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Introduction: A Brief History of Open and 
Endovascular Therapies
Technological advancements have revolutionized vascular neu-
rosurgery over the past century. Sir Thomas Willis’ Cerebri 
anatome (1664) is widely credited for the first anatomical 
description of the skull base arteries.1 The first open surgical 
treatment of an intracranial aneurysm was reportedly per-
formed in 1931 by Norman Dott utilizing wrapping, followed 
shortly thereafter by the first application of an aneurysm clip in 
1937 by Walter Dandy.2 Over the latter half of the 20th century, 
additional technical advances in vascular neurosurgery were 
largely the purview of the neurosurgical luminaries including 
Vinko Dolenc, M. Gazi Yasargil, Thoralf Sundt Jr., and Charles 
G. Drake.3-9 Many of their tools and techniques are still relied 
upon today by cerebrovascular surgeons treating complex aneu-
rysms and vascular malformations best addressed through an 
open approach. Still, the field sought less invasive options to 
improve patient survival and reduce morbidity.

The origins of endovascular neurosurgery are traced back to 
the Portuguese neurologist Egas Moniz (1874-1955) with the 
first successful intravascular contrast administration to visual-
ize cerebral architecture with X-ray beams.10 Leveraging such 
early advances in angiography, it wasn’t until 1964 that 
Luessenhop and Velasquez performed the first successful 
micro-catheterization of the cerebral vessels for temporary bal-
loon occlusion of a posterior communicating artery aneu-
rysm.11 In 1974, Hilal et al and colleagues then reported a 120 
patient series on the percutaneous catheterization of cerebral 
vessels using magnetic catheters, a practice that was abandoned 

shortly thereafter.12 Detachable balloons were popularized by 
Serbinenko also in 1974, and these devices remained in vogue 
for the subsequent decade before eventually falling out of favor 
due to high rates of morbidity and mortality.13,14

The modern era of neurointervention was born at the end of 
the 20th century. In 1991, Guido Guglielmi et  al—a young 
interventional neuroradiologist and neurosurgeon from Rome 
studying aneurysm treatments in swine models at the University 
of California, Los Angeles–published his pioneering work on 
the use of electrolytically detachable platinum coils to treat cer-
ebral aneurysms.15,16 This ushered in a new era for neuroendo-
vascular surgery with technical modifications of balloon 
assisted coil embolization to treat wide-necked aneurysms and 
increase packing density.14,17 Recent years have seen the matu-
ration of neuroendovascular technique and device innovation 
to best treat aneurysms on a patient-specific basis owing to 
variant anatomy and comorbidities. In the early 2000s, large 
clinical trials demonstrated the safety and efficacy of coil 
embolization for the treatment of aneurysmal subarachnoid 
hemorrhage.18,19 Given the recency of these developments, 
questions remain about the long-term durability of endovascu-
lar treatment.20,21 Flow diversion for the treatment of complex 
aneurysms and bioactive coils to facilitate aneurysm healing 
have also been introduced and may modulate patient clinical 
outcome over time.22,23

The Advent of Flow Diversion
The Pipeline for Uncoilable or Failed Aneurysms (PUFS) 
trial was the first major clinical trial demonstrating the safety 
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and efficacy of flow diversion for the treatment of complex 
intracranial aneurysms located from the petrous to hypophy-
seal segments of the internal carotid artery.24 Flow diversion 
represented a novel approach in which a low porosity, low 
profile stent is situated within the parent artery, extrinsic to 
the aneurysm, leading to vessel wall remodeling and aneu-
rysm occlusion.24 There have been many renditions of flow 
diversion devices, including the Pipeline embolization device 
(Covidien, Mansf ield, MA, United States), the Silk (Balt 
Extrusion, Montmorency, France), the Flow Re-direction 
Endoluminal Device (“FRED,” Microvention, Tustin, CA, 
United States), the p64 Flow-Modulation Device (phenox 
GmbH, Bochum, Germany) and the Surpass Flow-Diverter 
(Stryker Neurovascular, Fremont, CA, United States).25 Such 
devices have extended the application of endovascular tech-
niques to more complex cerebral aneurysms where traditional 
methods, such as clipping and coiling, are challenging or not 
possible.25 Still, the treatment of posterior circulation aneu-
rysms remains challenging, requiring a steep learning curve 
and necessitating the dissection and preservation of vital per-
forators for open surgical technique.26 While intraluminal 
flow diverters have become increasingly used for the treat-
ment of aneurysms located from the vertebral arteries, basilar 
trunk, and the basilar apex with moderate success, their use in 
such situations is tempered by the relatively high rates of 
morbidity and device occlusion.27,28

Intra-saccular flow diversion is an alternative technique in 
which the device is placed inside the aneurysm, thereby mini-
mizing parent vessel metal coverage. The technique has 
emerged as potential mechanism to increase safety for the 
treatment of complex wide necked aneurysms.29 The Woven 
EndoBridge or “WEB” (microvention, Tustin, CA, United 
States) remains the only FDA-approved intra-saccular flow 
diverter. While the device has been received with significant 
optimism by the neurointerventional community owing to its 
simple delivery system, its long-term aneurysm occlusion rates 
remain suboptimal.30,31

Next Frontiers in Endovascular Management
Bioactive devices

The creation of bioactive devices that serve to facilitate aneu-
rysm healing dates to the early 2000s but has not yet yielded 
superior results relative to non-bioactive detachable stents and 
coils.14,22,32,33 Laboratory research has provided insights into 
the aneurysm healing pathway to inform these advances, and 
will continue to serve as a scaffold for new device develop-
ment.34 Recent years have seen modifications of existing endo-
vascular devices to incorporate bioactive polymers. For example, 
a surface modified version of the Pipeline device (Covidien, 
Mansfield, MA, United States) was recently introduced to 
include surface-bound phosphorylcholine due to decreased 
device thrombosis rate and increased patient safety.35 Using a 
rabbit model of saccular aneurysm, Cortese et al36 also improved 

rates of parent vessel reconstruction, aneurysm occlusion, and 
reduced rates of stent occlusion after introducing a CD31 
coated Silk Vista Baby (Balt Extrusion, Montmorency, France) 
flow diverting stent. In a mouse model of saccular aneurysm, 
monocyte chemoattractant protein 1 (MCP-1), osteopontin, 
and interleukin 10 (IL-10) have further demonstrated increased 
aneurysm healing when locally delivered using bioactive aneu-
rysm coils.37-40 Recently, Laurent et al published their results 
using dual coated aneurysm coils to target the inflammatory 
pathway of aneurysm healing.41 As our understanding of the 
biology of aneurysm healing continues to advance, the creation 
of endovascularly deployable devices that leverage and potenti-
ate natural aneurysm healing mechanisms will likely serve as 
next revolution in cerebrovascular disease.

Increased visualization

Interventional cardiology has recently transitioned to the use 
of intravascular imaging for better lesion characterization.42 
Intravascular ultrasound and optical coherence tomography are 
adjunctive tools which provide axial resolution within the ves-
sel of up to 40or 15 μm respectively.43 Leveraging this technol-
ogy allows interventional cardiologists to have certainty in 
choosing appropriate stent sizing and length, optimizing stent 
expansion and identifying acute complications.44 In fact, the 
use of this technology is known to improve patient outcomes.45 
This has potential for neurovascular lesions identification as 
well. When the images are combined with intravascular pho-
toacoustic imaging, increased accuracy is obtained.46 
Additionally, narrow-band endoscopic imaging is being devel-
oped for real time intravascular imaging.47 For torturous vessels 
or aneurysms with narrow openings, this would facilitate more 
direct navigation. It also opens the field to porous memory 
polymers.48 These new embolic devices can develop shape 
memory and be fixed with infrared light once adequately 
placed. The potential for combination with bioactive particles 
is also much higher. Finally, mapping pulse wave coherence for 
arterial and venous phases offers added value for determining 
mismatch is arteriovenous coupling, thereby indicating patients 
that have transitioned into disequilibrium.49

Conclusions
Since the advent of open vascular surgical therapies for intrac-
ranial aneurysms, the leaders of neurological surgery have 
focused on developing technologies and techniques to improve 
patient outcomes. The modern revolution in this field is in 
endovascular therapies, which continue to evolve to include 
optimized stent and coil designs which leverage underlying 
aneurysm biology and promote healing. While flow diversion 
has extended the application of endovascular techniques to 
more complex aneurysms, newer bioactive devices in combina-
tion with existing endovascular techniques should be studied to 
verify long-term benefit. Increased visualization with intra-
arterial imaging could also enhance ability to treat complex 
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aneurysms and more readily appreciate the interplay of vascular 
connections.
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