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Continuous electronic fetal monitoring and the access to databases of fetal heart rate
(FHR) data have sparked the application of machine learning classifiers to identify fetal
pathologies. However, most fetal heart rate data are acquired using Doppler ultrasound
(DUS). DUS signals use autocorrelation (AC) to estimate the average heartbeat period
within a window. In consequence, DUS FHR signals loses high frequency information to an
extent that depends on the length of the AC window. We examined the effect of this on the
estimation bias and discriminability of frequency domain features: low frequency power
(LF: 0.03–0.15 Hz), movement frequency power (MF: 0.15–0.5 Hz), high frequency power
(HF: 0.5–1 Hz), the LF/(MF + HF) ratio, and the nonlinear approximate entropy (ApEn) as a
function of AC window length and signal to noise ratio. We found that the average
discriminability loss across all evaluated AC window lengths and SNRs was 10.99% for LF
14.23% for MF, 13.33% for the HF, 10.39% for the LF/(MF + HF) ratio, and 24.17% for
ApEn. This indicates that the frequency domain features are more robust to the ACmethod
and additive noise than the ApEn. This is likely because additive noise increases the
irregularity of the signals, which results in an overestimation of ApEn. In conclusion, our
study found that the LF features are the most robust to the effects of the AC method and
noise. Future studies should investigate the effect of other variables such as signal drop,
gestational age, and the length of the analysis window on the estimation of fHRV features
and their discriminability.

Keywords: fetal heart rate, cardiotocography, autocorrelation, Doppler ultrasound, classification, fetal heart rate
variability

INTRODUCTION

Continuous electronic fetal monitoring (EFM) is a standard of care during the antepartum and
intrapartum periods (American College of Obstetricians and Gynecologists, 2014). EFM involves
measuring two signals: fetal heart rate (FHR) and uterine pressure (UP). These two signals make up
what is known as cardiotocography (CTG). Non-invasive Doppler ultrasound (DUS) is the preferred
FHR acquisition method in clinical settings (Kupka et al., 2020). Uterine pressure is commonly
acquired using external sensors that measure the tension in the maternal abdominal wall (Smyth,
1957). There are other acquisition methods: fetal scalp electrocardiography (ECG) for FHR; and
intrauterine probes for uterine pressure (Ayres-De-Campos and Nogueira-Reis, 2016). However,
these methods are invasive and are typically used only when external monitoring is not possible.

During the antepartum period, FHR monitoring has been shown to provide information about
fetal reactivity (Romano et al., 2006) and abnormalities such as intrauterine growth restriction
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(Signorini et al., 2003; Signorini et al., 2020). During labour, the
fetus is exposed to repeated periods of hypoxia during uterine
contractions (McNamara and Johnson, 1995). If severe enough,
sustained hypoxia can lead to metabolic acidosis and hypoxic-
ischemic encephalopathy (HIE). Clinicians assess the risk of
acidosis and HIE by visually monitoring the EFM for
characteristic FHR patterns such as the baseline, accelerations,
and decelerations (American College of Obstetricians and
Gynecologists, 2014; Lear et al., 2018). Nevertheless, visual
assessment of FHR tracings has low specificity and sensitivity
as well as high intra- and inter-observer variability (Farquhar
et al., 2020). The application of computerized analysis to quantify
FHR signals has been proposed to reduce intra- and inter-
observer variability (Keith and Greene, 1994). However, recent
studies show that automating the analysis of classical FHR
patterns does not yield a significant improvement in the
detection of acidosis or HIE (Elliott et al., 2010; Clark et al.,
2017; Campanile et al., 2018).

It is thought that the development of new FHR indices
reflecting the physiological phenomena of acidosis and HIE
could improve the ability to identify fetuses at risk (Hamilton
and Warrick, 2013). In this context, fetal heart rate variability
(fHRV) shows promise to be an important marker of fetal status
(Signorini et al., 2003). Heart rate variability (HRV) quantifies
variations in the length of the RR interval in successive heartbeats
and has been widely used in adults (Acharya et al., 2006). Most
HRV analysis algorithms are based on RR intervals derived from
ECG signals (Ramshur 2010). However, it is difficult to use these
methods for fetal monitoring since DUS measures of FHR do not
provide the RR intervals. For this reason, clinical use of fHRV is
generally limited to the visual analysis of FHR variations around
its baseline.

The DUS transducer emits an ultrasound wave towards the
fetal heart. The movement of the fetal heart changes the
frequency of the reflected wave due to the Doppler effect
(Hamelmann et al., 2020). As a result, both the amplitude and
phase of the reflected wave are modulated and consequently its
envelope varies with a frequency related to FHR (Hamelmann
et al., 2020). FHR is then estimated from the autocorrelation (AC)
of the DUS signal envelope computed over a window several
seconds long. The AC, which measures the similarity of the signal
to itself across time, will have a maximum at a lag equal to the
average RR interval (Kupka et al., 2020). FHR is estimated as the
inverse of this average RR interval. Fetal monitors use sliding
windows to estimate FHR at a uniform sampling rate.

As a result of the averaging associated with computing the AC
method, estimates of fHRV features derived from DUS (FHRDUS)
will differ from those estimated from RR intervals (FHRRRI).
Thus, estimates of power spectral density (PSD) features
computed from uniformly sampled HR have been shown to
overestimate the low frequency power and underestimate the
high frequency power compared to those computed from non-
uniformly sampled RR intervals (Clifford and Tarassenko, 2005).
Thus, FHRDUS estimates are smoother and have less high
frequency (HF) power. Attempts to reconstruct FHRRRI from
FHRDUS have not been able to recover the short-term variability
features associated with HF fHRV (Cesarelli et al., 2007; Kupka

et al., 2020). The errors in fHRV estimates computed for FHRDUS

will depend on the AC window length. Longer windows yield
more averaging and thus underestimate HF power.
Unfortunately, manufacturers of CTG monitors do not
disclose the details of their AC algorithms, making it difficult
to compare the estimation errors of different monitors.

More sophisticated methods have been proposed to improve
the estimation of FHRDUS (Alnuaimi et al., 2017). Peters et al.
(2004) used a low-pass filter to roughly estimate the location of
the cardiac cycles and defined an AC window that contained only
two heart cycles, improving the estimation of spectral features.
Similarly, Jezewski et al. (2011) proposed an algorithm which
varied AC window length according to an adaptive estimate of
beat-to-beat intervals. Valderrama et al. (2019) developed an
open-source AC method that optimizes the peak search
parameters using Bayesian optimization. Another approach by
Katebi et al. (2020) applied unsupervised hidden semi-Markov
models to segment the DUS signal for FHR estimation. This
approach was able to recover HF features that were very close to
those of fECG (Katebi et al., 2020). Despite their improvements,
none of these sophisticated methods have yet been applied in
bedside monitors (Jezewski et al., 2017).

The availability of large cohorts of perinatal EFM recordings
has motivated the development of machine learning (ML)
classifiers to improve the early detection of fetal distress and
reduce the risk of further injury (Georgieva et al., 2017;
Petrozziello et al., 2019). Thus, fHRV features from FHRDUS

have been used to identify fetuses with fetal abnormalities
using ML and deep learning (DL) (Georgieva et al., 2017;
Petrozziello et al., 2019; Signorini et al., 2020). Nevertheless,
the discriminability of these algorithms will be adversely
affected by errors in the estimation of fHRV features. Durosier
et al. (2014) found that the root mean square of the successive
differences (RMSSD) of FHR estimated from FHRDUS had worse
discriminability than when estimated from FHRRRI . Similarly, it
has been suggested that HF FHRDUS features are less
discriminative than from FHRRRI (De Jonckheere et al., 2019).
The decreased discriminability of fHRV features, along with the
undisclosed differences in commercial FHRDUS estimation
algorithms, will likely affect the performance of ML classifiers.

This paper analyzes the influence of the AC window length
and noise on the estimation and discriminability of some
important linear and non-linear fHRV features. These features
considered have all been proposed previously for the detection of
fetal distress (Signorini et al., 2003). Despite the development of
the new sophisticated AC algorithms, we focus on the classical
AC method which is the basis of current monitors. The rationale
behind this is the desire understand the properties of fHRV
computed from EFM data acquired at bedside with current
monitors. Thus, our objectives are twofold: 1) To determine
how fHRV features computed from FHRDUS differ from those
computed from FHRRRI ; and 2) To evaluate how these differences
influence the ability to classify signals with different fHRV
properties. To do so, we explored how different AC window
lengths and noise levels affect the estimation of linear PSD
features and the nonlinear feature approximate entropy
(ApEn). Our results showed that the low frequency power
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(LF) is least affected by the AC and noise, while ApEn is affected
the most. Furthermore, we examined how the discriminability of
each feature varied with ACwindow length and noise and showed
that LF was the most stable feature.

MATERIALS AND METHODS

This section describes the methods used for:

1) Simulating RR intervals and associated DUS signals with PSD
and ApEn properties similar to those of normal and acidotic
fetuses.

2) Estimating PSD and ApEn features.
3) Evaluating differences between fHRV features estimated from

FHRDUS and FHRRRI .
4) Evaluating the discriminability of different simulated fHRV

features when applied to normal and acidotic signals.

PhysioNet Fetal ECG Database
We used 80 FHRRRI tracings to validate our simulated RR intervals.
These signals were acquired from two databases that included fetal
ECG signals and reference annotations indicating the location of the
QRS complexes. These annotations were provided by a mixture of
experts, volunteers, and specialized algorithms. The first database
was acquired by Jezewski et al. and published in PhysioNet
(Goldberger et al., 2000; Jezewski et al., 2012). This database

contains abdominal and direct fetal ECG records from five term
fetuses (gestational ages 38–41 weeks), for 5minutes each. The
second database comprises 75 annotated fetal ECG recordings,
each 1minute long, utilized in the PhysioNet Computing in
Cardiology Challenge 2013 (Goldberger et al., 2000; Silva et al.,
2013). This database does not indicate the gestational age of the
subjects, although the annotations were usually done using
simultaneously acquired direct fECG signals. The application of
direct fECG is only possible during labor after the rupture of the
membranes. The databases do not indicate whether any the fetuses
presented any pathological condition. Given the high incidence of
normal fetuses, it is likely that the signals were acquired from normal
fetuses. The databases also include the location of each R-wave. We
used these locations to estimate RR intervals and extracted fHRV
features from the RR intervals. We used these fHRV features to
validate that our simulations were representative of real data.

Simulation of FHRRRI and FHRDUS
Figure 1 outlines the process for simulating RR intervals, DUS
signals, and uniformly sampled FHR. We first generated a
sequence of random RR intervals with spectral features for
normal or acidosis fetuses similar to those reported by
Gonçalves et al., 2013. The 95% confidence intervals (CI) of
the power in the low frequency, movement frequency, and high
frequency bands reported by Gonçalves et al. are reported in
Table 1. Afterwards, we generated the DUS envelope signals
corresponding to the simulated RR intervals with added noise.
Finally, we applied the AC method with a sliding window to
generate uniformly sampled FHRDUS.

RR Interval Simulation
We simulated realizations of RR interval sequences, with
controlled fHRV PSD structure and nonlinear complexity, as
follows:

PSD
We first generated a continuous FHR signal, sampled at 4 Hz,
with the desired fHRV spectrum. To do so, we filtered the same
white Gaussian noise with three bandpass filters, corresponding
to the three bands of interest for fHRV [from (Signorini et al.,
2003)]: Low frequency (LF) 0.03–0.15 Hz; Movement frequency
(MF) 0.15–0.5 Hz; and High frequency (HF) 0.5–1 Hz band. The
three filter outputs were summed in different proportions to
generate a signal whose spectrum matched the fHRV spectra
reported by Gonçalves et al. (2013).

We then generated a continuous RR interval signal, RRC(t), from
this FHR as RR � 60

FHR, and upsampled it to 1 kHz using spline
interpolation. However, the RR sequence is actually a point process
in which the only information of interest is the time of occurrence of
an event. Consequently, we transformed the continuous RRC(t)
signal into a point process, RRPP[i ], using the method of Clifford
and Tarassenko (2005) which proceeds as follows:

1) Sample RRC(t) at time t1. Its amplitude, RRC(t1), determines
the length of the first RR interval. Thus, RRPP[1 ] � RRC(t1).
Find the value RRC(t2), where t2 ≥RRC(t1) + t1. Then,
RRPP[2 ] � RRC(t2).

FIGURE 1 | Diagram of the simulation of FHRRRI and FHRDUS signals.
The PSD and ApEn distributions reported by Gonçalves et al. (2013) are used
to generate random simulations of FHRRRI with similar fHRV. Then, we
simulate DUS signals that correspond to the FHRRRI and we add noise.
Finally, we use the AC to estimate the FHRDUS.
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2) Repeat for the length of RRC(t). At each point RRPP[i ] �
RRC(ti) such that ti ≥RRC(ti−1) + ti−1.

The resulting RRPP[i ] sequence was fitted to an Autoregressive
(AR) model using the Yule-Walker method (“aryule” in the Matlab
Signal Processing Toolbox). Multiple RR interval sequences were
then generated by filtering independent realizations of white
Gaussian noise with this AR model.

Approximate Entropy
ApEn is a measure of signal complexity, and thus random signals
will have higher ApEn compared to periodic signals. To control
the ApEn of our simulated RR intervals we modified the MIX
process of Ferrario et al. (2006). The original MIX process
switches randomly between a periodic signal and a uniformly
distributed random signal and so does not permit the control of
the realization’s PSD. To do so, we modified the MIX process to
switch randomly between

1) A random sequence RRr[i ], with the desired PSD, generated
by filtering white noise with the RR AR model.

2) A semi-periodic signal RRsp[i ] generated by concatenating
segments of signal RRr2[i ] with the desired PSD. Each
segment has the same length l ≥ 33 s and a randomly
selected initial point i1 ≤ lpOf , where Of is the overlap
factor. This will generate sequences with a limited number
of patterns. Varying the overlap makes it possible to generate
signals with different values of ApEn but the same PSD.

The MIX process switching is controlled by a binary random
variable x, that will have a value of one with probability p, and
zero otherwise. Varying pwill change ApEn without changing the
PSD. The iith RR interval is generated by the MIX process as:

RRMIX[i] � x[i]pRRsp[i] + (1 − x[i])pRRr[i]

DUS Envelope Simulation
Each RR interval sequence was transformed into a corresponding
DUS envelope signal, sampled at 1 kHz, as follows:

1) A template DUS envelope cycle DUSt was selected randomly
from 15 available periods of the DUS signal envelope shown in
Hamelmann et al. (2020).

2) For each RR interval, the selected DUSt was stretched or
contracted to a length equal to RRMIX[i ] to give DUS(t, i).

3) Consecutive DUS(t, i) were concatenated to generate the
DUS(t) signal.

4) A random additive noise signal, n(t), with a uniform distribution
and a LF PSD was generated using an algorithm proposed by
Nichols et al. (2010).We limited the power of the noise to 7.7 Hz,
the same band of the envelope of the DUS(t) signal.

5) The amplitude of n(t) was varied along each realization to
control the signal-to-noise ratio (SNR).

6) Finally, we generated DUS’(t) � DUS(t) + n(t).

Figure 2A shows a segment of a simulated DUS’(t) using the RR
intervals froma subject in the PhysioNetDatabase and a SNRof 20 dB.
Separate bursts of activity corresponding to cardiac cycles are apparent.

The AC Method
FHR was estimated from the DUS signal by computing its
autocorrelation function (AC). The autocorrelation function of a
periodic signal is also periodic with the same period. Consequently,
the first non-zero maxima in the AC function will reflect the average
RR interval. Figure 2B shows the AC coefficient function of the DUS
signal in Figure 2A, estimated from a 4s window. The first non-zero-
lag peak occurs at ∼0.5 s indicating an FHR � 120 bpm. Sliding the
AC window across the signal with steps of 0.25 s will generate an
FHR signal sampled at 4 Hz. The blue curve in Figure 2C shows the
FHRDUS computed in this way from the signal in Figure 2A. (Note
that Figure 2C covers a longer time span than Figure 2A). The black
stars show the FHRRRI computed from the original RR intervals for
comparison purposes. The AC estimates follow the trend of the
FHRRRI but deviate around this trend due to the additive noise.

fHRV Differences Between FHRRRI
and FHRDUS
Figure 3 shows the procedure used to compare the fHRV
estimates from the RR intervals and DUS FHR.

TABLE 1 | 95%Confidence intervals (CI) for the fHRV estimates reported by Gonçalves et al., 95%CI of the simulated RR intervals fHRV, and the difference of the limits of the
95% CI between the Normal and Acidosis distributions.

Normal Acidosis Difference

Gonçalves Simulated Gonçalves Simulated Gonçalves Simulated

95% CI 95% CI 95% CI 95% CI

LF 19.3 52.78 26.39 129.41 7.09 76.63
77.21 86.52 264 231.13 186.79 144.61

MF 2.79 2.87 3.36 22.67 0.57 19.8
13.60 18.96 54.77 110.20 41.17 91.24

HF 0.89 1.63 0.91 10.03 0.02 8.4
2.25 21.3 8.09 23.35 5.84 2.05

LF/(MF + HF) 4.06 1.80 4.19 1.56 0.13 −0.24
5.06 9.60 6.19 5.63 1.13 −3.97

ApEn 0.35 0.42 0.25 0.58 −0.1 0.16
0.52 0.69 0.76 0.79 0.24 0.10
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1) RRMIX[i ] sequences were generated with fHRV distributions
similar to those reported by Gonçalves et al. for normal and
acidotic fetuses.

2) These RRMIX[i ] sequences were then used to generate
corresponding FHRDUS signals and FHRRRI � 60

RRMIX
.

3) fHRV estimates were obtained from FHRDUS and FHRRRI .
4) The estimates were compared as a function of AC window

length and SNR.

We simulated 1,000 Monte Carlo (MC) FHRRRI signals having
normal and acidotic properties. This yielded a total of

2,000 FHRRRI . For each realization of FHRRRI we generated
DUS’(t) signals with 21 SNR values (ranging from −10 to
30 dB in 2 dB steps). These signals were then transformed into
FHRDUS, as described above, using 17 AC window lengths
(ranging from 1 to 5 in 0.25 s steps). This resulted in
714,000 FHRDUS signals.

FHR Preprocessing
The FHRDUS signals were preprocessed before estimating fHRV
features. In some cycles, the additive noise in the DUS signal
prevented the peak-finding algorithm from finding the peak that
corresponded to the average FHR. To reduce the effect of these
outliers, we estimated the moving median of FHRDUS over a 5s
window. Estimates that deviated more than 40 bpm from the
moving median were removed and replaced by linear
interpolation of the adjacent samples. Finally, we limited the
estimated FHRDUS to a range of 60–180 bpm.

FIGURE 2 | (A) Simulated envelope of the DUS’(t) signal using a series of
FHRRRI extracted from the PhysioNet Database and 20 dB SNR. (B) AC
coefficient (blue) and peaks (black triangles) of the DUS envelope using a 4 s
window. (C) Simulated FHRDUS (blue), and the non-uniformly sampled
FHRRRI (black stars).

FIGURE 3 |Outline of the assessment of the fHRV estimation differences
between FHRRRI and FHRDUS. We simulate a set of RR intervals, and estimate
the fHRV features. We also use these sequences to simulate FHRDUS varying
AC window length and SNR. Finally, we estimate fHRV from these
signals and compare the differences in estimates from FHRRRI and FHRDUS.
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fHRV Features
The PSDs of the non-uniformly sampled FHRRRI , and the
uniformly sampled FHRDUS signals were estimated using the
Lomb-Scargle (LS) periodogram as implemented in the
function “plomb” in the Matlab Signal Processing Toolbox.
We chose the LS periodogram, since it provides unbiased
estimates of the power spectrum in non-uniformly sampled
signals (Clifford and Tarassenko, 2005). Using alternative
methods, such as the Welch periodogram or AR models,
would require resampling FHRRRI to a continuous signal,
which leads to a biased estimate of the power spectrum
(Clifford and Tarassenko, 2005). The normalized power in
three frequency bands was then computed as:

LFpow � ∑0.15
0.03 LS( f )Δf∑1
0.03 LS( f )Δf

MFpow � ∑0.5
0.15 LS( f )Δf∑1
0.03 LS( f )Δf

HFpow � ∑1
0.5 LS( f )Δf∑1
0.03 LS( f )Δf

where LS( f ) is the PSD estimated using the LS periodogram. In
addition, we estimated the LF/(MF + HF) ratio.

ApEn, a measure of the nonlinear complexity of FHR, was
estimated as follows:

1) FHR was decimated to 2 Hz, following Gonçalves et al., 2013
who found that sampling the FHR at 2 Hz provided better
ApEn estimates than 4 Hz.

2) The function “approximateEntropy” in the Matlab Predictive
Maintenance Toolbox was used with an embedding
dimension of 2, and radius of 0.2.

Feature Comparison
Differences between features computed from the RR and DUS
signals were quantified in terms of their bias and random
differences:

bd � E[ fDUS] − E[ fRRI]
E[ fRRI] p100%

rd �
�������������∑( fDUS − fRRI)2√

E[ fRRI] p100%

where bd and rd are the normalized bias and random differences,
fDUS is a feature estimated from FHRDUS, fRRI is a feature estimated
from FHRRRI and E[x ] is the expected value.

Discriminability of fHRV
Figure 4 describes the procedure used to assess fHRV
discriminability. We simulated normal and acidotic FHRRRI . To
remove the effect of the signal amplitude, each realization of FHRRRI

was scaled to have a standard deviation of 21.63 bpm, midway
between the two reported distributions. Then FHRDUS signals were
generated for each FHRRRI realization. PSD features and ApEn were
computed for the RR and DUS signals. We constructed a Neyman-
Pearson classifier for each signal that used the likelihood ratio of the

normal and acidosis distributions, and we estimated the area under
the curve (AUC) for the FHRRRI and FHRDUS realizations. The AUC
and 95% confidence intervals (CI) were estimated from 1,000
bootstrap samples of the normal and acidotic distributions. To
compare features, we computed the following metrics:

1) AUCRRI is the median of the 1000 AUC estimates obtained
from bootstrap sampling each pair of fHRV distributions
estimated from FHRRRI . AUCDUS(wl, SNR) is the median of
the 1000 AUC estimates obtained from bootstrap sampling
each pair of fHRV distributions as a function of the window
length wl, and the SNR.

2) The normalized difference between AUCRRI and
AUCDUS(wl, SNR) given as follows:

DAUC � E[AUCRRI − AUCDUS(wl, SNR)
AUCRRI

]
where DAUC is the normalized difference, and AUCDUS (wl, SNR)
is the AUCDUS as function of AC window length and SNR. DAUC

FIGURE 4 | Outline of the assessment of the discriminability of fHRV
features as functions of the AC window length. We simulated two sets of
FHRRRI sequences with different PSD and ApEn distributions. Then, we
extracted the fHRV of the simulated FHRDUS for each case, and we used
these estimates to assess the discriminability of each feature using the AUC of
Neyman-Pearson classifiers.
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quantifies the mean variation in the discriminability of each
feature across all simulated window lengths and SNRs.

3) The normalized standard deviation of AUCDUS for all lengths
and SNR given as follows:

σAUC �
�������������������������������
E[(AUCDUS(wl, SNR) − E[AUCDUS])2]√

AUCRRI

where σAUC is the normalized standard deviation. This metric
quantifies how the discriminability of each feature varies as the
window length and SNR vary.

RESULTS

Simulation of FHRRRI and FHRDUS
We first compared the features of the simulated FHRRRI

sequences to those reported by Gonçalves et al. (2013) for
fetuses with normal umbilical cord blood-gas pH (≥7.20) and
those with acidotic pH (<7.20). Table 1 compares the 95%

confidence intervals of the PSD and ApEn features reported
by Gonçalves et al. to those estimated from our simulated
sequences. Table 1 also shows the difference in the limits of
the acidosis and normal distributions. Although the absolute
limits of the simulated distributions differ from the reported
distributions, they have similar trends; all features except for the
LF/(MF + HF) ratio, are larger for the acidosis than the
normal class.

We also compared the features of our simulated sequences to
those of the 80 subjects in the PhysioNet database. Figure 5
shows boxplots of the normalized FHRRRI features for three
populations: simulated normal (left), PhysioNet data, and
simulated acidosis (right). The notches, or indentations, in
the box plots indicate the 95% CI of the median of each
distribution. From these, it is evident that the medians
obtained of the PhysioNet subjects and the simulated normal
sequences were not statistically different for any feature. The
95% CI of the medians from the 80 subjects also overlap those of
the acidosis FHRRRI except for the MF power and the ApEn.
Thus, the distribution of the fHRV features estimated from our
simulated FHRRRI were similar to those of real data.

FIGURE 5 | Feature distributions for (A) LF, (B)MF, and (C)HF (D) LF/(MF + HF) ratio, and (E) ApEn. Each panel show the samples (scattered points) and boxplots
for the features for simulated normal (left), the PhysioNet data (middle), and simulated acidosis FHRRRI features (right). The notches, or indentations, in each boxplot
indicate the 95% CI for the median of each distribution. These plots show that the PhysioNet data and the simulated normal are not significantly different for any of the
features. In contrast, the simulated acidosis distributions are significantly different for the MF and ApEn.
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FIGURE 6 | Contour plots of the bias difference, bd, and random difference, rd, of the LF (A,B), MF (C,D), HF (E,F), LF/(MF + HF) (G,H), and ApEn (I,J) features
from FHRDUS for the acidosis distributions and varying AC window length (horizontal axis) and SNR (vertical axis). The differences are coded in colors blue (negative),
white (zero), and red (positive) according to their magnitude. For visualization, 10 isolines are used in each panel.
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fHRV Differences Between FHRRRI
and FHRDUS
Next we examined the differences between features computed
from the simulated FHRRRI and FHRDUS. Figure 6 shows contour
plots for the bias (left column) and random (right column)
differences of the five features as functions of window length
and SNR. The magnitude of the differences are color coded from
blue (negative) to white (zero) and to red (positive). Figure 6A
shows the LF power is underestimated when the SNR is low or the
window length is short; the bias difference is close to zero
difference when the window length is longer than 2 s and the
SNR is greater than 10 dB. Figure 6B shows that the random
difference of LF behaved similarly; variability was higher for low
SNR and short AC window lengths and decreased as either
parameter increased.

Figures 6C,E show that the MF and HF powers were
overestimated for low SNR and short AC windows while for
long windows and high SNRs they were underestimated. The bias
differences had larger magnitude for HF than for MF. Thus, the
HF power was most sensitive to the AC window and additive
noise. Figures 6D,F show that the random difference for bothMF
and HF were larger for low SNR and short AC windows but
decreased as the SNR and window length increased.

Figures 6G,H show that LF/(MF + HF) ratio bd and rd
behaves as expected from the individual trends. Thus, for low
SNR and short windows, the ratio was underestimated: smaller LF
divided by larger MF and HF estimates produce an
underestimated ratio. Similarly, for longer windows and higher
SNR, the ratio was overestimated; an almost unbiased LF divided
by smaller MF and HF produce an overestimate. The random
difference in Figure 6H is more complicated to interpret. It was
higher for low SNR and short windows, and decreased as either
parameter increased. However, it reached a minima at an SNR of
10 dB and window length of 2.5 s and then increased for higher
SNRs and window lengths. This might be explained if we consider
that the denominator of this ratio (MF +HF) is underestimated in
this area. Thus, any variability in the LF estimate, divided by a
smaller estimate of (MF + HF) will yield a more variable estimate.

TABLE 2 | Median AUCRRI and 95% confidence intervals.

AUCRRI

LFpow 0.83
(0.81–0.84)

MFpow 0.86
(0.84–0.87)

HFpow 0.82
(0.80–0.83)

LF
MF+HF 0.82

(0.80–0.84)
ApEn 0.92

(0.91–0.93)

FIGURE 7 | Contour plots of the median AUCDUS of the (A) LF, (B) MF,
(C) HF, (D) LF/(MF + HF), and (E) ApEn features for varying AC window length
(horizontal axis) and SNR (vertical axis). The AUCDUS are coded in colors white
(0.65), and red (0.85) according to their magnitude. For visualization, 5
isolines are used in each panel.
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Figure 6I shows that ApEn was always overestimated with the
error decreasing as the SNR and window length increased. The
random error of ApEn (Figure 6J) behaved similarly.

Discriminability of fHRV
We evaluated the discriminability of the features in terms of the
AUC of the Neyman-Pearson classifiers for varying AC window
length and SNR. As a reference, Table 2 shows the median and
95% CI AUCRRI . Figure 7 shows in contour plots the AUCDUS of
each of the LF, MF, HF, LF/(MF +HF), and ApEn features. For all
cases, AUCDUS decreased with respect to AUCRRI due to the AC
method and additive noise. The plots are color coded from the
minimum AUCDUS � 0.65 (white) to a maximum AUCDUS � 0.85
(red). Figure 7 describes two main trends: 1) for all features,
AUCDUS decreases as the SNR decreases, and 2) for all features,
AUCDUS decreases as the AC window length increases.

Figures 7A,B show that the discriminability of LF andMF was
greatest for SNR larger than 0 dB and windows shorter than 2 s.
Thus, in this region, their discriminability was not affected much
by the AC method. However, outside this region the color
contrast is strong, indicating a large drop in discriminability.
In contrast, Figure 7C shows that the reduction in HF
discriminability was less marked as the window length
increased or SNR decreased.

These observations can be contrasted with the results in
Table 3. Table 3 shows the 95% CI of the differences between
AUCRRI and AUCDUS, the mean difference DAUC , and σAUC for
each feature, AC window 1–5 s long, and −10–30 dB SNR. The
DAUC estimates show that in average the LF power loses 10.99%,
MF power loses 14.22%, and HF power loses 13.32% of their
discriminability. However, the variability of this discriminability,
according to σAUC , is considerably higher for LF and MF (5.02
and 5.40%) than for HF (2.05%). Thus, although HF loses 13.32%
of its discriminability due to the AC method and additive noise,
the obtained discriminability only varies in 2.05% with respect to
the AC window length and the SNR.

Figure 7D shows that the discriminability of LF/(MF + HF)
ratio decreases with longer windows and lower SNR. It follows a
similar trend to the LF and MF. The estimated D_AUC showed a
decrease of 10.39% of its discriminability, and σAUC showed a
variability of 5.15%. These estimates were close to those of the
LF power.

Finally, Figure 7E shows that the discriminability of ApEn
behaved similarly to HF AUCDUS. In this case, DAUC showed the
largest loss of discriminability (24.17%) but the smallest σAUC

variability (1.76%). This means that although ApEn loses much of
its discriminability due to the AC method, the remaining
discriminatory information is affected little by varying SNR or
AC window lengths.

DISCUSSION

This paper has two objectives: 1) to analyze differences in fHRV
features estimated from FHRRRI and FHRDUS; and 2) to determine
how these differences influenced their ability to discriminate
between two fHRV distributions. In our analysis, we simulated
sequences of RR intervals for which we controlled the PSD and
ApEn. Then, we simulated the DUS sampling and AC method, and
extracted the relevant features for each objective. Our results indicate
that 1) our simulated FHRRRI sequences have fHRV features with
distributions similar to those of real data, 2) the estimation of HF
power and ApEn are the most affected by the AC method and
additive noise, and 3) the loss of discriminability due to the AC
method is largest for the ApEn and smallest for the LF power and
LF/(MF + HF) ratio. We discuss below each section of these results.

Simulation Issues
The results presented in this paper are based on simulations in
which we generated artificial RR intervals and the corresponding
DUS signals. The significance of our results will depend on the
validity of these simulations. We believe they are valid for the
following reasons:

First, an important feature of our simulation of RR intervals
was that we were able to generate sequences having both power
spectral and entropy features similar to those of real data. Table 1
and Figure 5 show that the distribution of fHRV features of our
FHRRRI simulations fall within the distributions estimated from
the available real data. All features of the simulated RR intervals
were comparable to the features estimated from clinical data. This
contrasts with previous simulations which controlled only the
PSD (Clifford and Tarassenko, 2005), or the entropy
independently (Ferrario et al., 2006).

Secondly, we opted to simulate the envelope of the DUS
signals rather than the raw DUS signal itself. Raw DUS signals
are subject to multiple artifacts during clinical acquisition:
movement of the probe or signal loss introduce noise in the
signals (Shakespeare et al., 2001; Jezewski et al., 2017). As a
solution, fetal monitors use the envelope of the signal, which
serves as a LF filter (Hamelmann et al., 2020). This envelope
trades the amount of information contained in the signal, such as
the location of specific cardiac events (Shakespeare et al., 2001),
for robustness in the estimation of the FHR (Hamelmann et al.,
2020). Investigating the effect of extracting the envelope of the
signal is out of the scope of this study as we focused specifically on
the AC method applied to the DUS envelope. Furthermore, we
introduced noise in our signal in two ways: 1) we use 15 DUS
envelopes reported in the literature (Hamelmann et al., 2020) as
templates, which have intrinsic acquisition noise, and 2) we
added bandlimited uniform noise, where the cut-off frequency
was set to 7.7 Hz. Thus, even for our simulations with the highest
SNR, there is noise inherent to the templates that cannot be

TABLE 3 | Mean, DAUC, and 95% CI of the difference between AUCRRI and
AUCDUS and standard deviation of the estimated AUCDUS, σAUC, for AC
windows 1–5 s long and −10–30 dB SNR.

Mean difference DAUC

(%) and 95% CI
Standard

deviation σAUC (%)

LFpow −10.99 (−17.29–1.25) 5.02
MFpow −14.23 (−20.92–−0.40) 5.40
HFpow −13.33 (−16.39–−8.38) 2.05

LF
MF+HF −10.39 (−16.82–−2.14) 5.15
ApEn −24.17 (−26.30–−20.18) 1.76
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removed. This introduces heterogeneity in the signal, each DUS
cycle is different from the others.

Finally, it is important to consider the method used to
compute FHRDUS from the DUS signal: the estimation of
fHRV features will depend on this. We chose to use a
standard AC estimation method since this is what is currently
used in clinical monitors. Thus, our results are directly relevant to
understanding how the properties acquired with current
monitors behave. We are aware that a number of more
sophisticated methods have been proposed to improve the
accuracy of the beat-to-beat estimation of the FHR. These
methods are based on the AC method with adaptive
parameters, or utilize ML models to extract the beat-to-beat
sequence from the DUS signal (Peters et al., 2004; Jezewski
et al., 2011; Alnuaimi et al., 2017; Valderrama et al., 2019;
Katebi et al., 2020). The effect of those methods on fHRV as
function of their parameters is an important question to be
explored but is beyond the scope of the present paper.

fHRV Differences Between FHRRRI
and FHRDUS
Our experiments aimed to analyze the error of fHRV feature
estimation from using the AC method. We found that the length
of the autocorrelation window, which determines the extent of
signal averaging, had a strong influence on these errors. Longer
windows provide more AC averaging, which reduces the effect of
additive noise at the cost of beat-to-beat accuracy in the
estimation of FHR. In other words, longer averaging windows
act as low-pass filters with lower bandwidths. Accordingly,
Figure 6A shows underestimation of the LF power for short
AC windows and low SNR, but the bias difference increases to be
almost zero as AC window length and SNR increase. In contrast,
the MF and HF powers were increasingly attenuated as the
window length increased. As expected, the AC method
attenuates the MF and HF power while increasing the relative
magnitude of the LF power. This is in agreement with the findings
of Clifford and Tarassenko (2005) which showed that
interpolated heart rate signals (without averaging) overestimate
LF power with respect to higher frequency bands.

Showing a different behavior, ApEn (Figure 6I) is always
overestimated, which might be due to the effect of additive noise.
The ApEn is an estimate of a signal irregularity, and it is higher
for random than for periodic signals. Thus, adding random noise
increases the signal irregularity which directly increases the
ApEn. However, Figure 6I shows a decrease when SNR or the
window length increase; less noise or more averaging reduces the
irregularity in the signal and lowers the ApEn.

In summary, these results show that data from multiple
monitors with different parameters may yield different
estimates of fHRV. The extent of these differences is
documented in our contour plots as a function of window
lengths and SNR. Unfortunately, information about the
window length used is rarely available for commercial
monitors. Unless the manufacturers start to disclose the
parameters of their acquisition algorithms, data analysis of
such signals must take into account that the variability in the

estimated fHRV does not only depend on fetal state but also the
CTG monitor.

Discriminability of fHRV
FHR monitoring during the intrapartum aims to detect fetuses at
risk and to use this information to determine whether an
emergency cesarean delivery is warranted. Thus, it is
important to study how discriminability of certain features is
affected by the CTG acquisition methods. Our simulations
showed that the discriminability of PSD and ApEn features
changed with AC window length and SNR. For all features,
the AUC of a Neyman-Pearson classifier decreased as the SNR
decreases. This is explained by loss of discriminatory information
due to additive noise or large magnitude. Similarly, the AUC
decreased as the AC window length increased. This is explained
by the loss of discriminatory beat-to-beat information associated
with longer AC windows (more averaging).

Two different behaviors can be observed for the five fHRV
features analyzed. LF, MF, and LF/(MF + HF) lose less

FIGURE 8 | Contour plots of the median AUCDUS of the (A) LF1 and (B)
LF2 sub-bands for varying AC window length (horizontal axis) and SNR
(vertical axis). The AUCDUS are coded in colors white (0.65), and red (0.85)
according to their magnitude. For visualization, 5 isolines are used in
each panel.
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discriminability on average as defined by DAUC . However, they
have higher σAUC variability across the whole range of AC
window lengths and SNRs. This means that under ideal
conditions (short AC windows and high SNR) the
discriminatory information in these features is well preserved
by the AC method. However, samples obtained from monitors
that use different AC window lengths could carry quite different
discriminatory information, as σAUC is higher. In contrast, the HF
and ApEn features lose more DAUC discriminability on average,
but show less σAUC variability. Thus, these features are more
affected by the AC method itself, but they are less dependent on
the parameters of this method. This means that when considering
data from multiple sources, the LF, MF, and LF/(MF + HF)
features might be the best discriminatory parameters if the data is
analyzed for each source independently. However, if the data is
mixed, then the HF and ApEn features will have the similar
discriminatory behavior regardless the source.

The AC method is expected to preserve low frequencies and
attenuate high frequencies. Thus, we hypothesized that there
might be an LF sub-band that the AC method would not
affect. To this end we explored the effects of dividing the LF
band into two sub-bands LF1 (0.03–0.072 Hz) and LF2
(0.072–0.15 Hz). Figure 8A shows that by doing so, there was
no loss in discriminability for LF1 across different AC window
lengths and SNR. In contrast, Figure 8B shows that the
discriminability of LF2 AUCDUS decreased with longer AC
windows and lower SNR. Table 4 quantifies these changes;
LF1 loses 0.02% of its DAUC discriminability, and has 0.74% of
σAUC variability across all the range of AC window lengths and
SNRs. In contrast, LF2 loses 3.38% of its DAUC discriminability
and has 1.74% of σAUC variability. These results show that the use
of the AC method reduces the discriminability of higher
frequencies but that frequencies below 72 mHz are not affected
by the acquisition method. Therefore, the power in these
frequencies provides a discriminatory feature that is
independent of the acquisition method and its parameters (AC
window length and SNR).

Limitations
We believe these results provide important insight into the effects
of computing FHR features using the AC method. Nevertheless
there are a number of limitations of the work to consider.

First, the reference distributions that we used to define the
normal and acidotic classes were estimated from a handful of
cases, which might not be enough. Gonçalves et al. (2013)
reported features extracted from 21 normal fetuses and six

acidotic fetuses. Thus, a larger database would be necessary to
better characterize the distributions of both classes. Furthermore,
we use 15 DUS templates in our simulations. Although the use of
these templates result in variation of the simulated DUS waves,
using a larger number of DUS envelopes as templates might
produce more realistic DUS simulations.

Secondly, our model only controls the PSD and ApEn of the
simulated FHRRRI . However, it is important to highlight that the
power in each band was controlled independently of the others.
The fact that the LF/(MF + HF) ratio have a defined distribution
suggests that these features are correlated in a way. Our model did
not consider this correlation in the features, which resulted in
differences between the target distribution and the obtained
distribution as shown in Table 1. This limitation might have
an impact on the interpretation of the results that correspond to
the LF/(MF + HF) ratio. In addition, there are many other fHRV
features that are used to characterize the variability of FHR
signals, namely the short-term variability, long term
irregularity, the root mean square of successive differences,
among others. It is clear that an ideal simulation would be
able to account for all the relevant fHRV features and generate
as realistic simulations as possible. Nevertheless, we consider that
information available in the PSD of the FHR signal is relatable to
some of the time-domain features; the LF power carries
information about the long-term evolution of the signal, and
the HF power carries information about the short-term beat-to-
beat variability of the signal. Similarly, nonlinear indicators of
signal irregularity can be related to the ApEn of the signal. Thus,
although our study does not control nor account for all the
features used in the literature, we consider that our results provide
a representative understanding of how different fHRV features
behave in response to the AC method and the SNR.

Thirdly, our model does not account for signal loss.
Implementing signal loss requires to add a different noise
model, which behaves as a switch between signal and no
signal. We consider that a future study could expand our
model to include such a switch using information from real
databases. Parameters such as number of drops, or the duration of
the artifact can be characterized in their distributions to generate
a realistic DUS signal and FHRDUS estimation.

Fourthly, our model does not account for the nonstationary
behavior of intrapartum FHR signals. The simulated FHR signals
were time invariant within a window of 10 min. However, real
FHR signals are nonlinear and time-varying. For a single subject,
it is expected that the fHRV distribution will vary across labor:
increased uterine activity will generate responses in the FHR and
fHRV (Warrick and Hamilton, 2012; Lear et al., 2018). Thus, the
length of analysis window is an important parameter to consider
and optimize: short analysis windows will provide large
variability in the estimated features, while long analysis
windows will include nonstationary FHR. Another factor that
will affect the estimated fHRV is fetal state. It has been shown that
fetuses have variable fHRV distributions when they are in quiet
and active periods (Signorini et al., 2003). Thus, a long analysis
window might contain more than one fetal state, which is also
nonstationary behavior. An alternative approach to optimizing
the length of the analysis window is to consider time-varying or

TABLE 4 |Median AUCRRI and 95% CI, mean difference of AUCRRI and AUCDUS,
DAUC, and standard deviation of the estimated AUCDUS, σAUC, for LF1 and
LF2. These estimates were done for AC windows 1 to 5 s long and −10 to
30 dB SNR.

AUCRRI Mean
difference DAUC (%)

Standard
deviation σAUC (%)

LF1 0.69 (0.67–0.70) −0.02 (−1.40–1.49) 0.75
LF2 0.72 (0.70–0.74) −3.38 (−5.48–1.04) 1.74
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parameter-varying models to describe FHR and fHRV. Future
studies should consider these models in the analysis of
intrapartum FHR.

Finally, our model does not consider the effect of gestational
age (GA). It has been reported that the distribution of fHRV
features vary with GA (Gonçalves et al., 2018). However, no
significant difference was reported in PSD or ApEn features for
term infants (GA > 36 weeks). Considering that our simulations
took as reference fHRV distributions from term infants or
intrapartum signals, we believe that our results are valid
regardless GA in term infants. Further studies should analyze
if the trends of the bd and rd are different when GA < 36 weeks.

CONCLUSION

Our results demonstrate the susceptibility of fHRV features to the
AC method and additive noise in the clinical acquisition of FHR.
The dependency of the estimation error on the AC window
length, which is part of the proprietary information of the
FHR monitor manufacturers, is a limitation in comparing data
acquired from different monitors. There is an increasing interest
in applying machine learning techniques to FHR tracings on large
databases to identify fetuses at risk during antepartum (Signorini
et al., 2020) and intrapartum monitoring (Georgieva et al., 2017;
Petrozziello et al., 2019). Although the discriminability of fHRV
features depends on the AC window length of the FHR monitor
and the SNR, it has low variability (<5.4%). Moreover, a feature
based on the power below 72 mHz is not affected by the AC
method. Thus, understanding the effects of the AC method on
fHRV discriminability would potentially lead to a better
implementation of ML classifiers of FHR signals when dealing
with multiple sources. LF power, MF power, and the LF/(MF +

HF) ratio are least affected by the AC method in average but are
more influenced by changes in the AC window length and SNR.
Classifiers based on these features would benefit from including
the fetal monitor model, or acquisition center, as part of the
regressor. On the other hand, HF power and ApEn experience the
largest loss of discriminability in average, but with lower
dependency on AC window length and SNR. Thus, classifiers
based on these features would not need to account for differences
in the acquisition fetal monitors.
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