cysteine required for biomass production. The ability to
predict the exact design of the validated methylation growth-coupling, as
well as alternative seemingly equivalent designs, indicates that Opt-
Couple can reliably be used to predict new feasible growth-coupling
6

strategies, requiring a combination of gene knockouts, insertions and
medium supplements.

While the itaconic acid growth-coupling by Harder et al. (2016) re-
sults in a high production with yields of up to 0.68mol/mol glucose, the
methylation growth-coupling by Luo and Hansen (2018) has the disad-
vantage that only a relatively small flux is forced through the target
pathway. Since methylation is required for the cell to synthesise cysteine,
the growth-coupling will not drive methylation to exceed the cellular
demand for cysteine which is quite low (Orth et al., 2011). We therefore
used OptCouple to predict alternative growth-coupling strategies, which
would be able to force a higher flux through the target methylation re-
action. One such strategy was discovered, that uses product methylation
to convert supplemented methionine into the amino acids aspartate,
threonine and isoleucine, while disabling the native production of these.
This will demand a higher flux through the methylation reaction at a
given growth rate than the original design coupling methylation to
cysteine biosynthesis. Fig. 5 shows the two growth-coupling designs and
their respective production envelopes. The production envelope for the



Fig. 5. Overview of a subset of the predicted growth-coupling designs for product methylation. A) Pathway map showing the mechanisms of two growth-coupling
strategies. The design of Luo and Hansen (2018) (orange) converts L-homocysteine into L-cysteine. The alternative design found here (blue) converts L-homocys-
teine in to L-threonine, L-isoleucine and L-aspartic acid. Both designs require supplementing the medium with methionine. B) Production envelope of the
growth-coupling design of Luo and Hansen (2018). C) Production envelope of the alternative growth-coupling design found in this study. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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alternative design (Fig. 5C) shows a larger potential production rate by
growth-coupling (indicated by the height of the right-most point) than
the original design (Fig. 5B), consistent with the combined higher
cellular demand for aspartate, threonine and isoleucine compared to
cysteine (Orth et al., 2011).

The above results prove that OptCouple can be used to identify
combinations of knockouts, gene insertions and medium supplements
that make production of various compounds coupled to growth in E. coli.
The algorithm could easily find designs allowing up to 7 modifications
with running times less than 24 h. The fact that OptCouple identifies
designs that are identical or very similar to prominent, experimentally
validated growth-coupling designs indicates that it will also be able to
find novel valid growth-coupling designs.

The main novelty and advantage of OptCouple is the possibility of
simultaneously identifying complex combinations of three different types
of modifications. Currently, other strain design algorithms exist that
attempt to find growth-coupled designs through the identification of one
or two types of modifications simultaneously. Recent examples are
SimOptStrain (Kim et al., 2011) that simultaneously identifies gene
knockouts and insertions, whereas SelFi (Hassanpour et al., 2017) can
suggest all three types of modifications, but only medium supplements
and gene knockouts are identified simultaneously. Several successful
designs, however, such as the product methylation growth-coupling (Luo
and Hansen, 2018), show that considering all three types of modifica-
tions at once can enable the identification of new growth-coupling
strategies.

OptCouple guarantees that the resulting designs are truly growth-
coupled. This is in contrast to e.g. SimOptStrain, which uses the same
objective function as OptKnock, and thus does not specifically predict
growth-coupling, as competing pathways are still allowed. Ideally, a
growth-coupled strain design should have a high growth-coupling po-
tential as well as a high production rate. Thus, a potential drawback of
using the growth-coupling potential as objective function in OptCouple is
7

that there is no explicit optimization of the production rate that can be
achieved by growth-coupling. This can result in predictions with a robust
growth-coupling, but only very small production flux. An example of this
issue is seen in the identified growth-coupling strategies for propionic
acid. The design identified by OptCouple ensures the production of
propionic acid to supply the cell with either NAD or methionine, lysine
andmurein, all of which are only needed in relatively small amounts. The
consequence is that the growth-coupled production rate of propionic acid
will not be sufficient for a commercially viable process, given the modest
market price of propionic acid (Rodriguez et al., 2014). Even though this
limits the practical utility of some growth-coupling strategies identified
by OptCouple, it does not significantly reduce the utility of the algorithm
itself. While a high growth-coupling potential is no guarantee of a high
production rate, it also does not prohibit it. Through the use of subop-
timal solution pools, OptCouple can quickly identify many candidate
designs, increasing the likelihood that at least one will have robust
growth-coupling and have a high growth-coupled production rate.
Additionally, computationally predicted strain designs should always be
assessed manually before being implemented in the laboratory, as their
feasibility can also be affected by a range of factors not considered in the
models, e.g. thermodynamics, regulation, toxicity, etc, which further
underlines the value of evaluating a large set of alternative designs.

As with all model-based predictions, the quality of the results strongly
depends on the quality of the model that was used. As one of the most
commonly used organisms for metabolic modeling, the E. coli genome-
scale model is relatively comprehensive. While nothing prevents Opt-
Couple from being used in other organisms, the predicted designs should
be curated even more thoroughly if a less complete metabolic model is
used. The in vivo presence of enzymes that are not accounted for in the
model can effectively abolish the growth-coupling of a predicted design,
as they can allow the cell to circumvent the growth-coupling mechanism.
Conversely, if a model contains reactions that are not active in vivo, e.g.
due to transcriptional repression, some growth-coupling strategies will
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require more modifications in silico than they would in practice. This is
seen in the experimentally validated itaconic acid growth-coupling
design (Harder et al., 2016), which does not show growth-coupling
when simulated with iJO1366, whereas the reduced model EColiCore2
did allow production at optimal growth. However, during optimization
with ALE, repressed reactions could become active allowing the cell to
circumvent growth-coupling mechanisms predicted with reduced
models. Therefore, it would most likely be preferable to use the most
complete model available for the chosen organism.

5. Conclusion

OptCouple is an MILP-based optimization algorithm that can find
combinations of gene knockouts, heterologous gene insertions, and ad-
ditions to the growth medium, that allow the stoichiometric coupling of a
product of interest to growth. In our validation tests OptCouple was able
to reproduce successful growth-coupling designs from the published
literature and find alternative designs that allow for a higher production
flux. Furthermore, we showed that OptCouple can be used to predict
novel candidate growth-coupling designs for target compounds where no
growth-coupling has previously been demonstrated.
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