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Syntaxin-3 is dispensable for 
basal neurotransmission and 
synaptic plasticity in postsynaptic 
hippocampal CA1 neurons
Shan Shi1,2, Ke Ma1,2*, Na-Ryum Bin2,3, Hidekiyo Harada4, Xiaoyu Xie2,5, Mengjia Huang2,3, 
Haiyu Liu2,6, Soomin Lee2,3, Xue Fan Wang3,4, Roberto Adachi7, Philippe P. Monnier3,4,8, 
Liang Zhang2,9 & Shuzo Sugita2,3*

Recent evidence suggests that SNARE fusion machinery play critical roles in postsynaptic 
neurotransmitter receptor trafficking, which is essential for synaptic plasticity. However, the key 
SNAREs involved remain highly controversial; syntaxin-3 and syntaxin-4 are leading candidates for the 
syntaxin isoform underlying postsynaptic plasticity. In a previous study, we showed that pyramidal-
neuron specific conditional knockout (cKO) of syntaxin-4 significantly reduces basal transmission, 
synaptic plasticity and impairs postsynaptic receptor trafficking. However, this does not exclude a role 
for syntaxin-3 in such processes. Here, we generated and analyzed syntaxin-3 cKO mice. Extracellular 
field recordings in hippocampal slices showed that syntaxin-3 cKO did not exhibit significant changes in 
CA1 basal neurotransmission or in paired-pulse ratios. Importantly, there were no observed differences 
during LTP in comparison to control mice. Syntaxin-3 cKO mice performed similarly as the controls in 
spatial and contextual learning tasks. Consistent with the minimal effects of syntaxin-3 cKO, syntaxin-3 
mRNA level was very low in hippocampal and cortex pyramidal neurons, but strongly expressed in the 
corpus callosum and caudate axon fibers. Together, our data suggest that syntaxin-3 is dispensable 
for hippocampal basal neurotransmission and synaptic plasticity, and further supports the notion that 
syntaxin-4 is the major isoform mediating these processes.

Synaptic transmission is essential for neuronal communication in the brain. During synaptic transmission, pre-
synaptic neurons release neurotransmitters that bind to their respective receptors on the postsynaptic membrane. 
Ionotropic glutamate receptors (AMPARs and NMDARs) and GABA receptors on the postsynaptic membrane 
undergo receptor recycling. Receptor recycling is an essential process in synaptic plasticity such as long-term 
potentiation (LTP). LTP is a cellular correlate for higher-level cognitive functions of learning and memory1–5 and 
requires rapid modifications in the quantity and composition of postsynaptic glutamate receptors4,6,7. Despite 
its importance, the underlying mechanisms of postsynaptic membrane receptor trafficking still remain unclear.

Postsynaptic receptor trafficking employs a unique soluble NSF-attachment protein receptor (SNARE) com-
plex that mediates the attachment and fusion of vesicles containing postsynaptic receptors to target membranes. 
The SNARE complex is composed of one vesicle membrane protein (v-SNARE; synaptobrevin) and two target 
membrane proteins (t-SNAREs; syntaxin and SNAP-25 isoforms)8. Botulinum neurotoxin B (BoNT/B) proteo-
lyzes synaptobrevin-2 and when injected into CA1 pyramidal cells, blocks LTP induction9. This suggests that this 
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v-SNARE is imperative for AMPAR delivery to the postsynaptic membrane during LTP. However, the particular 
isoforms of t-SNAREs involved in postsynaptic neuronal vesicle fusion remains controversial10–13.

A previous study using non-functional recombinant syntaxin-4 revealed that syntaxin-4 mediates 
activity-dependent AMPAR trafficking to synapses during LTP14, whereas another study utilizing syntaxin-3 
knockdown (KD) demonstrated that syntaxin-3 is pivotal for the delivery of AMPARs to postsynaptic mem-
branes during LTP, but not syntaxin-411. Therefore, it appears that both syntaxin-3 and syntaxin-4 are potential 
t-SNAREs that mediate postsynaptic AMPAR delivery during LTP. Conversely, syntaxin-3 and syntaxin-4 KD 
had no effects on basal transmission, which suggests for the potential involvement of another syntaxin isoform 
in AMPAR delivery11,14.

In a previous study, we utilized live murine models to examine the role of syntaxin-4 in postsynaptic neurons 
by generating a pyramidal neuron-specific conditional knockout (cKO) for syntaxin-415,16. Analysis of syntaxin-4 
cKO revealed significant decreases in basal synaptic transmission, LTP, surface expression of both AMPARs and 
NMDARs, and impaired spatial learning. However, syntaxin-4 cKO also caused a drastic decrease in NMDA cur-
rent which could impair NMDA- and Ca2+-dependent LTP induction17,18. Therefore, these data do not directly 
indicate a functional role of syntaxin-4 in AMPAR delivery during LTP and implicate a possible role of another 
syntaxin isoform, potentially syntaxin-3 in such processes11. In this aspect, it is important to analyze the role of 
syntaxin-3 in a similar manner to the previous analysis of syntaxin-415,16. In this study, we generated syntaxin-3 
cKO mice and performed electrophysiological and behavioral analyses to further examine the role of syntaxin-3 
in postsynaptic basal neurotransmission, synaptic plasticity, learning and memory.

Results
Generation of forebrain-specific syntaxin-3 cKO mice.  Since global knockout of syntaxin-3 in mice 
leads to embryonic lethality19, we generated pyramidal neuron specific KO of syntaxin-3. We used syntaxin-3 flox 
mice that were previously successfully utilized in generating a mast cell specific syntaxin-3 cKO19. To eliminate 
syntaxin-3 expression from CA1 pyramidal neurons, we crossed syntaxin-3 flox/flox mice with mice expressing 
CaMK2a-Cre (Jacksons Lab) where Cre expression is distinctively strong in CA1 pyramidal neurons of the hip-
pocampus20,21. The KO allele was created through gene trapping in which Cre recombinase induces the inversion 
of the gene trap to its sense orientation, ceasing syntaxin-3 expression and inducing the expression of a reporter 
gene, namely β-galactosidase/neomycin phosphotransferase fusion (β-geo) gene (Fig. 1a). Previously, the use of 
gene trapping in this manner had successfully eliminated the expression of syntaxin-3 in mast cells which resulted 
in significant impairment of exocytosis19.

Although Cre recombinase driven by the CaMK2a promoter has been demonstrated to be highly specific to 
the CA1 pyramidal layer in 8–10 week old animals20,21, its expression can be extended to other hippocampal areas 
such as the CA3 and dentate gyrus throughout development22,23. To examine the region specificity of the knock-
out, we performed X-gal staining to detect β-galactosidase activity in brain slices from syntaxin-3 cKO and con-
trol flox mice to confirm the generation of the syntaxin-3 KO allele. At 16 weeks, staining signals in CA1 neurons 
were clearly observed in cKO mice but not in control flox mice (Fig. 1b,c). However, the staining in cKO mice was 
not very specific to CA1 neurons as it was also observed in the CA3 region and the cortex (Fig. 1c). To examine 
whether a more region-specific staining could be observed at earlier time points, we performed the staining at 
different ages (8, 10, 12 weeks) (see Supplementary Fig. S1). To our surprise, X-gal staining was barely detected 
at 8 weeks, suggesting that Cre-dependent deletion had not occurred by this age (see Supplementary Fig. S1). In 
contrast, staining in CA1 neurons was clearly observed at 10 and 12 weeks (see Supplementary Fig. S1). However, 
the staining was still not very specific to CA1 neurons. Together, these results suggest that syntaxin-3 removal in 
cKO mice does not exclusively occur in CA1 neurons but also in other pyramidal neurons even at 10–12 weeks 
old. Therefore, we need to consider both presynaptic (i.e., CA3 neurons) and postsynaptic (i.e., CA1 neurons) 
factors when examining CA3-CA1 synaptic phenotypes in our syntaxin-3 cKO mice. To examine the function of 
syntaxin-3, we used age matched mice that ranged between 10–24 weeks old for analysis. However, the majority 
of mice that were analyzed in this study were ~12 weeks old.

We examined whether the removal of syntaxin-3 in CA1 pyramidal neurons induced gross histologi-
cal changes when compared to the control by Nissl staining. No significant differences using independent 
two-sample t-test in cell area (control: n = 22 slices, cKO: n = 35 slices, t(55) = -0.05, p = 0.96) and density (con-
trol: n = 22, cKO: n = 35, t(55) = 0.437, p = 0.664) were detected between the cKO and control (Fig. 1d–f), which 
concludes that syntaxin-3 deletion from pyramidal neurons does not significantly affect the gross morphology of 
the hippocampus.

Low syntaxin-3 mRNA and protein expression in hippocampal and cortex pyramidal neurons.  
To confirm the knockout of syntaxin-3 in syntaxin-3 cKO mice, we examined endogenous syntaxin-3 mRNA 
expression levels in the brain. Using in situ hybridization we determined the locations of syntaxin-3 mRNA 
expression. Differences in mRNA expression levels of hippocampal and cortex pyramidal neurons were meas-
ured between control and syntaxin-3 cKO mice (Fig. 2). Since transcription of syntaxin-3 is trapped after exon 1 
in cKO mice (Fig. 1a), we generated an antisense probe of ~500 bp cDNA consisting of the 3′ portion (from exons 
6–11) of mouse syntaxin-3. Thus, using this 3′ half-probe, we could observe differences in syntaxin-3 mRNA 
expression between the control and cKO groups. We found that in both groups, the probe strongly stained the 
corpus callosum and caudate axon fibers. Unexpectedly, we barely detected a signal in the hippocampus and cor-
tex in both groups (Fig. 2a–c) suggesting low endogenous levels of syntaxin-3. After long exposure, we detected 
a very weak (yet still almost undetectable) signals in the CA1 neurons (indicated by arrows) of the control slice 
(Fig. 2d), which was not present in the cKO slice (Fig. 2e), confirming successful gene trapping in pyramidal 
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neurons. These results suggest that the syntaxin-3 mRNA expression in the hippocampus and cortex is unexpect-
edly low but further confirm the effectiveness of gene trapping in impeding syntaxin-3 expression in cKO mice.

To examine whether the protein level of syntaxin-3 corresponds with the mRNA level in CA1 neurons, we 
performed immunofluorescence microscopy of the hippocampus. We used a polyclonal antibody that has been 
successfully used in previous studies24–26 to detect syntaxin-3 in mouse photoreceptor cells. This antibody failed to 
detect syntaxin-3 in the CA1 neurons (Supplementary Fig. S2), confirming that the expression level of syntaxin-3 
is indeed low in CA1 neurons.

Basal CA1 transmission is maintained in syntaxin-3 cKO mice.  To determine whether syntaxin-3 
cKO from pyramidal neurons induce changes in basal neurotransmission, we prepared acute hippocampal slices 
and recorded field excitatory postsynaptic potential (fEPSP) from apical dendrites of CA1 pyramidal neurons 
(Fig. 3). Increasing the stimulation intensity increased the number of presynaptic axonal recruitments, which 
was quantified by fiber volley amplitudes. We used the fiber volley amplitudes to represent the “input” to generate 
input-output curves for comparisons of fEPSP amplitudes and slopes between the control and syntaxin-3 cKO 
groups (Fig. 3c,d). As the fiber volley amplitudes increased, fEPSP amplitudes and slopes from CA1 neurons 

Figure 1.  Generation of tissue-specific syntaxin-3 conditional KO mouse and electrophysiological and 
morphological analysis of the conditional KO mouse. (a) Schematic diagram illustrating the strategy used to 
obtain of syntaxin-3 conditional KO mice. Triangles, location and direction of recombination sites; yellow 
triangle, FRT; green triangle, F3; red triangle, loxP; pink triangle, lox511; red rectangle, splice acceptor (SA) 
site; βgeo, β-galactosidase/neomycin phosphotransferase fusion gene; green rectangle, polyadenylation (poly A) 
site. (b,c) X-Gal staining to examine the expression of β-galactosidase/neomycin fusion protein in control flox 
(b) and syntaxin-3 cKO (c) mice. (d,e) Nissl staining of CA1 cell body depicting the cell body area and density 
for control (d) and cKO (e) mice. Scale bar: 0.5 mm. (f) Quantification of CA1 cell body area and density. Using 
ImageJ (NIH, Bethesda, Maryland), the morphological CA1 cell body layer was manually selected, and the area 
and intensity (n = 22 for control, n = 35 for cKO) were measured. The two parameters were then normalized to 
the respective control. N.S. indicates nonsignificant (p > 0.05) in independent two-sample t-test.
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elevated in both the control and syntaxin-3 cKO groups (Fig. 3a–d). Additionally, we observed that the fEPSP 
amplitudes and slopes were similar between the syntaxin-3 cKO mice and control mice (Fig. 3c–f). To determine 
the effects of syntaxin-3 deletion on presynaptic glutamate release, we gave two successive stimulations separated 
by 50 ms to measure the paired-pulse ratio between the second and first response (Fig. 3a,b,e,f). The paired-pulse 
ratio in the syntaxin-3 cKO remained similar to the control (Fig. 3e,f) which indicates that presynaptic release 
from syntaxin-3 cKO and control floxed neurons are similar. Collectively, our results suggest that deletion of 
syntaxin-3 leads to insignificant changes in basal synaptic transmission.

CA1 long-term potentiation is preserved in syntaxin-3 cKO mice.  Previous studies have shown that 
postsynaptic SNARE proteins are crucial for the activity-dependent trafficking of ionotropic glutamate receptors 
during synaptic plasticity such as LTP9,11,14. Furthermore, the knockdown of syntaxin-3 impairs synaptic plas-
ticity as it diminishes AMPAR delivery to synapses during LTP without affecting basal transmission11. Therefore, 
we investigated whether a conditional deletion of syntaxin-3 in postsynaptic CA1 neurons could also result in 
perturbation of LTP. For this purpose, we used acutely prepared hippocampal slices and measured the apical den-
dritic fEPSP from the CA1 before and after LTP induction via theta-burst stimulation in Schaffer collateral axons 
(Fig. 4). The magnitudes of post-tetanic potentiation (PTP) and later maintenance phase of LTP were compared 
between the control and syntaxin-3 cKO groups (Fig. 4). Immediately after delivering theta-burst stimulation, 
LTP was induced as PTP responses were more than 200% of the baseline in the control group (Fig. 4a–c). PTP 
responses then transitioned into LTP maintenance phases where the responses were stabilized to give ~150% 
of the baseline that lasted as long as 60 minutes after the theta-burst stimulation (Fig. 4a–c). To our surprise, 
the induction and maintenance of LTP were also similarly observed in the syntaxin-3 cKO group. (Fig. 4a–c). 
Independent two-sample t-test showed no significant differences between two groups (slope at immediately 
(shown as 2) after LTP induction, control group: 228 ± 17% of base line, n = 10, cKO group: 223 ± 21%, n = 11, 
t(19) = 0.19, p = 0.85; slope at 50 min (shown as 3) after LTP induction, control group: 156 ± 10%, n = 10, cKO 
group: n = 11, t(19) = 0.83, p = 0.42) Therefore, these results indicate that syntaxin-3 is dispensable for CA1 LTP 
induction and maintenance.

Figure 2.  Endogenous syntaxin-3 mRNA expression in CA1 neurons is very low and dissipates in syntaxin-3 
cKO mice. (a-c) In situ hybridization using syntaxin-3 3′ half-antisense probe (a), DAPI staining (b), 
and merged signals (c) in control brain slice. Antisense staining in (c) was shown in green. (d,e) Higher 
magnification of the hippocampal region in control (d) and cKO (e) brain slices. Arrows indicate the area of 
CA1 neurons. Scale: 500 µm.
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Syntaxin-3 cKO mice do not exhibit impaired learning.  To examine whether CaMK2a-Cre mediated 
deletion of syntaxin-3 from pyramidal neurons affects hippocampal-based learning and memory, we performed 
two behavioral tasks: Morris water maze (Fig. 5) and contextual fear conditioning (Fig. 6). We implemented the 
Morris water maze on experimental mice to test their spatial learning and memory27,28. For the Morris water maze, 
mice underwent a total of 15 days in a behavioral protocol and performed 4 trials on each day (Fig. 5a). During 
each trial, each mouse was placed in a pool of water from a randomized cardinal position. In the syntaxin-3 cKO 
group (n = 5), the latency to find the visible platform resulted to be similar to that of the control group (n = 5) 
[mixed ANOVA, F(1,8) = 2.91, p = 0.13] (Fig. 5b). These results indicate that the syntaxin-3 cKO did not impose 
any functional deficits on the animal’s abilities to visualize their surroundings and to swim. From days 4 to 12, 
the platform was submerged in water and the mice were assessed to determine if the position of the hidden plat-
form was learned. In both the control and the syntaxin-3 cKO groups, the latency to find the platform on day 4 
increased with a subsequent decline during progressive trials and there was no statistically significant difference 
between the two groups [F(1,8) = 2.39, p = 0.16] (Fig. 5b). From days 13 to 15, the position of the submerged 
platform was modified (reversal training) and the mice were assessed to determine if the altered position was 

Figure 3.  Tissue-specific syntaxin-3 conditional KO mice do not decrease in basal synaptic transmission. 
Schaffer collateral axonal fibers were administered two successive stimulations from 10 to 150 µA and the 
resulting local fEPSPs from apical dendrites of CA1 pyramidal neurons were recorded. (a,b) Averaged traces of 
dendritic fEPSPs from syntaxin-3 flox/flox (control) (a) and syntaxin-3 flox/flox; CaMK2a-Cre (cKO) (b). (C 
and D) fEPSP amplitudes (c) or slopes (d) were plotted against presynaptic fiber volley amplitudes. (E and F) 
Paired-pulse ratios of amplitudes (e) or slopes (f) were plotted against presynaptic fiber volley amplitudes. Error 
bars indicate SEM (animal: n = 16 for control and n = 11 for syntaxin-3 cKO groups).
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learned. The latency to find the platform on day 13 increased with a subsequent decline and there was no statisti-
cally significant difference between the two groups [F(1,8) = 0.70, p = 0.43] (Fig. 5b). Memory was evaluated by 
performing a probe test and assessing the time spent in each of the cardinal quadrants. Both the control mice and 
syntaxin-3 cKO mice spent more time in the previous quadrant that contained the platform. Furthermore, there 
were no statistical differences in the time spent between the control and cKO groups [F(1,7) = 1.36, p = 0.28] 
(Fig. 5c) which suggest that learning had occurred, and memory consolidation was normal in cKO mice.

Fear conditioning was performed to further evaluate contextual memory7,29 (Fig. 6). Both the cKO and control 
mice exhibited increases in freezing behavior after shock and freezing behavior was retained 1 and 6 days after 
initial conditioning. Mixed ANOVA revealed no significant differences in freezing behavior between syntaxin-3 
flox control (n = 5) and syntaxin-3 cKO (n = 5) mice [F(1,8) = 0.03, p = 0.87] (Fig. 6). As syntaxin-3 cKO mice do 
not behaviorally deviate from the syntaxin-3 flox control mice, these results suggest that syntaxin-3 cKO does not 
cause evident impairment in fear conditioning learning and memory.

Discussion
SNARE fusion machinery has been postulated to underlie postsynaptic plasticity by regulating the number and 
composition of neurotransmitter receptors10–13. In this study, we examined the role of the t-SNARE syntaxin-3 
in synaptic transmission and synaptic plasticity in vivo using syntaxin-3 cKO mice (Figs. 1 and 2). We observed 
no significant differences between syntaxin-3 cKO mice and control mice with respect to basal CA1 neurotrans-
mission, LTP, learning and memory (Figs. 3–6). We also found that the deletion of syntaxin-3 occurs not only in 
postsynaptic CA1 neurons but also in presynaptic CA3 neurons, but the responses evoked by paired stimulations 
remained unchanged in cKO mice (Fig. 3). Together these results may argue against a major role of syntaxin-3 in 
CA1 basal glutamate transmission and LTP.

Our present results are consistent with the previous study that syntaxin-3 is inconsequential for basal trans-
mission (Fig. 3)11. However, contrary to the previous finding that suggests an important role of syntaxin-3 during 
LTP11, syntaxin-3 cKO did not cause CA1 LTP impairment in our model (Fig. 4). Furthermore, our results are 
reflected behaviorally; we found that spatial and contextual learning were intact in syntaxin-3 cKO mice (Figs. 5 
and 6) indicating syntaxin-3 is dispensable in hippocampal-based learning. It is possible that the different con-
clusions may be attributed to the use of different methods to generate models lacking syntaxin-3. Previous work 
used shRNA mediated silencing to generate syntaxin-3 KDs and although RNAi is an effective tool to reduce the 

Figure 4.  Syntaxin-3 cKO exbibits normal long-term potentiation. (a,b) Average fEPSPs slope (a) in control 
and syntaxin-3 cKO slices (b) 20 min before (1), immediately after theta burst stimulation (15 bursts of 4 pulses 
at 100 Hz with interburst internal of 200 msec) (2), and 60 min after (3). Throughout recording, the stimulation 
intensity was set to give a baseline fEPSP slope 30% of maximum evoked slopes. Error bars indicate SEM 
(animals: n = 10 for control and 11 for syntaxin-3 cKO). N.S. indicates nonsignificant differences between the 
two groups (p > 0.05); two-sample t-test. (c) Representative recordings of fEPSPs of control and syntaxin-3 cKO 
at baseline (1), immediately after LTP induction (2) and 50 min after LTP induction (3).
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Figure 5.  Tissue-specific syntaxin-3 KO mice exhibit normal learning and memory in Morris water maze task. 
(a) Protocol outline used for Morris water maze test. A total of 4 trials were conducted on each animal per day, 
and entry points to the pool were randomized. The distance and latency to find the platform was measured 
for a visible platform on days 1 to 3 and a hidden platform on days 4 to 12. The hidden platform location 
was modified from the visible platform. During the probe test, the platform was removed from the pool and 
percentage of time spent in the quadrant of the previous location of the platform was calculated from a total 
recording time of 60 sec. (b) The training acquisition curves of finding the visible (days 1 to 3) or hidden (days 
4 to 15) platform. Average latency of finding the platform during the 4 daily trials. (c) On days 6, 9 and 12, 
time spent in the quadrant where the platform was previously located was measured. Error bars indicate s.e.m. 
(animal n = 5 for both groups). Both control and cKO groups spent more time in the trained quadrant than the 
random 25%. N.S. indicates nonsignificant (p > 0.05) between the two groups; mixed ANOVA test.

Figure 6.  Syntaxin-3 cKO mice exhibit fear conditioning which is indistinguishable from control mice. 
Freezing time ratio (%) between control (n = 5) and syntaxin-3 cKO (n = 5) mice before shocks, aftershocks, 
2nd day post shocks and 7th day post shocks. Control and syntaxin-3 cKO groups exhibited increased freezing 
behavior after the administration of electrical shock. Both groups retained the increased freezing behavior one 
and seven days after conditioning. Statistical analyzes found no significant differences (p > 0.05) in freezing 
behavior of syntaxin-3 flox control mice and syntaxin-3 cKO mice. N.S. indicates nonsignificant; mixed 
ANOVA test.
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expression of target genes, the potential for off-target and nonspecific effects need to be considered30. It is also 
possible that syntaxin-3 cKO could be developmentally compensated by other syntaxin isoforms, the most likely 
candidate being syntaxin-4. However, this adaptive compensatory mechanism is triggered by RNA degradation31, 
while the model we selected for deleting syntaxin-3 takes advantage of gene trapping and does not produce 
unstable mRNA. As such, expression of a stable β-galactosidase/neomycin phosphotransferase fusion (β-geo) 
mRNA is produced in lieu of syntaxin-3 and RNA instability does not pose a problem in our experiments (Fig. 1). 
Moreover, the lack of significant changes in syntaxin-3 cKOs cannot be entirely explained by developmental com-
pensation. In our previous study, we showed that syntaxin-4 cKO exhibit significant effects including decreased 
CA1 fEPSP without changes in presynaptic release probability of the Schaffer collateral-CA1 synapses, reduced 
magnitude of theta-burst stimulation-induced LTP and impaired spatial learning and memory as demonstrated 
by Morris water maze test15. Therefore, the results obtained from conditional syntaxin-3 and -4 KOs are more 
consistent with the hypothesis that syntaxin-4 is the critical isoform required for postsynaptic functions.

The discrepancy between our current work and the previous study11 regarding LTP may also be explained 
by the difference in the LTP inducing protocol. In the present experiments, as well as our previous study about 
the role of syntaxin-4 in LTP15, we used a theta-burst stimulation protocol to induce CA1 LTP. This protocol is a 
widely used and more physiologically relevant LTP inducing protocol believed to be closely related to learning 
and memory formation32,33. Using this protocol, we induced control-like LTP in syntaxin-3 cKO mice (Fig. 4), 
which were in keeping with unimpaired learning behaviors in Morris Water maze (Fig. 5) and fear conditioning 
(Fig. 6) tests. On the other hand, the previous study used a stronger high frequency protocol and demonstrated 
impaired LTP by syntaxin-3 KD11. While it remains to be tested whether the LTP induced by the high frequency 
stimulation is compromised in syntaxin-3 cKO mice, this does not contradict to our present results. Normal theta 
burst induced LTP by syntaxin-3 cKO mice suggests that AMPARs are inserted to the surface during this type of 
LTP. Confirming the normal AMPAR receptor trafficking in syntaxin-3 cKO neurons during LTP using more cell 
biological approaches would be the scope of a future study.

Although syntaxin-4 cKOs strongly reduced basal neurotransmission, it did not completely abolish LTP, sug-
gesting that other syntaxin isoforms such as syntaxin-3 may potentially partially contribute to LTP. To determine 
whether syntaxin-3 does marginally contribute, it would be necessary to use an experimental method that enables 
a more acute removal of syntaxin-3 from pyramidal neurons such as tamoxifen-induced conditional knockout. In 
this case, syntaxin-3 flox mice expressing an inducible CaMK2-Cre gene would be needed. Alternatively, the role 
of syntaxin-3 could be examined in the background of syntaxin-4 cKO and double flox mice of syntaxin-3 and 
syntaxin-4 expressing CaMK2a-Cre would need to be generated. With such experiments, it would be possible to 
determine whether syntaxin-3 does contribute to synaptic plasticity.

Recent studies indicate a distinct vesicular sorting of AMPA and GABA receptors34. The use of syntaxin cKO 
mice in future studies will provide an opportunity to study the role of SNARE proteins not only in the regula-
tion of ionotropic glutamate receptors, but also in GABA receptors since CA1 neurons receive inhibitory inputs 
from neighboring interneurons in the hippocampus35. Such studies will provide new insight into the mechanisms 
involving the delivery of inhibitory GABA receptors by distinct SNARE proteins.

Syntaxin-3 is an essential protein for survival in mice and is ubiquitously expressed throughout the organism, 
especially the brain36. A recent study using mast cell specific syntaxin-3 KO mice indicated an essential role of this 
protein in mast cell exocytosis19. However, our results suggest that its deletion in CA3 neurons does not impair 
the release of glutamate (Fig. 3). In contrast, syntaxin-1B has been shown to play a critical role in glutamate 
release from pyramidal neurons37. Therefore, we speculate that syntaxin-3 may play a role in chemical release 
from other types of neurons or glia. By crossing syntaxin-3 flox mice with other tissue specific Cre mice, the 
functional role of syntaxin-3 in exocytosis could be elucidated in future experiments. Consistent with the lim-
ited impact of syntaxin-3 cKO on hippocampal CA3-CA1 synapses, endogenous syntaxin-3 mRNA expression 
and its protein level was surprisingly low in hippocampal and cortex pyramidal neurons (Figs. 2 and S2). Future 
work will elucidate the role of syntaxin-3 in the strongly expressed regions. In summary, our present experi-
ments provide convergent evidence suggesting that syntaxin-3 is dispensable in CA1 basal transmission, LTP and 
hippocampus-dependent learning and memory.

Materials and Methods
Animals.  For experiments, we used mice between the ages of 2.5–6 months, without preferences on sex. The 
mice were maintained in a vivarium on a 12-hr light on/off cycle and at a temperature between 22–23 °C. Mice 
were given ad libitum access to water and food. All experiments performed were in accordance with the guide-
lines and policies of the Canadian Council on Animal Care and were approved by the animal care committee of 
the University Health Network.

Generation of forebrain-specific syntaxin-3 KO mice.  Syntaxin-3 flox/flox mice were previously cre-
ated using embryonic stem (ES) cells from EUCOMM (clone EUCE320f12)19. We purchased C57BL/6 mice with 
CaMK2a-Cre20 from the Jackson Laboratory and generated forebrain-specific syntaxin-3 KO mice. Genotyping of 
mice was performed using PCR by extracting genomic DNA from tail biopsies. Syntaxin-3 conditional KO mice 
were developmentally normal, fertile and progressed to adulthood without observable behavioral abnormalities. 
For all experiments, syntaxin-3 flox mice without CaMK2a-Cre were used as the control group.

X-gal Staining on mouse brain sections.  We used a previously described protocol38 with slight modifica-
tions. The mouse was initially anesthetized using a sodium pentobarbital (Somnotol) (70 mg/kg, intra-peritoneal 
injection, WTC Pharmaceuticals). The mouse was then perfused with PBS for 5 min and followed by 4% PFA/
PBS for another 5 min. The brain was dissected out and post-fixed with 4% PFA/PBS overnight at 4 °C. The 
fixed brain was washed with PBS and then incubated with 30% sucrose overnight. Sagittal brain slices of 40 µm 
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thickness were obtained via a vibratome (VT1200, Leica Microsystems, Richmond Hill, Canada). These sections 
were washed three times with PBS and incubated with a staining buffer for 10 min at room temperature. The 
cryo-section was then incubated with 1 mg/ml X-gal in a staining buffer supplemented with 5 mM Potassium 
Ferricyanide and 5 mM Potassium Ferrocyanide for 3 hrs at 37 °C.

Nissl Staining on mouse brain sections.  The mouse was initially perfused with PBS for 5 min then sub-
sequently perfused with 10% formalin for an additional 5 min. The mouse brain was dissected out and post-fixed 
with 10% formalin overnight at 4 °C. The fixed brain was washed with PBS and incubated with 30% sucrose over-
night. Cryostat sections of 25 μm were obtained, dried for at least 3 days and then processed with chloroform, 
100%, 95%, and 70% ethanol sequentially. Staining with 0.1% cresyl violet was performed at 37 °C for 3 min bath. 
The sections were then washed quickly in distilled water, differentiated in 90% ethanol for 1–1.5 min and cleared 
in xylene twice for 5 min.

In situ hybridization.  We generated an anti-sense probe with 3′ ~500 bp mouse syntaxin-3 cDNA which 
was subcloned in PstI-EcoRI site of pBluescript SKII. The plasmids were then linearized by digesting with BamHI 
and subjected to in vitro transcription. In situ hybridization on the coronal hippocampus section was carried 
out as described previously15. Briefly, digoxigenin (DIG) labeled anti-sense RNA probe for syntaxin-3 were 
generated according to manufacture’s protocol (Roche, Laval, Canada). Alkaline phosphatase (AP)-conjugated 
anti-DIG antibody (Roche) was used to detect hybridized probe. AP activity was detected by 5-bromo-4-chloro- 
3-indolyl-phosphate (BCIP, Roche) and 4-nitoro blue tetrazolium chloride (NBT, Roche) in NTMT (100 mM 
NaCl, 100 mM Tris-Cl pH9.5, 50 mM MgCl2, 0.1% Tween20, 2 mM levamisol).

Immunofluorescence microscopy.  The brain was perfused with PBS and 10% formalin followed by 
post-fix with 10% formalin overnight at 4 °C. After 30% sucrose incubation, 25 µm sections were sliced using a 
Leica CM1950 cryostat. Sections were permeabilized with 0.1% TritonX-100 in PBS followed by blocking with 5% 
bovine serum albumin (BSA) in 0.1% TritonX-100 in PBS. Sections were incubated in anti-Syntaxin-3 antibody 
(Proteintech, rabbit polyclonal, 1:400). Secondary antibody (Goat anti-Rabbit IgG antibody, Alexa flour 555, 
Invitrogen) was applied to the sectioned followed by tertiary antibody (Rabbit anti-Goat IgG antibody, Alexa 
flour 555, Invitrogen) to enhance the signal. Images were taken with a fluorescent microscope (model Olympus 
BX61).

Preparation of hippocampal slices for electrophysiological recordings.  The animal was anesthe-
tized using sodium pentobarbital as described above. Before decapitation, the animal was infused transcardiacally 
with an ice-cold high sucrose dissection solution containing (in mM): 300 sucrose, 3.5 KCl, 2 NaH2PO4, 20 glu-
cose, 0.5 CaCl2, 7 MgCl2 and 5 HEPES (pH adjusted to 7.4). The brain was rapidly dissected and hemi-sectioned 
and sagittal slices of 400 µm thickness were obtained via a vibratome. Post sectioning, the brain slices were stabi-
lized in oxygenated (95% O2 and 5% CO2) artificial cerebrospinal fluid (ACSF) at least 1 hour before recording. 
The components of ACSF were (in mM): 125 NaCl, 25 NaHCO3, 10 glucose, 3.5 KCl, 1.25 NaH2PO4, 1.3 MgSO4, 
2 CaCl2 (pH7.4 when aerated with 95% O2 and 5% CO2).

Electrophysiological recordings.  Each brain slice was submerged in a chamber and perfused with oxy-
genated ACSF at a high flow rate of 15 mL/min. All recordings were conducted at room temperature. Signals were 
recorded using a 700B amplifier and a digitizer (Digidata 1550, Molecular Devices/Axon Instruments, Sunnyvale, 
California). Data collection, storage and analysis were completed using PClamp software (version 10, Molecular 
Devices). These signals were recorded in frequencies between 0–5 kHz and digitized at 50 KHz. To evoke synaptic 
field potentials, a bipolar stimulating electrode (made of polyimide-insulated stainless-steel wire, outer diameter 
0.1 mm; Plastics One, Roanoke, Virginia, USA) was placed in the stratum radiatum of the CA2 region. Constant 
current pulses (10–150 μA) were generated via a Grass stimulator (S88, Natus Neurology Incorporated – Grass 
Products, Warwick, Rhode Island) and delivered through an isolation unit every 30 sec. Evoked responses were 
recorded extracellularly from the stratum radiatum (apical dendritic layer) of the CA1 region. Recording elec-
trodes were made of thin-walled glass tubes (TW150F-4, World Precision Instruments, Sarasota, Florida) and 
filled with a solution of 150 mM NaCl and 2 mM HEPES (pH 7.4; resistance of 1–2 MΩ).

For assessing CA1 LTP, field EPSPs (fEPSPs) were evoked at about 30% of the maximal stimulation inten-
sity. Baseline fEPSPs were monitored for 20 min prior to LTP induction. Slices with unstable baseline responses 
(≥10% variations of baseline response mean) were excluded from additional recordings. A theta burst stimu-
lation with 15 bursts of four pulses at 100 Hz and an inter-burst interval of 200 ms was used to inducing LTP. 
Following the theta burst stimulation, responses were recorded for an additional 60 min.

Morris water maze.  Mice underwent visible platform training for 3 days and then hidden platform training 
for 12 days (4 trials per day and inter-trial intervals of 10–15 min). During the hidden platform training, three 
probe tests were performed at day 3, 6 and 9 and reversal training was conducted at days 10–12. For the visible 
platform training, if the mice were unable to find the platform within 90 sec, they were guided to the platform 
by the experimenter’s hand. For the hidden platform training, the procedure was identical to the visible platform 
training with the exception that the platform was submerged underwater at a depth of 1.5 cm and the platform 
location was modified. For the reversal training, the platform location was moved to a quadrant different from 
that in the hidden platform training. The times required to reach the platform during the visible and hidden plat-
form trials and to spend in the pool quadrant in the probe test where the platform was previously located were 
analyzed.
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Contextual fear conditioning.  Mice were placed in a conditioning chamber and allowed to freely explore 
the chamber for 2.5 min. During the exploring period, freezing behavior (immobility) was measured as a baseline. 
For fear conditioning, mice experienced 3 rounds of foot shocks (each at 0.75 mA for 2 seconds) and freezing 
behaviors were assessed during the following 2.5 min. Mice were similarly reassessed 1 and 6 days later to measure 
contextually conditioned fear memory.
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