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ABSTRACT: Temporal difference learning (TD) is a popular algorithm
in machine learning. Two learning signals that are derived from this
algorithm, the predictive value and the prediction error, have been
shown to explain changes in neural activity and behavior during learn-
ing across species. Here, the predictive value signal is used to explain
the time course of learning-related changes in the activity of hippocam-
pal neurons in monkeys performing an associative learning task. The TD
algorithm serves as the centerpiece of a joint probability model for the
learning-related neural activity and the behavioral responses recorded
during the task. The neural component of the model consists of spiking
neurons that compete and learn the reward-predictive value of task-rel-
evant input signals. The predictive-value signaled by these neurons influ-
ences the behavioral response generated by a stochastic decision stage,
which constitutes the behavioral component of the model. It is shown
that the time course of the changes in neural activity and behavioral
performance generated by the model exhibits key features of the experi-
mental data. The results suggest that information about correct associa-
tions may be expressed in the hippocampus before it is detected in the
behavior of a subject. In this way, the hippocampus may be among the
earliest brain areas to express learning and drive the behavioral changes
associated with learning. Correlates of reward-predictive value may be
expressed in the hippocampus through rate remapping within spatial
memory representations, they may represent reward-related aspects of a
declarative or explicit relational memory representation of task contin-
gencies, or they may correspond to reward-related components of epi-
sodic memory representations. These potential functions are discussed
in connection with hippocampal cell assembly sequences and their
reverse reactivation during the awake state. The results provide further
support for the proposal that neural processes underlying learning may
be implementing a temporal difference-like algorithm. VVC 2009 Wiley-Liss, Inc.
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INTRODUCTION

The temporal difference (TD) learning algorithm was introduced to
address the temporal credit assignment problem whereby proper reward-
predictive values are computed for each of a sequence of actions that
ultimately result in success or failure (Sutton and Barto, 1981, 1987;
Barto and Sutton, 1982; Sutton, 1988). It is widely used as a reinforce-
ment learning algorithm in machine learning (Barto et al., 1983;

Tesauro, 1994; Kaelbling et al., 1996; Singh and Bert-
sekas, 1997; Sutton and Barto, 1998). Two key signals
of this algorithm are the predictive value (V(t)), and
the prediction error (d(t)) signals. Numerous studies
of reinforcement learning in humans, nonhuman pri-
mates and bees have shown that these signals provide
a compelling explanation of the patterns of neural ac-
tivity and behavior that are observed during learning
(Montague et al., 1995, 1996, 2004, 2006; Schultz
et al., 1997; Suri and Schultz, 1999, 2001; Kakade
and Dayan, 2000; Waelti et al., 2001; O’Doherty
et al., 2003; McClure et al., 2004; Schultz, 2004; Sey-
mour et al., 2004; Tanaka et al., 2004; Niv et al.,
2005).

In monkeys that learn behavioral reactions, the
response of midbrain dopamine neurons to reward is
remarkably similar in its learning-dependent character-
istics to the prediction error d(t) of a TD learning
algorithm that is trained on the same task (Montague
et al., 1996, 2004; Schultz et al., 1997; Suri and
Schultz, 1999; Kakade and Dayan, 2000; Waelti
et al., 2001; Niv et al., 2005). Before learning the
association between a stimulus and the reward that
the stimulus reliably predicts, these neurons exhibit a
phasic response to reward delivery. With learning, the
timing of this response gradually shifts from the time
of reward delivery to the time of stimulus presenta-
tion. After learning is established, the response occurs
immediately following the stimulus that signals the
future reward (Romo and Schultz, 1990; Ljungberg
et al., 1992; Schultz et al., 1993). Correlates of d(t)
are found, during classical conditioning and higher-
order learning in humans, in the activity of brain areas
involved in reward processing, including the ventral
tegmental area, substantia nigra, and ventral striatum
(McClure et al., 2003, 2004; O’Doherty et al., 2003;
Montague et al., 2004, 2006; Seymour et al., 2004;
Tanaka et al., 2004). On the other hand, human
fMRI studies of associative and higher-order learning
revealed that correlates of V(t) are found in the ventral
midbrain (O’Doherty et al., 2006), anterior insula
cortex and the brainstem (Seymour et al., 2004),
medial prefrontal cortex and bilateral insula, and tem-
poral pole and the hippocampus (Tanaka et al.,
2004). The blood-oxygen-level-dependent brain activ-
ity signal recorded in fMRI studies is thought to be
correlated with postsynaptic events, and to reflect
the neural processing occurring within a brain area
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(Attwell and Iadecola, 2002). This suggests that the d(t) and
the V(t) signals detected in the fMRI studies reflect functional
processes expressed within the indicated anatomical locations.
Direct measurements of neural spiking activity in electrophysio-
logical studies in monkeys also found that cue-related activity
of perirhinal neurons carries associative information about the
temporal distance to future rewards, similar to V(t) (Liu and
Richmond, 2000). These findings are consistent with the pro-
posal that the medial temporal cortex may be involved in the
representation of the predictive value signal V(t) (Schultz,
2000). Other electrophysiological evidence suggested that corre-
lates of V(t) are also found in the dorsolateral prefrontal cortex
and striatum in monkeys (Barraclough et al., 2004; Samejima
et al., 2005).

Reward-related activity has been found in the spiking activity
of rodent and primate hippocampal neurons during reinforce-
ment learning experiments (Hölscher et al., 2003; Rolls and
Xiang, 2005), and has also been suggested to be linked to a
reinforcement learning mechanism similar to the TD learning
algorithm (Foster and Wilson, 2006). Here, it is shown that
the learning-related spiking activity of some hippocampal neu-
rons (changing cells; Wirth et al., 2003) in monkeys perform-
ing an associative learning task (location-scene association task;
Wirth et al., 2003) is correlated with the reward-predictive
value signal V(t) generated by a TD learning algorithm that is
trained on the same task. The time course of the activity of the
changing cells exhibits key characteristics of V(t). Namely, both
start changing first near the time of reward delivery and propa-
gate backward in time with learning, toward stimuli that have
reward-predictive value. The goal of the article is to provide
answers to the following questions: Can the learning-related be-
havioral responses of a subject and the activity of the changing
cells be explained in a framework that couples them through
the TD learning algorithm? Is such an explanation compatible
with other experimental data suggesting that the activity of
some hippocampal neurons contains reward-related informa-
tion? If the activity of some hippocampal neurons contains
information about reward-predictive value, how may this infor-
mation contribute to the function of the hippocampus accord-
ing to current theories of hippocampal function?

THEORY AND METHODS

Theory of the TD Algorithm

The main goal of the TD algorithm is to compute a running
estimate of the discounted sum of all future rewards in a trial
(Schultz et al., 1997; Suri and Schultz, 2001; O’Doherty et al.,
2003; Montague et al., 2004)

VkðtÞ ¼ E g0rkðtÞ þ g1rk t þ 1ð Þ þ g2rkðt þ 2Þ þ . . .
� �

; ð1Þ

where k is the trial number, rk(t) is the reward at time t relative
to trial onset, E(�) denotes the expected value of the sum of

future rewards up to the end of the trial, and 0 � g � 1 is a
discount factor that attenuates the impact of late arriving
rewards when g < 1. This function is termed the predictive
value function. An estimator of V(t) is often formulated as a
linear combination of temporal basis functions xi(t) (Montague
et al., 1996; Schultz et al., 1997; Suri and Schultz, 1999,
2001; O’Doherty et al., 2003), which may be interpreted as
time-delayed versions of input signals whose reward-predictive
value is learned by the algorithm (see Appendix, Eq. (A5))

V̂kðtÞ ¼
X
i

wi
kx

i
kðtÞ: ð2Þ

It is assumed that the compound signal xk(t) 5 [xk
1(t),

xk
2(t), . . .] is Markov, such that the probability structure of the

reward at trial k is completely specified knowing only xk(t)
(Sutton and Barto, 1998). The TD algorithm computes the
weights of these basis functions iteratively according to the
weight update rule (Schultz et al., 1997; O’Doherty et al.,
2003; Montague et al., 2004)

wi
kþ1 ¼ wi

k þ a
X
t

xikðtÞdkðtÞ; ð3Þ

where a is the learning rate of the system, and d(t) is an error
signal that measures the difference between the predicted and
the observed reward at time t

dkðtÞ ¼ rkðtÞ þ gV̂k t þ 1ð Þ � V̂kðtÞ: ð4Þ

It serves as a teaching signal that controls how the associative
weights coupling the input signal to its predictive value are
modified. In the learning task considered here the reward is all
or none (1 or 0) and is only available at the end of the trial.
The weights and the value function vary between 0 and 1
under these conditions if a, g, and the initial weights are
between 0 and 1 (see Appendix).

The Associative Learning Task

The location-scene association task consists of learning arbi-
trary associations between complex visual scenes and superim-
posed target locations (Fig. 1). Each trial of the task starts with
a black screen and a central fixation point. The subjects (two
adult rhesus monkeys (Macaca mulatta)) are expected to main-
tain their gaze at this point until the end of the trial. The black
screen is presented for 300 ms. Then, a complex visual scene is
presented for 500 ms. Superimposed on this scene are four
small white squares indicating target locations. After the scene
stimulus is turned off, the target locations remain on the screen
for a delay period of 700 ms. At the end of this period, the fix-
ation point disappears, signaling to the subject that it is time
to make an eye movement to one of the four target locations.
Each scene is correctly associated with only one target location.
The subject is rewarded if the correct location is selected. The
monkeys were presented with two to four novel scene stimuli
in each session in a pseudorandom order.
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Wirth et al. recorded from 145 cells throughout the hippo-
campal region (Dentate Gyrus, CA3, CA1, Subicular Com-
plex), of which 89 exhibited scene-selective activity during the
scene or the delay period of the task and, of these, 69 showed
significant activity relative to baseline (fixation period activity).
The scene and/or the delay period activity of 25 of these 69
cells was significantly correlated with the behavioral learning
curve (a total of 37 scene and delay cases). These cells were
called the ‘‘changing cells’’ (Wirth et al., 2003). Two types of
changing cells were identified. Sustained-changing cells (14/25)
increased (12/14) or decreased (2/14) their activity relative to
baseline with learning, and baseline-sustained changing cells
(11/25) initially responded with increased (3/11) or decreased

(8/11) activity, and returned to the baseline level with learning
(Wirth et al., 2003).

Parameter Estimation

In this section, the parameters of the TD algorithm are esti-
mated for individual neuron models. The next section explains
how these estimates are used in neurons that are coupled
within a network. Each trial of the location-scene association
task is modeled as a process with 15 equal time steps, where
each time step lasts 100 ms as in previous studies (Montague
et al., 1996; Schultz et al., 1997; Suri and Schultz, 1999,
2001). The time steps 1–5, 6–12, 13–15 correspond to the

FIGURE 1. The display sequence in a typical trial of the location-scene association task.
Reprinted with permission from Wirth et al., Science, 2003, 300, 1578–1581, �American Asso-
ciation for the Advancement of Science.

FIGURE 2. Learning-related hippocampal neural activity and
reward-predictive value. The average firing rates (red) of a sus-
tained-changing cell (A) and a baseline-sustained changing cell (B)
relative to baseline. The legend shows the reward-schedules used in
fitting the data. Maximum likelihood estimates for the best fits
(solid black curves): (A) â ¼ 0:367, ĉ ¼ 1, b̂0 ¼ 1:870, b̂1 ¼ 1.846
; (B) â ¼ 0.760, ĉ ¼ 0.970, b̂0 ¼ 0.944, b̂1 ¼ 1.800. The white and
the black dots at the top of each graph indicate the incorrect and

the correct responses of the subject, respectively. The estimated
learning and neural change trials for these cases were 25 and 26
(A), 9 and 19 (B), respectively (Wirth et al., 2003). The firing rate
increases in (A) (P 5 0.01) and decreases in (B) (P 5 0.03) before
the estimated learning trial according to the slope test (see section
‘‘Slope of neural change before learning’’ for Methods). Data
extracted from Figure 2 of Wirth et al., Science, 2003, 300, 1578–
1581, � American Association for the Advancement of Science.
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scene, delay, and response periods of the task, respectively,
matching the relative timing of these periods in the actual loca-
tion-scene association experiment (Wirth et al., 2003).

The model may start in a naı̈ve state where the initial
weights are zero (Schultz et al., 1997), or it may start with a
previously acquired memory trace, modeled here by setting the
initial weights to one. The input signal xk(t) 5 [xk

1(t), xk
2(t),

. . .] is a series of time-delayed pulses that is triggered at scene
onset, which is usually referred to as a complete serial com-
pound or tapped-delay line (see Appendix, Eq. (A5); Schultz
et al., 1997).

For a given pair of a and g, Eqs. (2)–(4) are iterated using
one of the following three reward schedules: rk(T) 5 nk, rk(T)
5 1, or rk(T) 5 0, where the time T indicates the end of the
trial and nk is the outcome of a subject’s behavioral response
such that nk 5 1 if the response is correct, and nk 5 0 other-
wise, as shown in Figure 2. The reward signal is zero at all
other times.

The average reward-predictive value generated by the TD
algorithm is computed in the scene and the delay periods of
the task, and the firing rates observed in Figure 2 are fit as a
function of this signal using a generalized linear model (GLM)
with Poisson distribution and logarithmic link function
(McCullagh and Nelder, 1989), such that the expected value of
the average firing rate in a task period at trial k is exp(b0 1 b1

Vk), where Vk is the average reward-predictive value in the
scene or the delay period of the task. The logarithmic link
function ensures the non-negativity of the firing rate. The pa-
rameter a is varied in the range [0,1] in 80 linear steps and g

is varied in the range [0,1] in 100 linear steps and the maxi-
mum likelihood estimates of these parameters are determined
in these ranges.

The relation between the behavioral responses and the neural
activity is modeled using a GLM with Binomial distribution
and logit link function such that the behavioral response nk at
trial k is a Bernoulli random variable with probability

Pk ¼
exp sk � u½ �s�1ð Þ

1 þ exp sk � u½ �s�1ð Þ ; ð5Þ

where sk is the average firing rate of the neuron in the scene or
the delay period of the task. The maximum likelihood esti-
mates of the parameters u and s are determined from Figure 2.

A Model of Competing Changing Cells

To show that the time course of the learning-related neural
activity and behavior observed during the location-scene associ-
ation task may be explained using the TD learning algorithm,
a network of simulated cells are trained on the task, using the
parameters estimated from Figure 2.

In the simulated location-scene association experiment, the
task is to associate four different scenes (A, B, C, D) with four
different locations (a, b, c, d). A simulated cell is assigned for
each of the 16 possible location-scene pairs as in other models

where one TD model is assigned to each event in multievent
tasks (Suri and Schultz, 2001). Four of the cells correspond to
rewarded (correct) location-scene pairs. These cells are referred
to here as the correct cells. The remaining 12 cells are referred
to as the incorrect cells. The full model is a joint probability
model for the learning-related ensemble spiking activity of the
cells and the behavioral responses of the model across the entire
session (see Appendix).

Spiking activity in the simulated neurons

The spiking activity of a cell is controlled by the value func-
tion that measures the reward-predictive value of the cell’s loca-
tion-scene pair

kXyk t V̂
Xy
k ðtÞ

���� �
¼ exp b0 þ b1V̂

Xy
k ðtÞ

� �
; ð6Þ

where kk
Xy (t|V̂k

Xy(t)) is the conditional intensity function of the
cell CXy corresponding to the scene X and location y. The con-
ditional intensity function is used to compute the probability
of a spike in the brief interval (t,t 1 dt] as kk

Xy (t|V̂k
Xy(t)) dt

(Daley and Vere-Jones, 2003). Using dt 5 1 ms, a spike is gen-
erated in a given time bin with this probability.

Behavioral responses of the network

At each trial, each scene has equal probability of being pre-
sented. A trial begins with the presentation of a scene (e.g., A),
which activates the cells that receive input from that scene
(e.g., CAa, CAb, CAc, CAd). The coupling between neural activity
and behavioral response is modeled as a two-stage process. In
the first stage, the neurons activated by the presented scene
compete among themselves (Cahusac et al., 1993; Suri and
Schultz, 1999). The cell that has the highest firing rate in the
delay period wins the competition. If there is a tie, then one of
the candidates is selected with equal probability. Then, at the
final decision stage, a location y is selected as the response,
with a probability that depends on the delay period firing rate
Sk

Xw of the winner cell CXw.

Pr yjX ;wð Þ ¼ pXwk þ 1�pXw
k

4 ; y ¼ w
1�pXw

k

4 ; y 6¼ w;

(
ð7Þ

pXwk ¼
exp ½sXwk � u�s�1

� �
1 þ exp ½sXwk � u�s�1

� � : ð8Þ

According to this rule, if the decision mechanism fails to
choose the location associated with the winner cell with proba-
bility pk

Xw, then a location is selected with equal probability
among the four possibilities. Action selection is performed using
the delay period activity because the values that were used for
the parameters u and s in this simulation were estimated using
Eq. (5) with the behavioral responses and the delay-period activ-
ity shown in Figure 2A: û ¼ 15:789, ŝ ¼ 2:769. The design of
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this scheme was motivated by the assumption that a population
of hippocampal neurons wins a competition and the activity of
the winning population contains information about the
response probability at each trial. This relation between the
neural activity and the response probability is captured by the
binomial regression in Eqs. (5) and (8).

Learning in the model

The model neurons may start in a naı̈ve state, where the ini-
tial weights are 0, or they may start with a previously acquired
reward-predictive value, modeled here by setting the initial
weights of a neuron to 1. At the end of each trial, the input
weights of the winner cell CXw are updated according to the
TD algorithm (Eqs. (3) and (4)) using a reward of 1 (0) if the
model’s choice is correct (incorrect). The input weights of the
cells associated with the same scene but different locations are
updated using the opposite reward. Namely, if the choice is
correct, then they receive no reward (0), otherwise they each
receive a reward of 1. The input weights of the cells associated
with the other scenes remain unchanged at that trial. Therefore,
in this scheme, a winner cell that corresponds to an incorrect
location-scene pair may nonetheless get reward if the decision
stage chooses the correct location by chance. Reciprocally, a
winner cell that corresponds to a correct location-scene pair
may fail to receive reward if the decision stage chooses a wrong
location by chance. On the other hand, regardless of whether
they correspond to correct or incorrect location-scene associa-
tions, cells that lose the competition at a given trial receive or
do not receive reward, depending on whether the behavioral
response at that trial is incorrect or correct, respectively.

Neural Change and Behavioral Learning Trials
in the Network

In a typical behavioral neurophysiology experiment, the state
of the neural system is observed at the level of spike trains of
individual neurons. Therefore, experimental studies have
defined the neural change trial as the trial at which a significant
change is detected in the spiking activity of a neuron during
some task period (Cahusac et al., 1993; Wirth et al., 2003).
This trial is necessarily later than the trial at which smaller but
potentially significant changes may occur in the neural sub-
strate, such as synaptic changes. Such smaller changes in neural
substrate may manifest themselves as slight changes in firing
rate that may not reach statistical significance when analyzed
between pairs of trials, but may be consistent trends, such as
consistent increases or decreases in firing rate as a function of
trial number. Such consistent trends may be detected by fitting
neural activity as a function of trial number and testing the
slope of the fit for significance. This is explained in section
‘‘Slope of neural change before learning.’’

The neural change trial may be defined according to multi-
ple different criteria. For illustration purposes, it is defined here
as the earliest trial k at which the difference between the firing
rates at trial k and trial 1 significantly differs from zero and
remains different for the rest of the session. This is determined

by computing the 95% confidence interval of this difference
using 1,000 independent simulated learning sessions and iden-
tifying the earliest trial at which this confidence interval does
not contain zero for the rest of the session.

The behavioral learning trial is determined based on the
probability of making a correct response by chance, which is
determined by the number of potential actions available to the
subject. In the location-scene association task, this probability
is 0.25. Equations (7) and (8) provide the network’s probability
of correct response at each trial given the firing rates of all neu-
rons. In the remainder of this article, this probability is referred
to as the probability of correct response given the ensemble
spiking activity. It has a distribution that depends on the firing
rate distributions of the neurons. This distribution is computed
by generating 100,000 simulated firing rates at each trial given
the neural activity and the behavioral responses generated in
the previous trials. The trial at which this probability exceeds
the chance level with 95% confidence and remains above that
level for the rest of the session is taken as the behavioral learn-
ing trial of the network.

For comparison, the neural change and the behavioral learn-
ing trials are estimated using the methods of Wirth et al.
(2003), as explained next.

Behavioral learning trial estimate

The trial at which behavioral learning occurs is estimated
using the state-space model of learning (Smith and Brown,
2003; Smith et al., 2004) as described in Wirth et al. (2003).
In this model, behavioral responses are Bernoulli random varia-
bles (i.e., 0 or 1) with a probability that depends on a latent
state process representing the level of learning. The state pro-
cess is modeled as a Gaussian random walk. Given the binary
behavioral responses of the learning agent, the method esti-
mates the probability of making a correct response at each trial
using the Expectation-Maximization algorithm (Dempster
et al., 1977). It determines the learning trial as the trial at
which this estimate exceeds the chance level (0.25) with 95%
confidence and remains above that level for the rest of the
experiment. This learning trial is termed the ideal observer
learning trial with level of certainty 0.95 [IO (0.95)] (Smith
et al., 2004). This nomenclature is due to the estimation of the
learning state variable from the perspective of an ideal observer:
the value of the learning state process at each trial is estimated
after seeing the outcomes of all of the trials in the experiment
(Smith et al., 2004).

This analysis is performed using the software available at the
link provided by Smith et al. (2004), https://neurostat.mgh.har-
vard.edu/BehavioralLearning/Matlabcode, using the parameters
specified in Wirth et al. (2003) (The startflag parameter was 0
in the analysis shown in Fig. 4, as in Wirth et al. (2003), and
was 2 for all other analyses. This parameter takes on the values
0, 1, and 2, and controls the initial condition of the latent state
process of the model. When startflag is zero, the initial proba-
bility of correct response is fixed at the chance level (0.25).
When it is 1, the initial value is estimated from the data, and
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when it is 2, the model is not constrained by the initial value
of the latent state process. The latter condition resulted in the
smallest average difference between the estimated and the actual
learning trials in Fig. 6).

Neural change trial estimated using raw
firing rates

The neural change trial is estimated using the change point
test for continuous variables (Siegel and Castellan, 1988). At
each trial, the average firing rate in a task period is computed
from the raw spike count observed in that period. The change
point test is then used to determine the trial at which a signifi-
cant change is detected in the firing rate. Wirth et al. (2003)
noted that estimating the firing rate from raw spike counts
yields noisy estimates of the change trial. Accordingly, they
used the change point test on firing rate estimates that were
obtained using adaptive filtering, as explained next.

Neural change trial estimated using
adaptive filtering

Adaptive filtering is a parameter estimation method in which
the estimates are updated in real time as new data become
available (Haykin, 1996; Brown et al., 2001). It allows comput-
ing instantaneous estimates of dynamic parameters as a func-
tion of previous estimates and new data observations. Here,
this method is implemented as described by Wirth et al.
(2003) to filter the simulated spike trains generated by the
model in order to estimate the firing rate underlying the spik-
ing activity. Then, at each trial, the average firing rate is com-
puted in different task periods using the adaptive filter esti-
mate. The change point test for continuous variables (Siegel
and Castellan, 1988) is used to determine the trial at which a
significant change is observed in the firing rate (Wirth et al.,
2003).

Slope of Neural Change Before Learning

To determine whether the firing rate of a neuron exhibits a
significant trend of change before the estimated learning trial,
Poisson regression fits of second (Figs. 2A, 7A) and first (Figs.
2B, 7D) order polynomials are fit to the data as a function of
trial number at trials before the estimated learning trial. The
statistical significance of the quadratic (Figs. 2A, 7A) and the
linear (Figs. 2B, 7D) slopes is determined using the bootstrap
method (Efron and Tibshirani, 1998) as follows. First, the
slope is obtained for the observed firing rates at trials preceding
the estimated learning trial. Next, 104 bootstrap replicates of
the slope parameter are computed using random permutations
of the observed rates at those trials. Finally, the P-value of the
observed slope parameter is obtained as the fraction of repli-
cates that are more extreme than or equal to the observed slope
parameter.

Software

All analyses were conducted using custom software written
in Matlab (MathWorks, Natick, MA), except for the estimation
of the behavioral learning trial, as explained in section 7 ‘‘Be-
havioral learning trial estimate.’’

RESULTS

Parameter Estimation

Figure 2A shows the average firing rate of a sustained-changing
cell in the delay period of the task and the outcome of the be-
havioral responses of the subject (nk 5 1: correct, nk 5 0: incor-
rect) at trials where a particular scene was shown during the per-
formance of the task (Wirth et al., 2003). The neural activity is
fit as a function of the reward-predictive value using the reward
schedules rk(T) 5 nk and rk(T) 5 1. In both cases, the initial
weights of the TD algorithm are zero. In the first reward sched-
ule, the fit lags the actual neural activity by a wide margin. This
is expected because the reward-predictive value increases only af-
ter the algorithm receives reward, which occurs only at correct
trials. Thus, the increase in reward-predictive value occurs only af-
ter the subject starts making correct responses. This suggests that a
better fit to the data would be obtained under this model if the
algorithm somehow received reward at least at some of the incor-
rect trials before behavioral learning. This idea is illustrated by the
solid black curve in Figure 2A, which is obtained by fitting the
model using the second reward schedule. This fit is significantly
better than the previous according to a likelihood ratio test (log
likelihood ratio: 103.6, P 5 0, under the v2 distribution with 18
of freedom).

Figure 2B shows the average firing rate of a baseline-sus-
tained changing cell in the scene period of the task and the be-
havioral responses of the subject at trials where a particular
scene was shown during the performance of the task (Wirth
et al., 2003). Here the firing rate is fit using the reward sched-
ules rk(T) 5 nk, rk(T) 5 1, and rk(T) 5 0. In the first two
reward schedules, the initial weights of the algorithm are zero,
whereas in the third, they are one. The latter condition may be
viewed as the extinction of a previous memory trace. This
reward schedule fits the data significantly better than the first
reward schedule (log likelihood ratio: 17.2, P 5 3.5 3 1025)
and almost significantly better than the second reward schedule
(log likelihood ratio: 3.5, P 5 0.06). Because the firing rate
decreases significantly before the behavioral learning (Fig. 2B;
P 5 0.03; see section ‘‘Slope of neural change before learning’’),
and because this decrease is only captured by the model in the
third reward schedule, it is proposed that the neural data in Fig-
ure 2B are best fit by the model under this reward schedule.

Reward Inversion Through Competitive
Interactions

The best fits to the data in Figure 2 are obtained using positive
reward even at incorrect trials (A) or no reward even at correct tri-
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als (B). Such an inversion of the reward signal might occur within
a competitive network of neurons where the reward signal is gated
by competitive interactions. This competition is implemented as
described in section ‘‘Behavioral responses of the network.’’

To illustrate how neural activity of the type illustrated in Fig-
ures 2A and 2B may be generated within a network of compet-
ing neurons, neurons of two different types are included in the
competitive network model. For simplicity, the activity of a
group of four neurons that respond to a particular scene is
illustrated. All model parameters are estimated from the data in
Figure 2A except for the learning rate a and the discount rate
g for neuron 2, which are estimated from the data in Figure
2B. The initial weights are one for neuron 2, and zero for the
other neurons. Neuron 1 is designated as a correct neuron,
whereas the other neurons are incorrect neurons.

Changes in the Predictive-Value Function
During Learning

The simulated behavior of the network is shown in Figure 3.
In a typical experiment, the predictive value function associated
with a location-scene pair exhibits learning-dependent changes

as the TD algorithm assigned to that function receives feedback
regarding the response given at each trial (Figs. 3A,E,I,M). The
value function is zero in the first trial for neurons 1, 3, and 4,
and it is one for neuron 2. The initial selection of a location
(e.g., b), in response to a scene presentation (e.g., A), is driven
by the firing rates of the simulated cells selected by the pre-
sented scene (e.g., CAa, CAb, CAc, CAd). In the present case, neu-
ron 2 has the highest firing rate initially, and tends to control
the behavior more frequently early in the session. As the session
progresses, the firing rate of the cell that corresponds to the
correct location-scene pair increases (neuron 1), which increases
the probability of making a correct response. With learning,
the onset of V(t) steadily shifts toward the onset of the stimulus
presentation in neurons 1, 3, and 4 (Fig. 3A,I,M) (Schultz
et al., 1997; Suri and Schultz, 2001). Similarly, the offset of
V(t) in neuron 2 shifts toward the onset of the stimulus presen-
tation (Fig. 3E). These shifts are due to the learning rule in
Eq. (4), which samples the information about the occurrence
of a reward at the end of the trial, and, with increasing trial
number, propagates it to earlier times within the trial.

The conditional intensity function of each neuron is com-
puted using Eq. (6). Simulated spiking activity is generated as

FIGURE 3. Learning-related changes in the reward-predictive
value function and dependent processes. (A, E, I, M) The value
function starts changing first near the end of the trial and then
the change propagates backward toward the scene period as learn-
ing progresses. (B, F, J, N) The conditional intensity functions for
the same simulated neurons. The intensity increases with increas-
ing whiteness for the value function and the conditional intensity
function. (C, G, K, O) The raster plots of the simulated spiking

activity driven by the conditional intensity functions. (D, H, L, P)
The average firing rates in the scene (H) and the delay (D, L, P)
periods of the task computed from raw spike counts. White
(black) dots on the right in vertically arranged sequences, and at
the top in horizontally arranged sequences indicate the incorrect
(correct) responses of the model. The left and the bottom dot
sequences show the reward signal received by each cell (white: 0;
black: 1).
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a doubly-stochastic Poisson process using the conditional inten-
sity function. The raster plots of this activity reflect the tempo-
ral features of the underlying conditional intensity functions
within and between trials (Fig. 3C,G,K,O). The average firing
rate of neuron 1 in the delay period of the task increases with
learning (Fig. 3D), whereas the firing rate of neuron 2 in the
scene period decreases with learning (Fig. 3H). The firing rates
of neurons 3 and 4 in the delay period exhibit a transient
increase followed by decay toward the baseline (Fig. 3L,P).

Simulated Neural Activity in Different
Learning Quartiles

Figure 4 compares the activity of neuron 1 to the activity of
a real changing cell in different quartiles of the session relative
to the estimated learning trial of the network (from Fig. 3A of
Wirth et al., 2003). The quartiles are determined using the
methods of Wirth et al. (2003) as follows. The network’s be-
havioral learning trial is estimated as explained in section ‘‘Be-
havioral learning trial estimate.’’ The session is divided into
four quartiles relative to the behavioral learning trial such that
the first two quartiles (Q1, Q2) correspond to the first and the
second halves of the session before the learning trial, whereas
the last two quartiles (Q3, Q4) correspond to the first and the
second halves of the session after the behavioral learning trial.
The firing rate of neuron 1 is estimated from its spiking activ-
ity using adaptive filtering as explained in Wirth et al. (2003),
and the average activity per quartile is computed using this esti-

mate. Figure 4 shows the results of this analysis for a real sus-
tained changing cell and for neuron 1.

It is seen that the activity of the real changing cell is mostly
within the 95% confidence interval of the estimated firing rate
of neuron 1. These results are obtained using the same parame-
ters as in Figure 3, without optimizing the parameters to fit the
neural activity shown in Figure 4. This suggests that the
within-trial time course of the learning-related change in the
activity of this changing cell can be explained to a large extent
by the temporal structure inherent in the reward-predictive
value function.

The Time Course of Expected Reward
for Each Cell

Figure 5 shows the average reward signal received by each
neuron, which is computed using 1,000 simulated learning ses-
sions. Initially the network’s behavior is determined mostly by
the activity of neuron 2. Because this is an incorrect neuron it
does not receive reward when it succeeds in controlling behav-
ior. As a result, its activity level decreases (Fig. 3H). Because of
the reward inversion, the other cells receive positive reinforce-
ment, which increases their activities (Fig. 3D,L,P). After a
number of trials into the session, the neurons reach a compara-
ble activity level. At this stage, each neuron is equally likely to
win the competition. However, because the cells exhibit a me-
dium activity level in their dynamic range relative to the pa-
rameters u and s, a winner cell’s probability of selecting its
associated location is around 0.5, leading to occasional incor-
rect choices when the winner is a correct cell, and to correct
choices when the winner is an incorrect cell. This is indicated
by the dip (peak) in the expected reward for neuron 1 (2), and
the inflection point for the other neurons. Eventually, however,
neuron 1 accumulates sufficient weight strength to take over

FIGURE 4. Neural activity in different learning quartiles. The
panels show the firing rate estimates of a real changing cell (red)
(from Fig. 3A of Wirth et al., 2003) and the firing rate estimates
of neuron 1 obtained in 1,000 simulations using the same analysis.
The solid black curve shows the average firing rate estimate. The
dashed curves show the 95% confidence interval of the model’s
estimated firing rate. Learning was detected in all 1,000 simula-
tions. Data extracted from Figure 3 of Wirth et al., Science, 2003,
300, 1578–1581, � American Association for the Advancement of
Science.

FIGURE 5. The expected reward of each cell during learning.
The average reward received by each cell in 1,000 simulations. The
dashed lines show the 95% binomial confidence intervals.
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the behavioral control, start to reliably select the correct loca-
tion and receive positive reinforcement.

The Network’s Decision Making and
Learning Trial

The network’s probability of correct response, given the en-
semble spiking activity, has the distribution shown in Figure
6A at each trial of a simulated learning session. The probability
mass is initially collected near zero. This is because the net-
work’s response is initially dominated by the activity of neuron
2, which is an incorrect neuron. With learning, the probability
mass shifts toward higher probabilities. Eventually, the 5th per-
centile of the distribution exceeds the chance level at trial 35,
which is the network’s learning trial in this session. The distri-
bution is multimodal near the learning trial because the proba-
bility of correct response is small if the winner is an incorrect
cell, and large otherwise. Figure 6B shows the behavioral learn-
ing curve of the network. For comparison, the learning curve
estimated using the state-space model of learning (Wirth et al.,
2003; Smith et al., 2004) is also plotted (Fig. 6C). The learn-
ing trial estimated by this method is IO(0.95) 5 27. Figure

6D shows the distribution of the difference between the esti-
mated and the actual learning trials in 1,000 simulations. The
actual learning trial of the network is 38.8 6 0.12 on the aver-
age (mean 6 sem), whereas its estimated learning trial is 30.5
6 0.17, which is significantly earlier (P 5 0; paired, one-sided
t-test). The probability of correct response at the actual learn-
ing trial is 0.95 6 0.00024 (mean 6 s.e.m. of the 999 simula-
tions in Fig. 6D). The estimated probability of correct response
at the IO(0.95) learning trial is 0.67 6 0.0026 on the average
(mean 6 s.e.m. of the 963 simulations in Fig. 6D).

Neural Change Trial of Neurons 1 and 2

Figure 7 shows the actual and the estimated neural change tri-
als of neurons 1 and 2 during the simulated learning session
shown in Figure 6, along with the distribution of the difference
between the estimated and the actual neural change trials for
each estimation method. The neural activity shows a consistent
increase in panel A (P 5 0.014) and decrease in panel D (P 5

0), before the estimated learning trial, as in Figure 2 (see section
‘‘Slope of neural change before learning’’ for Methods). The activ-
ity significantly differs from the rate at the first trial at trial 22

FIGURE 6. The network’s decision making. (A) The probabil-
ity density function of the model’s probability of correct response
given the ensemble spiking activity at each trial during a simulated
learning session. The superimposed lines indicate the estimated
(green, 27) and the actual (blue, 35) learning trials of the network
in this session. (B) The mean (solid line) and the median (dashed
line) of the distribution in (A). Dotted lines indicate the 5th and
the 95th percentiles of the distribution. The 5th percentile exceeds
the chance level at trial 35 (learning trial, arrow). The mean (solid
line) corresponds to the probability of correct response given the
value functions of all cells. (C) The maximum likelihood estimate
(solid line) of the probability of correct response, and its 90%

confidence interval (dotted lines) computed using the state-space
model of learning (Wirth et al., 2003; Smith et al., 2004). The
lower confidence bound exceeds the chance level at trial 27
(arrow). (B, C) The white (black) dots indicate the incorrect (cor-
rect) responses of the network. (D) The distribution of the differ-
ence between the estimated and the actual learning trials in 963/
1,000 simulations. The average difference is 28.2 6 0.1 (s.e.m)
trials. The network did not learn the association in one of the ses-
sions. The state-space model of learning did not detect learning
in 37 sessions. All results were obtained using the parameters in
Figure 3.
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and 17 for neurons 1 and 2, respectively. In 1,000 independent
simulation sessions, the change point test (Siegel and Castellan,
1988) applied on the raw and the adaptive filtering estimates of
the firing rate suggests that the neural change occurred at trials
26 6 0.1 and 27.1 6 0.0, respectively, for neuron 1, and at tri-
als 17.5 6 0.0 and 23.8 6 0.1, for neuron 2 (mean 6 sem),
which are significantly later than the neural change trials defined
here (P 5 0, one-sided t-test). The difference is significantly
larger for either neuron for the method that uses the adaptive fil-
ter estimate of the firing rate (P 5 0; paired one-sided t-test).

DISCUSSION

Functional Explanation of Neural Activity

The present results suggest that the learning-related activity
of the sustained-changing cells and the baseline-sustained

changing cells identified by Wirth et al. (2003) may be
explained within a common functional framework. Specifically,
the sustained-changing cells that signal learning with an
increased firing rate, and the baseline-sustained changing cells
that signal learning with a decreased firing rate may be cells of
the same type that differ in their state of mnemonic coding.
For instance, the cell in Figure 2A may be learning to associate
reward-predictive value with location-scene specific inputs using
naı̈ve synapses, whereas the cell in Figure 2B may be receiving
inputs through channels that may have been previously paired
with reward but are no longer reward-predictive in the present
context. Such neurons may be activated by location-scene spe-
cific cues that may be common to multiple scene stimuli and
may have been trained in a previous session but happen to be
recorded in another session where the cues to which they
respond are no longer reinforced. On the other hand, neurons
3 and 4 exhibit a transient activation pattern that resembles the
hippocampal transient cells found in monkeys performing a
conditional spatial response learning task (Cahusac et al., 1993)

FIGURE 7. Neural change trials of the simulated neurons. (A,
D) The average firing rates (red) of neuron 1 in the delay period
of the task (A) and neuron 2 in the scene period of the task (D),
observed during the session illustrated in Figure 6. The plots
show the firing rate estimated using adaptive filtering (blue), the
expected firing rate in the same task period computed using the
conditional intensity function (solid black), and the 95% confi-
dence interval of the difference between the firing rate at each
trial and the firing rate at the first trial, obtained in 1,000 simu-
lated learning sessions (dotted lines). The dashed horizontal line
indicates the level zero for this difference. The lower (upper) dot-
ted line crosses this level at trial 22 in (A) (17 in (D)) (black
arrow), which defines the neural change trial for these neurons.
The neural change trial estimates obtained using the change point

test on the raw firing rates and on the firing rates estimated using
adaptive filtering are shown by the red and blue arrows, respec-
tively. In (A) they are 26 and 27, in (D) they are 20 and 23,
respectively. The white and the black dots at the top indicate the
incorrect and the correct responses of the network, respectively.
(B, C, E, F) The distribution of the difference between the esti-
mated and the actual neural change trials in 1,000 simulations.
The average difference for each method is indicated in the graphs.
The estimated behavioral learning trial is 27 from Figure 6. The
neural activity exhibits a significant trend of change before the
estimated learning trial according to the slope test (P 5 0.014 in
A, P 5 0 in D; see section ‘‘Slope of neural change before learn-
ing’’ for Methods).
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similar to the location-scene association task. These observa-
tions suggest that the present framework may provide a unified
functional explanation for seemingly disparate findings on
learning-related hippocampal neural activity.

An example of a sustained changing cell that signals learning
with decreased firing rate is not available in Wirth et al. (2003).
On the other hand, an example of a baseline-sustained changing
cell that initially responds with decreased activity, and returns to
the baseline level with learning is shown in different quartiles of
a learning session in Figure 3B of Wirth et al. (2003). The activ-
ity of this cell also seems to exhibit the pattern of back propagat-
ing activity profile at the border of the scene and the delay peri-
ods of the task, although other aspects of its activity, such as the
buildup and the decay of activity within the trial, are not readily
explained by the present model. Also, it is not known whether
the changing cells are pyramidal neurons or interneurons (Wirth
et al., 2003). Identifying the cell type of the changing cells and
the hippocampal substructures where different changing cell
types are recorded from may shed more light into the functional
role played by these cells during reinforcement learning. These
issues may be addressed in future studies.

Significance of the reward inversion mechanism

The goodness-of-fit of the TD algorithm was significantly
better when the algorithm received positive reinforcement at
incorrect trials (Fig. 2A) or no reinforcement at correct trials
(Fig. 2B) in fitting the activity of different changing cells. As a
result of reward inversion, the activity of the model neurons
changes before the model starts making correct responses. This
may explain the significant trend of change that is observed in
the firing rate of real changing cells before the subject starts
making correct responses (Figs. 2 and 4), which suggests that
information about the correct location-scene association starts
being represented in the activity of these cells before it is
detected in the monkey’s behavior. It is proposed here that the
changing cells may be receiving inverted reward signals if the
reward signal is gated by competitive interactions among the
cells such that the winners of the competition receive the actual
reinforcement signal, whereas the losers receive an inverted rein-
forcement signal. For the reward inversion mechanism to be
implemented in the brain, the activity of some neurons must
correlate with the absence of reward. Neurons that show stronger
task-related change in activity in unrewarded rather than
rewarded trials have been observed in the dorsolateral prefrontal
cortex, the orbitofrontal cortex, the striatum, and the pars reticu-
lata of substantia nigra (Schultz, 2004) and may participate in
the implementation of such a reward inversion mechanism.

Incorrect cells

Two types of incorrect cells were considered here. In one cat-
egory (e.g., neuron 2), the cells signal a high reward-predictive
value at the outset of a new session. In the other category (e.g.,
neurons 3 and 4), the cells do not signal a high reward-predic-
tive value initially. As a consequence of the competition and
the reward inversion mechanisms, the latter show an early

increase in activity, followed by a decrease to baseline levels
(Fig. 3L,P). These may therefore be referred to as transient
incorrect cells. Cells that show such transient changes in learn-
ing-related activity were found in the hippocampus during the
learning of a conditional spatial response task (transient cells,
Cahusac et al., 1993), and in the supplementary eye field dur-
ing the learning of conditional visuomotor associations
(learning-selective cells, Chen and Wise, 1995). The activity of
the transient cells was proposed to result from competitive
interactions among hippocampal neurons (Cahusac et al.,
1993).

The changing cells were identified on the basis of their sig-
nificant correlation with the behavioral learning curve (Wirth
et al., 2003). In the present results, the delay period activity of
the transient incorrect cells passed the correlation test 50% of
the time in 1,000 simulations. This relatively high rate of sig-
nificant correlation was obtained partly because the activity of
these cells did not fully return to the baseline activity level
within the number of trials considered here. Also, the signifi-
cance of their correlation with the behavioral learning curve
depends on the model parameters. Here, the parameters were
estimated using the firing rates of the cells shown in Figure 2.
These cells show a very high correlation with the learning curve
(0.96 and 0.83 as shown in Fig. 2A,C of Wirth et al., 2003).
But the large majority of the significant correlations exhibited
by the changing cells were smaller, as low as 0.1 (Fig. 2E of
Wirth et al., 2003). If the model parameters were estimated
from such changing cells, then the activity generated by the
transient incorrect cells might have been too weak to be
detected by the correlation test at any appreciable rate. These
factors may explain why changing cells that fit the description
of the transient incorrect cells were not reported by Wirth
et al. (2003).

Neural and Behavioral Change in the Model

Significant neural change occurs as early as the first trial in
the network considered here. This is because the weights of at
least one neuron always change after the first feedback signal is
received in the form of a reward or lack thereof. From this
point of view, the network’s neural change trial is the first trial
in the session. This situation is similar to the first synaptic
change expressed by some of the neurons that participate in
representing the association that is ultimately learned by the
subject.

The change point test (Siegel and Castellan, 1988) applied
on the raw and the adaptive filtering estimates of the firing rate
suggested that the neural change occurred significantly later
than the neural change trial defined here. This test assumes
that the firing rate observations at consecutive trials form an or-
dered sequence, and that, initially, the distribution of the rates
has one median, and, at some point there is a shift in the
median of the distribution (Siegel and Castellan, 1988). It is
important to note that this test reports the point where the
evidence of change is strongest, rather than the earliest point of
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significant change. Therefore, significant changes may occur at
trials earlier than the change trial reported by this method.

By contrast, the neural change trial defined here is the first
trial at which the firing rate significantly differs from the rate
at the first trial and remains so for the rest of the session. This
explains why the change trial detected by this method was sig-
nificantly earlier than the change trials detected by the applica-
tion of the change point test on the raw or the filtered firing
rates. This result suggests that the changing cells may have
changed their activity before the estimated neural change points
during the location-scene association task.

The behavioral learning trial of the network has been deter-
mined here using the distribution of the probability of making
a correct response given the ensemble spiking activity of the
model neurons. It was significantly later than the IO(0.95)
learning trial. The discrepancy between these results is largely
due to the differences between the definitions of the learning
trial in these methods. Although the present analysis identifies
the learning trial on the basis of the model’s probability of gen-
erating an ensemble activity pattern that results in an above-
chance probability of correct response with 95% confidence,
the IO(0.95) learning trial is an estimator of the first trial at
which the true probability of correct response exceeds the
chance level and remains above that level for the rest of the ses-
sion (see Appendix). As a result, the estimated probability of
correct response may be arbitrarily close to the chance level at
the IO(0.95) learning trial. For instance, it is 77% in Figures
2A,C of Wirth et al. (here Figs. 2A,B), and 39% in Figure 6C
of Smith et al., 2004 (not shown here), which are different
cases of the location-scene association task, where the chance
level is 25%. This suggests that, in typical learning data, the
IO(0.95) learning trial may be earlier than the learning trial
determined using learning criteria that require a high probabil-
ity of correct response, such as 90% correct, before accepting
the occurrence of learning. These observations suggest that the
learning trial could be defined in terms of a high percent cor-
rect criterion, such as 90% correct, that is the same for all cases
of a given task. The insight provided by the network model
suggests that, at such a learning trial, the neural activity under-
lying the decision making process may give rise to an above-
chance correct response probability with high confidence, as in
Figure 6B (see Appendix).

These observations may guide the inference of when neural
activity changes relative to behavior during learning. In Figures
2A and 2B, the neural activity exhibits a significant trend of
change before the estimated learning trial, at trials where the
subject makes incorrect responses, suggesting that information
about the correct location-scene association is being expressed
in the neural activity before the behavior changes. However,
the estimated neural change trial (26 in A, 19 in B) occurs
after the IO(0.95) learning trial (25 in A, 9 in B) in both of
these figures. As explained above, the neural change trial esti-
mation method that was used to obtain these estimates reports
the trial where evidence of neural change is strongest, which
may be several trials after the earliest trial of significant change.
Also, these neural change trials were obtained using the adapt-

ive filtering estimate of the firing rate, which yielded signifi-
cantly late neural change trials when compared with those
obtained from raw firing rate estimates in simulations. These
observations suggest that the change in hippocampal neural ac-
tivity leads behavior during the learning of the location-scene
association task.

Although the network model generates its behavioral
responses as a function of the firing rates of the neurons, this is
not proposed to suggest that hippocampal neurons drive the
motor behavior of a subject. Rather, the results suggest that the
activity of certain hippocampal neurons may contain sufficient
information about the reward-predictive value of different sets
of task-relevant signals. The timing of this information suggests
that it may be used for action selection. In this sense, such hip-
pocampal neurons may be involved in driving the behavioral
learning. Other brain areas that show learning-related activity
correlated with reward predictive value may also play a role in
this process (Liu and Richmond, 2000; Schultz, 2000; Barra-
clough et al., 2004; Seymour et al., 2004; Tanaka et al., 2004;
Samejima et al., 2005; O’Doherty et al., 2006).

Relation to Reward-Related Activity in Rodent
and Primate Hippocampal Neurons

One of the leading theories of hippocampal function sug-
gests that the primary function of the hippocampal system is to
represent a cognitive map of space that serves spatial navigation
(O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel, 1978).
Hippocampal place cell ensembles encode position-related
information (Wilson and McNaughton, 1993; Brown et al.,
1998; Okatan et al., 2005), which may form the basis of a cog-
nitive map of space. They also encode correlates of nonspatial
information experienced by a subject in different episodes
within the same environment through changes in firing rate
while maintaining position specificity (rate remapping; Leutgeb
et al., 2005). Hippocampal place cells that change their firing
rate at the same spatial location in a way that suggests that
their activity is correlated with reward expectation (Hölscher
et al., 2003) may be viewed as examples of rate remapping
place cells. The present proposal that the activity of some hip-
pocampal neurons may contain information about the reward-
predictive value of task-relevant signals is compatible with the
notion of rate remapping. Given that nonspatial information
may be corepresented with position information in hippocam-
pal networks, the question arises as to how this information
may contribute to the function of the hippocampus. In particu-
lar, is reward-related information, such as the reward-predictive
value as defined within the temporal difference learning theory,
corepresented with position information within the hippocam-
pus, and if so, what does it contribute to hippocampal func-
tion? The results of some recent studies that found reward-
related activity in the hippocampus may be interpreted in light
of the present results to propose answers to these questions.

Several studies have recently provided evidence for activity
related to reward and reward location in rat hippocampal place
cells (Hölscher et al., 2003; Foster and Wilson, 2006; Lee
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et al., 2006; Ainge et al., 2007). Hölscher et al. (2003)
recorded single CA1 neurons while rats explored an 8-arm
maze and retrieved pellets at the end of each arm. They
reported that, of the 31 hippocampal place cells that they iden-
tified, 11 showed enhanced firing activity when the animal
entered a baited arm but did not fire when the arm was visited
again after the bait had been retrieved. In another experiment,
only four out of eight arms were baited. Of the 46 hippocam-
pal neurons that were identified, which included cells that did
or did not show place cell characteristics, all cells fired more in
baited arms than in nonbaited ones. In a reversal task in which
previously unbaited four arms were subsequently baited,
Hölscher et al. observed an increase in neural activity in the
newly baited arms. They interpreted these findings to suggest
that the reward-dependent activity of some place cells may rep-
resent reward expectation. In these experiments, reward was ei-
ther available or not on a maze arm. Further experiments that
explore the dependence of such activity on graded modulations
of expected reward may help determine whether the activity
represents a reward expectation or a reward-predictive value.

The proposal that the activity of some place cells may con-
tain information about reward-predictive value is compatible
with recent evidence suggesting that behavioral sequences are
replayed in hippocampal place cells in reverse order during
awake states (Foster and Wilson, 2006). Foster and Wilson
showed that place cells that are sequentially activated as a rat
runs back and forth on a linear track are reactivated in reverse
order during brief pause intervals immediately following each
lap while the rat consumed food reward from a food well. Fos-
ter and Wilson observed that this reverse replay of behavioral
sequences coincided with hippocampal ripples and suggested
that it might allow recently activated cells to be more strongly
associated with a fast onset, slowly decaying dopamine signal to
learn a representation of value as in TD learning models. They

suggested that ‘‘this may provide a value gradient that the ani-
mal could follow during subsequent-goal finding behavior.’’ In
this interpretation, the value gradient is represented over a pop-
ulation of cells such that the cells that are near the goal fire
more than those that are far from the goal (Fig. 8). In other
words, each cell learns the reward-predictive value of its place
field, which increases as place cells approach the goal location.
Foster and Wilson’s explanation bridges the temporal gap
between the activation of far place cells and the time when the
reward is received using a model that suggests that place cells
that are crossed during the trip toward the goal remain in a
subthreshold excited state such that when the hippocampal en-
semble is released from inhibition during ripples, the cells are
reactivated in the order of increasing distance from the goal,
allowing them to be paired with the slow decaying dopamine
signal. This explanation is compatible with a reward-gated
potentiation/depression of the recently-activated input streams
of the place cells, such that when the animal crosses their place
fields at a later time, the place cells may be driven through
modified synapses and may signal the updated reward-predic-
tive value. This interpretation may apply generally to hippo-
campal neurons, whether they are driven mainly by position
signals or other types of input. In this way, the reverse replay
phenomenon may represent the implementation of a general
learning rule in a polymodal memory space. Such a reward-
modulated synaptic update would result in the backward prop-
agation of reward-predictive value across a population of cells
with increasing distance from the goal location. If the reward-
predictive value were acquired according to a mechanism simi-
lar to the model proposed here, then a similar value gradient
would also be observed within the temporal spiking activity
patterns of individual cells, such that the activity would change
with learning first at the place field border nearest the goal
location, and then would propagate backward in time toward

FIGURE 8. Predicted neural activity profiles during value
learning. The graphs show the predicted time course of learning-
related activity of three hypothetical hippocampal CA1 pyramidal
neurons whose firing fields (FF), which may be temporal (episode
field, Pastalkova et al., 2008) or spatial (place field), are located at
different distances from the goal (G). The curves show the average
predicted activity in four quartiles of a session at trials where the

animal runs from the left to the right. The firing rates are assumed
to increase with learning, as in Figure 4. The activities establish a
value gradient that decays with increasing distance from the goal,
as suggested by Foster and Wilson (2006). The learning related
change in the activity of each cell may be isotropic within each fir-
ing field (A), or may start near the goal and propagate backward
in time (B) as predicted by the model proposed here.
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the distal end of the place field as learning progressed (Fig.
8B).

The place field plasticity observed by Ainge et al. (2007) in
a recent study is compatible with this time course. Ainge et al.
(2007) provided evidence that rat CA1 place cells encode
intended destination on a maze with multiple choice points.
During the learning of a new set of two randomly selected
rewarded destinations out of four endpoints on the maze, they
observed an interesting pattern of place field plasticity in cells
that changed their firing dynamically within a session. Most
(37/46) of these cells were silent at the beginning of a session
and then developed robust place fields after a number of trials.
The place fields of such cells started near a choice point or a
goal location, and appeared to expand backwards toward the
start box (Fig. 6A of Ainge et al., 2007). Backward field expan-
sion on linear tracks has been previously reported and inter-
preted to reflect Hebbian synaptic plasticity between sequen-
tially activated place cells (Mehta et al., 1997). However Ainge
et al. (2007) pointed out that it was not clear how this type of
mechanism could account for the goal sensitive activity they
observed, ‘‘because the goal encoding seemed to be in the form
of large differences of firing rate in the same location (i.e., rate
remapping) and not a shift in field locations between
trajectories.’’

Recent evidence suggests that different cell assembly sequen-
ces are internally generated in the hippocampal area CA1 and
these sequences predict the future choice of a rat in selecting
alternating trajectories on a maze (Pastalkova et al., 2008). This
suggests that different cell assemblies may have been activated
in the hippocampus during trips to different goals in the
experiment of Ainge et al. (2007). Then, the goal sensitive
backward expansion of the place fields might be explained as a
function of both a goal-dependent activation of cell assemblies,
and Hebbian synaptic plasticity between sequentially activated
place cells in that cell assembly. Alternatively, the co-occurrence
of goal-dependent rate remapping and the backward expansion
of place fields may be compared with the backward propaga-
tion of the reward-predictive value in the correct cells of the
present model. If the within-trial time during the delay period
in Figure 4 is viewed as the time spent during the trip from
the start box to the goal location, it would be seen that the
increased activity of a neuron that signals reward-predictive
value would first emerge near the goal location, and then
would propagate backwards toward the start box (backward
expansion), and this would occur only during trips to the cor-
rect goal location (goal-dependent rate remapping). The present
model suggests that such activity would be observed if these
cells signal the reward-predictive value of an input signal that is
available before the goal is reached. These may be goal-specific
input signals that are available to the animal during its trip to-
ward the goal. One such signal is the neural representation of
the goal itself (Montague et al., 2004).

If some hippocampal neurons are driven by the neural repre-
sentations of a subject’s goals, this could also explain the activ-
ity that emerges before and terminates at the choice points.
Such activity could be interpreted as the reward predictive value

of the representation of the rat’s planned action at that choice
point. The representation of such subgoals may be turned off
after the choice point is passed, turning off the drive to the
hippocampal neurons that may be representing the reward-pre-
dictive value of such subgoals, which would cause the associ-
ated place fields to terminate at the choice point. The notion
of a sequence of subgoals leading to a goal is reminiscent of
sequentially activated goal dependent cell assemblies found by
Pastalkova et al. (2008) in hippocampal area CA1. Given that
recently activated CA1 pyramidal neurons are reactivated at the
goal in reverse order in a way that may pair them with a fast
onset, slowly decaying dopamine signal to learn a representa-
tion of value (Foster and Wilson, 2006), it is conceivable that
reward-predictive value may be propagated backward in time
across cells that make up an assembly (Fig. 8).

In addition to the backward field expansion phenomenon,
Ainge et al. (2007) also observed place fields that translocated
from the goal location to the start location. Translocation of
place fields has also been observed in a T-maze alternation task,
although in the forward direction toward a goal location (Lee
et al., 2006). Such translocation never continued beyond the
goal location. Between consecutive laps of the T-maze alterna-
tion task, the processes of neural plasticity that underlie the for-
ward translocation of the place fields may occur during either
the theta state (Buzsaki, 2002) or during the ripple episodes
within the large irregular activity states (Foster et al., 1989), or
both (Lee et al., 2006). One of the explanations that Lee et al.
(2006) provided for the forward translocation of place fields
suggested that the activity of these cells might be influenced by
a value gradient that increases toward the goal location, consist-
ent with the findings of Foster and Wilson (2006). In combi-
nation with the present results, this explanation suggests that
hippocampal networks may form goal and context sensitive
representations that are rapidly shaped and modified during
learning, and that information about value gradients may
explain different aspects of learning-related hippocampal neural
activity.

Reward-place dependent activity in hippocampal neurons has
also been observed in primates (reward-place cells, Rolls and
Xiang, 2005). Rolls and Xiang recorded neural activity from
the hippocampus of a rhesus macaque performing a reward-
place association memory task in which the subject had to asso-
ciate different locations in an entire visual scene with different
rewards. Rolls and Xiang found that the activity level of some
neurons depended on both the part of a visual scene that was
viewed by the animal and the type of reward (more-preferred
or less-preferred) that was available when that part of the scene
was touched. Thus, Rolls and Xiang found evidence that the
activity of some hippocampal neurons represents reward associ-
ations of places viewed by the animal, and suggested that the
concept that the primate hippocampus is involved in object-
place event memory might be extended to remembering goals
available at different spatial locations.

In the experiments of Rolls and Xiang (2005), the subjects
fixated to the target visual areas in less than 150 ms, the neu-
rons in question had typical latencies of 200 ms (Fig. 3 of
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Rolls and Xiang, 2005), and the subject’s touch response la-
tency was typically between 500 and 1,000 ms. Thus, the neu-
rons were activated after the subject fixated on the target areas
and maintained fixation during the reach. This suggests that
the cells might be driven by the spatial view cells (Rolls, 1999;
Rolls and Xiang, 2005). Unlike the experiments of Rolls and
Xiang (2005), in Wirth et al. (2003), the subjects maintained
fixation throughout the scene and the delay periods before
making an eye movement response, which kept the spatial view
constant during these periods. Yet, the activity of the changing
cells was selective to location-scene pairs, where different target
locations subtended different viewing angles and presumably
would activate view cell populations other than those activated
while fixating. Unless certain view cells are activated by covert
attention processes when the subject is not overtly viewing the
associated ‘‘space out there,’’ the response of the changing cells
may not be assumed to be driven by input from the view cells
associated with the target locations. In other words, the chang-
ing cells may be functionally different from the reward-place
cells identified by Rolls and Xiang (2005). Because the chang-
ing cell response develops within the trial while the subject
maintains fixation, it is possible that it is driven by the repre-
sentation of the goal of making the impending eye movement
to a particular location. Neurons that signal the location of
such impending eye movements have been identified in the
dorsolateral prefrontal cortex in macaque monkeys performing
a delayed-response working memory task (Funahashi et al.,
1989) that shares similar event sequence and behavioral
demands as the location-scene association task, and they may
interact with hippocampal neurons through dual pathways con-
necting these structures (Goldman-Rakic et al., 1984, Gold-
man-Rakic, 1987).

Reward is arguably one of the most important aspects of an
agent’s episodic experience of what happens where and when.
Given its crucial role in encoding and recalling episodic memo-
ries (Eichenbaum et al., 1999; Eichenbaum and Fortin, 2005),
information about what contextual signals reliably predict
reward, and how much reward they predict, may be integrated
by the hippocampus to the representation of the agent’s
ongoing episodic experience (Rolls and Xiang, 2005). Such
reward-related information would be crucial to the formulation
of a declarative or explicit representation of task rules in rein-
forcement learning experiments. The hippocampus is crucial
for declarative memory in humans (Squire et al., 1993;
Schacter and Tulving, 1994), and is thought to mediate declar-
ative-like memory representations in animals (Eichenbaum,
1999). Recent evidence suggests that human patients with basal
ganglia lesions, including bilateral lesions to the striatum, may
rely on a hippocampus-based declarative learning strategy in
associative reward-based learning (Bellebaum et al., 2008). It is
possible that hippocampal neural activity that contains reward-
related information may constitute the reward-related aspects of
a declarative or explicit relational memory representation of
task contingencies. The present results make specific predictions
regarding the time course with which such reward-related hip-
pocampal neural signals would change with changing reward

schedules. These predictions may be tested in future experi-
ments in order to decisively determine the relationship between
hippocampal neural activity and reward-predictive value.

Model’s Predictions and Future Studies

Experimental studies

Interpreting the results of Hölscher et al. (2003), Rolls and
Xiang (2005), Ainge et al. (2007), and Pastalkova et al. (2008)
in view of the present results leads to predictions concerning
the time course of the learning-related change in the activity of
some of the hippocampal neurons identified in these studies.
After learning occurs and neural activity asymptotes during a
session in the experiments of Wirth et al. (2003), Ainge et al.
(2007), and Pastalkova et al. (2008), changing the amount of
the reward delivered to the subject in further trials may result
in a change in neural activity, as in the experiments of Hölscher
et al. (2003) and Rolls and Xiang (2005). The time course of
this change may follow the time course predicted by the V(t)
signal of the TD algorithm. More generally, analyzing the activ-
ity of the cells reported by Hölscher et al. (2003), Rolls and
Xiang (2005), Ainge et al. (2007), and Pastalkova et al. (2008)
during the act of learning may reveal that these cells exhibit the
characteristic backward spread of the V(t) signal from the time
of reward delivery toward the time of stimulus onset and that
this activity is modulated by the amount of reward that the
subject learns to expect. When analyzed in different learning
quartiles, such activity may exhibit the activity profile suggested
in Figure 8B.

Computational studies

Future studies that use the present framework to jointly
explain neural ensemble spiking activity and binary behavioral
responses may use likelihood-based model selection methods
(Burnham and Anderson, 2002) to further explore the mecha-
nisms by which learning-related ensemble neural spiking activ-
ity gives rise to adaptive decision making in biological nervous
systems.

Alternative competitive learning models that explain the
present data may be explored in future studies. Importantly,
competitive learning by itself does not explain how neural ac-
tivity in a reinforcement-learning system would change before
the system’s behavior changes. The present article identifies this
as a computational problem and proposes the reward-inversion
mechanism as a plausible solution, which may be further
explored in future modeling studies.

Future studies may generalize the present framework by
replacing each model cell by populations, and by modeling the
interactions among all neurons using point process network
likelihood models (Okatan et al., 2005; see Appendix). The
link between neural activity and behavior may also be formu-
lated to allow action selection to be performed by ensembles,
using rules such as the softmax action selection (Sutton and
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Barto, 1998), or simple extensions of Eq. (8) within the GLM
framework such as

pXwk ¼
exp

P
i
sXwi

k s�1
i � u

� �

1 þ exp
P
i
sXwi

k s�1
i � u

� � ; ð9Þ

where w now represents a neural ensemble of winner neurons
that may be defined according to a criterion.

Neurobiological Models

Algorithmically, V(t) acts as a memory of the expected future
reward, which is acquired through learning. Its temporal differ-
ence is used to compute the TD error signal d(t). Neurobiolog-
ical models of the TD algorithm propose that d(t) corresponds
to the output of the midbrain dopamine neurons, which may
receive the temporal difference of V(t) through a circuit involv-
ing the limbic striatum (Houk et al., 1995; Schultz, 1998; Yin
and Knowlton, 2006). The limbic striatum in turn receives
inputs from a variety of areas, including the limbic cortex and
the hippocampus (Kunishio et al., 1996; Friedman et al., 2002;
Jung and Hong, 2003). The activity of the striatal neurons is
influenced by reward several seconds before its occurrence, sug-
gesting that they receive information regarding an upcoming
reward from a predictive memory signal (Apicella et al., 1992).
The activity of these neurons was modeled in a previous study
using V(t) (Suri and Schultz, 2001). The present results are
compatible with the possibility that some hippocampal neurons
may be involved in the representation of the predictive memory
signal that is thought to drive the striatal neurons.

Sutton and Barto, the pioneers of the TD learning algo-
rithm, indicate that ‘‘almost all reinforcement learning algo-
rithms are based on estimating value functions—functions of
states (or of state-action pairs) that estimate how good it is for
the agent to be in a given state (or how good it is to perform a
given action in a given state)’’ (Sutton and Barto, 1998,
[p.68]). The activity of the changing cells exhibits key charac-
teristics of a predictive value function that estimates how
rewarding it will be for the animal to choose a particular loca-
tion given a particular scene (Figs. 2 and 4). Because the activ-
ity of each changing cell seems to be specific to a single loca-
tion-scene pair (Wirth et al., 2003), information about the
value function associated with the overall task may be repre-
sented across a network of these cells. Future experiments that
probe the relation between hippocampal neural activity and
reward predictive value in view of the present findings may fur-
ther explore such representations.
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APPENDIX: THE JOINT PROBABILITY
DENSITY MODEL

Let DXy denote a neuron that is assumed to represent the cell
CXy of the model, and let Nq

Xy(t) be the sample path of the
counting process associated with the spike train of neuron DXy,
observed during the time interval [0,T] at interleaved trial q.
The sample path is a right continuous function that jumps one
at the spike times and is constant otherwise (Snyder and Miller,
1991). In this way, Nq

Xy(t) counts the number and location of
the spikes of neuron DXy at trial q. Let Zq [ {A,B,C,D} denote
the scene that is presented at trial q, zq [ {a,b,c,d} denote the
associated correct location, and nq denote the outcome of the
subject’s response at that trial, such that nq is 1 if the response
is correct and 0 if it is incorrect. Then the joint probability
density of the spikes fired by the neuron DZqy at trial q is
(Daley and Vere-Jones, 2003)
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where, N1:q21
Zq is the activity history of the four Zq-responsive

neurons during the time interval [0,T] at interleaved trials 1 to
q 2 1, and kq

Zqy (t|V̂q
Zqy(t)) is given by Eq. (6). The value

function V̂q
Zqy (t) is computed iteratively, using Eqs. (2)–(4),

from the initial weights and the data available at trials 1 to
q 2 1.

The probability pq of making a correct response at trial q is
computed by the model using Eqs. (7) and (8). In Eq. (7), the
variable y is set to zq. In Eq. (8), the spike count sq

Zqw is Nq
Zqw

(tf ) 2 Nq
Zqw(ti), where the index w of the winner neuron is

w ¼ arg max
u2fa;b;c;dg

N
Zqu
q ðtf Þ �N

Zqu
q ðtiÞ

� �
, and [ti, tf ] is a task pe-

riod. Then, the probability mass function of nq is

p nq
��NZq

1:q; n1:q�1;Z1:q; z1:q

� �
¼ p

nq
q 1 � pq
� �1�nq : ðA2Þ

Assuming that the neurons activated by the scene zq are con-
ditionally independent in the interval [0,T] given the neural
and behavioral data at trials 1 to q 2 1, the joint probability
density of the spiking activity of all neurons and the behavioral
responses at all trials across the entire session is

p N ; n
��Z ; z� �

¼
YQ
q¼1

p nq
��NZq

1:q; n1:q�1;Z1:q; z1:q

� �

3
Y

y2fa;b;c;dg
p NZqy

q

��NZq

1:q�1; n1:q�1;Z1:q�1; z1:q�1

� �
; ðA3Þ

where, Q is the total number of interleaved trials, Z is the vec-
tor of all presented scenes, and z is the vector of associated cor-
rect locations. Viewed as a function of the model parameters
given the data, Eq. (A3) is the likelihood function of the mod-
el’s parameter vector. Thus, the maximum likelihood estimate
of the parameter vector can be computed by maximizing Eq.
(A3) with respect to the parameters.

In Eq. (A3), the competition between the neurons may be
implemented through lateral inhibition using a history-de-
pendent conditional intensity function for each neuron, such
that the spiking activity of each neuron depends on the
recent activity history of itself and of its competitors
(Chornoboy et al., 1988; Okatan et al., 2005). The joint
probability density of neural and behavioral data under this
implementation is again given by Eq. (A3), in which the
joint probability density of the spikes fired by the neuron
DZqy at trial q is
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p N
Zqy
q N

Zq

1:q�1; n1:q�1;Z1:q�1; z1:q�1

���� �
¼

exp

ZT
0

log kZqy
q t V̂

Zqy
q ðtÞ;HZq

t

���� �� �
dN

Zqy
q ðtÞ

0
@

�kZqy
q t V̂

Zqy
q ðtÞ;HZq

t

���� �
dt

!
; ðA4Þ

where Ht
Zq is the ensemble spiking history of the zq-responsive

neurons in the interval [t 2 W, t) with W specifying how far
the history dependence extends into the past (Okatan et al.,
2005).

The Dynamic Range of the Weights and the
Value Function in the Learning Task

In the learning task considered here the reward is all or none
(1 or 0) and is only available at the end of the trial. The weights
and the value function vary between 0 and 1 under these condi-
tions if a, g, and the initial weights are between 0 and 1.

Proof

The inputs to the simulated changing cells are a series of
time-delayed pulses (Montague et al., 1996; Schultz et al.,
1997; Suri and Schultz, 2001; O’Doherty et al., 2003).

xikðtÞ ¼
1; i ¼ t
0; otherwise:

�
ðA5Þ

The reward satisfies rk(t) [ {0,1} for all k and t. From Eqs.
(2) and (A5), V̂k(t) 5 wk

t, and from Eqs. (3) and (4)

wt
kþ1 ¼ wt

k þ a rkðtÞ þ gwtþ1
k � wt

k

� �
: ðA6Þ

After the model receives feedback (reward, or lack thereof )
at time T, the predicted value is zero at t 5 T 1 1, that is,
wk

T11 5 0 for all k. For t 5 T, denoting wk
T by y[k] and

rk(T) by z[k], Eq. (A6) gives

FIGURE 9. The IO(0.95) learning trial. (A) The probability of
correct response as a function of trial number for a hypothetical
learning system. Dashed line: chance level (0.25). The probability
of correct response is greater than chance at all trials. The
IO(0.95) learning trial is an estimator of the first trial at which
the probability of correct response exceeds the chance level, which
occurs here at trial 1 (arrow). (B, C) The state-space model of
learning (Wirth et al., 2003; Smith et al., 2004) is used to com-
pute the IO(0.95) learning trial using behavioral data generated in
M 5 1 (B) or M 5 100 (C) independent simulated learning ses-

sions using the learning curve in (A). Red curves: the proportion
of correct responses at each trial. Solid black line: the learning
curve estimated using the state-space model. Dashed lines: the
90% confidence interval of this estimate. The IO(0.95) learning
trial is indicated by the arrow. (D) The plot shows the mean (solid
line) and the 95% confidence interval (dashed lines) of the
IO(0.95) learning trial as a function of the number of sessions, M.
The confidence interval is constructed using 100 independent esti-
mates of the IO(0.95) learning trial at each M.
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y½k þ 1� ¼ y½k�ð1 � aÞ þ az½k�: ðA7Þ

With 0 � wl
T 5 y[1] � 1, and 0 � a � 1, for k > 1 Eq.

(A7) yields

y½k� ¼ y½1�ð1 � aÞk�1 þ
Xk�2

i¼0

az½k � 1 � i�ð1 � aÞi

� ð1 � aÞk�1 þ
Xk�2

i¼0

að1 � aÞi; ðA8Þ

implying that 0 � wk
T 5 y[k] � (1 2 a)k21 1 1 2 (1 2

a)k21 5 1 for all k.
For t < T, rk(t) 5 0 for all k. For t 5 T 2 1, denoting wk

t

by y[k], gwk
t11 by z[k], and with 0 � wl

t 5 y [1] � 1, and 0
� g � 1, Eq. (A6) turns into Eq. (A7), which again yields Eq.
(A8), implying that 0 � wk

T21 5 y[k] � 1 for all k. The in-
equality 0 � wk

t � 1 is proven by induction for all t and k.

The IO(0.95) Learning Trial

The IO(0.95) learning trial is an estimator of the first trial
at which the true learning curve exceeds the chance level and
remains above that level for the rest of the session. To show
this, simulated binary response data are generated for K 5 50
trials in a variable number M of independent sessions using a
known p that is related to the trial number k according to

pk ¼ p0 þ
pf � p0

1 þ exp �gðk � dÞð Þ ; ðA9Þ

with p0 5 0.25, pf 5 1, d 5 25, g 5 0.2 (Fig. 9A). This pro-
cedure generates behavioral responses nm,k, where 1 � m � M
is the session number. The curve in Figure 9A is one of the
curves used by Smith et al. (2004) to compare the performance
of different methods in estimating the learning trial. According
to these parameters, the chance level is p0 5 0.25, or 25%
correct.

Figure 9 shows the system’s learning curve estimated using
the state-space model of learning for M 5 1 (panel B) and M
5 100 (panel C). The IO(0.95) learning trial is the first trial
at which the lower bound of the 95% confidence interval of
the estimated learning curve exceeds the chance level and
remains above that level for the rest of the session. Note that
the confidence interval is narrower for M 5 100, and, as a
result, the IO(0.95) learning trial occurs earlier in the trial for
M 5 100 (trial 14) vs. M 5 1 (trial 23).

Figure 9D shows this trend for a range of M between 1 and
1,000. The IO(0.95) learning trial decreases as M increases,
indicating that learning is accepted to occur at progressively
earlier trials as more information is accumulated about the per-
formance of the system. In theory, this decrease continues until
the IO(0.95) learning trial reaches trial 1 in this example,
because, according to Eq. (A9), the true probability of correct
response is 0.2561 at trial 1, which is above the chance level of
0.25 (Fig. 9A).

Learning trial based on the estimated
learning curve

Most studies use a high percentage of correct performance,
such as 80–90% throughout a session, or in a moving block of
10–20 trials, as a learning criterion (Eichenbaum et al., 1986;
Sappington and Goldman, 1994; Gheusi et al., 1997; Knepper
and Kurylo, 1998; Chapman et al., 1999; Schoenbaum et al.,
1999; Bellebaum et al., 2008; Cacucci et al., 2008). This
approach may also be used with the state-space model of learn-
ing, in analyses where this model may be used to estimate the
learning curve. For instance, the learning trial may be defined
as the first trial at which the estimated learning curve exceeds
the 95% level and stays above this level for the rest of the ses-
sion (e.g., trial 35 in Fig. 6C). Indeed, the true probability of
correct response of the network was 0.94 6 0.0023 (mean 6

s.e.m.) at this learning trial in 953 simulated learning sessions,
suggesting that this learning trial may be used in practice.
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