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Abstract 
 

Purpose: 

Given the limitations of extant models for normal tissue complication probability estimation for 

osteoradionecrosis (ORN) of the mandible, the purpose of this study was to enrich statistical 

inference by exploiting structural properties of data and provide a clinically reliable model for 

ORN risk evaluation through an unsupervised-learning analysis. 

Materials and Methods: 

The analysis was conducted on retrospective data of 1,259 head and neck cancer (HNC) patients 

treated at the University of Texas MD Anderson Cancer Center between 2005 and 2015. The 

(structural) clusters of mandibular dose-volume histograms (DVHs) were identified through the 

K-means clustering method. A soft-margin support vector machine (SVM) was used to 

determine the cluster borders and partition the dose-volume space. The risk of ORN for each 

dose-volume region was calculated based on the clinical risk factors and incidence rates.  

Results: 

The K-means clustering method identified six clusters among the DVHs. Based on the first five 

clusters, the dose-volume space was partitioned almost perfectly by the soft-margin SVM into 

distinct regions with different risk indices. The sixth cluster overlapped the others entirely; the 

region of this cluster was determined by its envelops. These regions and the associated risk 

indices provide a range of constraints for dose optimization under different risk levels.  

Conclusion: 

This study presents an unsupervised-learning analysis of a large-scale data set to evaluate the risk 

of mandibular ORN among HNC patients. The results provide a visual risk-assessment tool 

(based on the whole DVH) and a spectrum of dose constraints for radiation planning.  

 

 

Keywords:   Radiation injuries, Osteoradionecrosis, Normal tissue complication probability, 

Clustering, Unsupervised machine learning  
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1. Introduction 
 

Osteoradionecrosis (ORN) of the mandible is a debilitating side effect of radiation therapy for 

head and neck cancer (HNC) patients [1, 2, 3, 4, 5]. ORN is commonly defined as non-healing 

bone for a period of at least three months due to exposure to radiation [6, 7, 8]. Despite its 

relatively low prevalence [9, 10, 11], ORN may severely affect the quality of life of surviving 

HNC patients; it is often accompanied by pain, dysaesthesia, dysgeusia, and difficulties in 

mastication and speech, and in case of progression, it may lead to infection, bone fracture, and 

intraoral or extra-oral fistulae [1, 6, 12, 13, 14]. With the improved life expectancy of HNC 

patients, especially among young adults with human papillomavirus associated tumors [11], the 

importance of ORN prevention strategies in modern practice is spotlighted more than ever 

before. This requires developing reliable risk evaluation models for ORN to guide dose 

optimization/adaptation in radiation therapy planning. 

Normal tissue complication probability (NTCP) is a widely accepted prediction tool for radiation 

toxicity [15, 16, 17, 18, 19]. NTCP models aim to provide the likelihood of treatment-induced 

complications based on the radiation dose delivered to organs at risk (OARs) as well as other 

clinical risk factors. The current paradigm of NTCP modeling for HNCs relies on supervised-

learning (classification) methods, most popularly the classical logistic regression method [20]. 

During the past decade, a vast number of classification-based NTCP models have been proposed 

for various HNC treatment-induced complications [11, 21, 22, 23, 24, 25, 26, 27, 28, 29]. The 

classification methods, however, have a major limitation for NTCP modeling—due to 

multicollinearity of dose features—which undermines clinical reliability of these models. 

Distribution of radiation dose over an OAR is commonly represented by a dose-volume 

histogram (DVH). As an OAR’s DVH depicts a distribution, the dose-related features for these 

models (i.e., DVH values) are highly correlated. As a result, the entire DVH curve is summarized 

into a single number (e.g., mean dose), which completely disregards the distribution of radiation 

dose and the fact that clinically different DVH curves—with different toxicity outcomes—may 

share a feature value. Single-parameter evaluation of dose distributions has been reported as a 

caveat of early NTCP models (e.g., LKB) for clinical use [16], yet it has persisted throughout the 

subsequent data-driven models, due to the multicollinearity issue. 

In addition, the best performance of classification methods concerns separable data [30]. In 

general, these methods aim to learn the best separator of two training classes (i.e., safe radiation 

plans vs. those leading to complications) from observed clinical data. They perform well even if 

the data is softly separable (i.e., with a relatively few violations), but in case of inseparable (i.e., 

highly mixed) classes, they generally do not perform better than a naive Bayes classifier. Naive 

Bayes is a simple classifier whose predictions mainly rely on the observed incidence rates [30]. 

The effect of data inseparability on classification accuracy is shown in Appendix A. Based on 

available data of mandibular ORN development among HNC patients [31], there exists evidence 

that the two classes of ORN and non-ORN patients are highly inseparable by radiation dose to 

the mandible; see Appendix B. The inseparability observation is aligned with an evidence-based 

pathogenesis theory of ORN, suggesting that radiation arteritis leads to the development of a 

hypocellular, hypovascular, and hypoxic environment, and consequently ORN [6, 7]. This 

implies that a decisive factor in ORN development is the radiation dose received by mandibular 

arteries, including arterioles and capillaries. Capturing the dose delivered to such a fine network 

is impractical with the current technologies. On the other hand, DVHs summarize the spatially 
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(3D) distributed radiation dose into one-dimensional data. For statistical inference, such a 

“summary” is a sufficient statistic only if radiosensitivity of the OAR is spatially homogeneous. 

However, homogeneous distribution of arteries across the mandible is an unrealistic assumption. 

This suggests that, while mandibular DVHs are the best available clinical indicator of ORN 

development, they generally do not contain sufficient information to separate the two classes 

(ORN vs. non-ORN) rigorously as intended in the advanced classification methods.  

The aforementioned limitations of supervised-learning methods motivate alternative analyses to 

build more informative and clinically reliable models for evaluation of the risk of ORN. This 

paper presents an unsupervised-learning approach for ORN risk assessment and the results of the 

analysis on retrospective data of a large cohort of HNC patients.  

 

2. Materials and Methods 
 

2.1. Data 

The analysis was conducted on a data set compiled and made publicly available by van Dijk et 

al. [31]. The data is composed of anonymized (retrospective) clinical records and the mandibular 

DVHs of 1,259 HNC patients treated by radiation therapy alone or in combination with surgery 

and/or chemotherapy at the University of Texas MD Anderson Cancer Center between 2005 and 

2015, following an institutional review board approval (RCR030800). The clinical records 

include age, gender, cancer subsite, T-stage, N-stage, pre-radiation (within 6 weeks before 

treatment) dental extraction status, smoking status and pack-years, chemotherapy treatment, 

definitive vs. postoperative radiation therapy, and the mandible bone volume. The reported DVH 

values include D2%, D5% to D95% in 5% increments, D97%, D98%, and D99% as well as 

V5Gy to V70Gy in 5 Gy increments; the minimum, maximum, and mean dose (Gy) delivered to 

the mandible are also included. Out of the 1,259 patients, 1,086 (86.3%) have been reported 

ORN-free during the minimum of 12 months of post-therapy follow-up; 173 (13.7%) patients are 

reported to have developed ORN (grade I to IV) during the follow-up period. A complete 

description of the data, including more information about the cohort and treatments as well as the 

details of data extraction and processing, has been presented in [11]. The data is publicly 

available at https://doi.org/10.6084/m9.figshare.13568207. 

 

2.2. Analysis 

This paper presents a secondary analysis of the data set described above; van Dijk et al. [11] 

have used this data to train a multivariate logistic regression NTCP model for mandibular ORN 

(any grade). Their univariate analysis, followed by AIC-based forward stepwise selection, has 

identified D30% and pre-radiation dental extraction (PDE) status as the model features; PDE is a 

nominal (binary) feature indicating no/edentulous vs. dental extractions. While their statistical 

analysis rigorously identifies radiation intensity and dental extraction as significant predictive 

factors of ORN development, due to multicollinearity of the dose features, the DVH curve is 

reduced to D30% in their model. Besides, our analysis shows that the performance of the 

proposed logistic regression model is almost equivalent to that of naive Bayes (AUC of 0.77 for 

logistic regression vs. 0.75 for naive Bayes); see Appendix C. This confirms that, due to 

inseparability of classes, the logistic regression predictions are mainly driven by the ORN 

incidence rates with respect to the model features. Based on this observation, we present a 
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cluster-based analysis that provides more clinical insight about the risk of ORN development as a 

function of radiation intensity and dental extraction status. 

Our method takes advantage of the structural properties of mandibular DVHs to divide them into 

disjoint subgroups (of similar radiation plans), each spanning a distinct region of the dose-

volume space. It then renders a risk index for each region based on the observed incidence rate of 

ORN (depending on PDE status) in the associated DVH subgroup. The analysis was conducted 

in three steps, described below. Steps 1 and 2 were performed using the scikit-learn library of 

Python [32].  

Step 1: The K-means clustering method [30] was employed to identify the inherent clusters of 

the mandibular DVHs. To this end, each DVH curve was represented as an array of dose 

values (i.e., Dx% for x% ranging from 2% to 99%); the inertia (within-cluster sum-of-

squares) criterion was used to identify an optimal number of clusters. 

Step 2: To partition the dose-volume space with respect to these clusters, the shared borders of 

adjacent clusters were identified by a soft-margin support vector machine (SVM) [30]. 

The analysis was conducted pointwise (for each Dx% individually) to obtain smooth 

borders among the clusters with minimal violations. 

Step 3: For each region of the dose-volume space, spanned by an identified cluster, the ORN 

incidence rate (within the cluster) per PDE status was reported as the associated risk 

index. As a result, each dose-volume region was associated with two risk indices, for 

no/edentulous and dental extractions, separately. 

 

3. Results 
 

The K-means clustering method identified 5-6 clusters among the mandibular DVHs. In general, 

as the number of clusters (K) increases, the clustering inertia decreases; an optimal number of 

clusters is identified by the value of K after which the inertia curve behaves linearly. Figure 1 

illustrates the inertia plot of our analysis. Based on this figure, K = 5 is optimal; however, the 

sixth cluster identified by the clustering method (through K = 6) is structurally different from the 

first five clusters and provides additional insight. Therefore, we considered both cases.  

 

Figure 1: Inertia plot of the K-means clustering method 
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(a) K = 5      (b) K = 6 

Figure 2: Visualization of the identified clusters 

 

Figure 2 illustrates the identified clusters by the K-means clustering method, color-coded for 

better visualization. We have also represented DVHs directly by Dx% values (in Gy) rather than 

the conventional dose-volume axes, to increase readability. An important distinction between the 

results for K = 5 and K = 6 concerns the sixth cluster, depicted in black in Figure 2b. This cluster 

is mainly composed of a group of DVHs with high dose (above 60 Gy) almost constantly 

imposed over most of the mandible volume. While this group is visually distinguishable from the 

other clusters, with K = 5, it has been identified as a part of the top cluster, illustrated in red, 

implying it is most similar to that cluster structurally. 

As the next step of the analysis, a soft-margin SVM was employed to identify the cluster borders 

and partition the dose-volume space; SVM renders the best separator of two classes. As the 

analysis was performed pointwise, the best separating point (with minimum violations) was 

identified for every pair of adjacent clusters for each Dx%. With K = 5, as the black cluster was 

considered a part of the red cluster and highly overlapping with the others in the most left and 

right parts of the plot, SVM failed to identify its border in the [D2%, D5%] and [D90%, D99%] 

intervals. However, with K = 6 and exclusion of the sixth (black) cluster, SVM was able to 

identify the cluster borders and partition the dose-volume space almost perfectly. For the sixth 

cluster, we determined the corresponding dose-volume region by its envelopes (i.e., pointwise 

minimum and maximum dose). Figure 3 illustrates the cluster borders by dashed black lines. As 

the choice of K = 6 provided a more accurate partition of the dose-volume space, we present the 

final step of the analysis with six clusters. 

For each part of the dose-volume space, characterized by the borderlines of the identified 

clusters, two risk indices were calculated based on the observed incidence rate of ORN in the 

corresponding cluster per PDE status. Table 1 reports the observed frequency of ORN 

development among the patients for each cluster per PDE status. In this table, PDE = 0 indicates 

no/edentulous dental extractions, and PDE = 1 concerns performed dental extractions. We have 

labeled the first five clusters according to their order from the lower left to the upper right 

corners of the DVH plot in Figure 3b; cluster No. 6 is the overlapping cluster, illustrated in black 

in Figures 3b and 3c. The columns “ORN incidence” indicate the number of patients with a 
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(a) K = 5: Cluster borders 

 

(b) K = 6: Borders of the first five clusters   (c) K = 6: Envelops of the sixth cluster 

Figure 3: Cluster borders identified by a soft-margin SVM 

 

 

 

Table 1: ORN incidence rates among the identified clusters per PDE status 

Cluster 

No. 

PDE = 0 PDE = 1 

ORN incidence Risk index (r) ORN incidence Risk index (r) 

1 0 out of 58 0.0 % 0 out of 9 0.0 % 

2 2 out of 68 2.9 % 0 out of 8 0.0 % 

3 8 out of 273 2.9 % 10 out of 86 11.6 % 

4 39 out of 318 12.3 % 34 out of 144 23.6 % 

5 31 out of 118 26.3 % 14 out of 47 29.8 % 

6 21 out of 82 25.6 % 14 out of 48 29.2 % 

PDE = Pre-radiation dental extraction (0 means no/edentulous and 1 means dental extractions.) 
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(a) No/edentulous dental extractions (PDE = 0)  (b) With dental extractions (PDE = 1) 

Figure 4: Risk indices of dose-volume regions 

 

positive ORN record out of the total number of patients in that cluster with the same PDE status, 

and “Risk index (r)” is the corresponding ratio. Figure 4 shows the risk indices on the dose-

volume regions identified in the previous step; each region spans the area between two 

consecutive cluster borders, except for the region of cluster No. 6, which was determined by its 

envelops. The borders of the sixth cluster are depicted by dotted lines in Figure 4. 

The results clearly show significant correlations between the risk of ORN and radiation intensity 

as well as PDE status, which is aligned with the univariate analysis results and confirms the 

relevance of structural clusters to the risk of ORN development. As mentioned earlier, cluster 

No. 6 (black) is structurally most similar to cluster No. 5 (red); it was identified as a part of the 

red cluster with K = 5. The results also show that these two clusters have very similar risk 

indices in both PDE categories (25.6% vs. 26.3% for PDE = 0 and 29.2% vs. 29.8% for PDE = 

1). This further reveals the merit of the analysis results. Our method provides a visual tool for 

ORN risk evaluation of radiation plans based on the region that its mandibular DVH falls in and 

the patient’s PDE status. As the risk is characterized by the whole DVH (not a single-value 

summary), the results provide a spectrum of dose constraints (i.e., limit on various Dx% values 

for dose optimization) to ensure that the risk of ORN development stays below a certain level. 

 

4. Discussion 
 

The main advantage of the presented analysis is evaluation of radiation plans based on the whole 

DVH. As mentioned earlier, due to the multicollinearity issue, DVHs are reduced to a single-

value summary in classification-based NTCP models, which disregards the fact that clinically 

different DVH curves—with different toxicity outcomes—may share a feature value. This can be 

observed by the toxicity outcome for the patients whose D30% is in the range of 55 Gy to 60 Gy, 

in our data set. According to van Dijk et al. [11] model, the risk of ORN for these patients (per 

PDE status) is relatively the same, as their mandibular DVHs have close D30% values. However, 

the actual treatment outcomes for these patients are different and arguably determined by the 

shape of DVHs. Figure 5 shows these patients’ DVHs; the incidence of ORN among the blue 

DVHs is 13.6% (3 out of 22) and among the black DVHs is 23.5% (12 out of 51). Other than this 
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Figure 5: Different ORN incidences among DVHs with the same D30% value 

 

important difference, the van Dijk et al. [11] and our models predict similar risks for these 

patients, i.e., 13.0%-19.0% by van Dijk et al. [11] compared with 12.3%-25.6% (of the blue and 

black clusters) by our model for PDE = 0 and 22.4%-31.2% by van Dijk et al. [11] compared 

with 23.6%-29.2% (of the blue and black clusters) by our model for PDE = 1.  

Our motivation for this analysis method was the observation of inseparability of classes (i.e., 

ORN vs. non-ORN) by measurable features; see Appendix B. Incidence rate is the unique 

minimum-variance unbiased estimator (MVUE) for the mean of a Bernoulli random variable 

representing the hidden (unmeasurable) features. In the absence of information about the main 

separating features (i.e., highly inseparable classes by measurable features), such an estimator 

offers the most that can be learned from the data. This is supported by the close performances of 

logistic regression and naive Bayes classifiers on our data; see Appendix C. Those estimates will 

be naturally more accurate if the data is divided into smaller categories (clusters) characterized 

by statistically significant (measurable) features, to consider their correlations with the outcome. 

Thus, the presented analysis not only considers the whole DVH (not a single-value summary), 

but also enjoys a simple yet robust statistical-inference foundation.  

The proposed approach has its own limitations to be considered. First, the choice of the number 

of clusters (K) in the K-means method is relatively subjective. While the inertia criterion 

provides straightforward guidance to identify the number of clusters from the mathematical 

perspective, our analysis showed that such a recommendation is not necessarily optimal from the 

application standpoint; repeating the analysis with a few different values of K and comparing and 

contrasting the results will lead to well-informed conclusions. Second, confidence on the risk 

indices rendered by our model directly relies on the number of observations for each cluster, 

independent of the others. For example, the inference of r = 0.0% for the first and second regions 

of the dose-volume space in Figure 4b is made based on 9 and 8 observations, respectively. 

While this estimate is acceptable for these low-dose regions, in general, such small samples are 

highly sensitive to noise. Finally, ORN has low prevalence, which makes the classes of ORN and 

non-ORN patients unbalanced. This poses a challenge to statistical inference, in general, both 

supervised- and unsupervised-learning methods.  
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Visualization tools play a key role in clinical interpretability and reliability of mathematical 

models. In our analysis, visualization of the identified clusters by the K-means clustering method 

uncovered the distinction between the sixth and first five clusters and led to an improved 

partitioning of the dose-volume space. Visualization of the intermediate results may also provide 

additional insight for radiation planning. For example, the sixth (black) cluster may be named the 

cluster of post-operative radiation plans; more than 77% of the patients in this cluster have 

received post-operative radiation therapy while this percentage for the other clusters remains 

below 20%. The special shape of this cluster is easily detectable to oncologists, which 

immediately reveals the relatively high prevalence of ORN among this group of patients. 

Availability of a visualization dashboard to illustrate every step of the process (Figures 1 to 3)—

rather than just the final result (Figure 4)—can greatly improve clinical reliability of the 

proposed analysis for risk evaluation of ORN (with different data sets) and other complications. 

 

5. Conclusion 
 

This paper presents the results of an unsupervised-learning analysis for mandibular ORN risk 

evaluation on retrospective data of a large cohort of HNC patients treated by radiation therapy at 

the University of Texas MD Anderson Cancer Center between 2005 and 2015. The presented 

analysis provides a visual tool for ORN risk assessment and a spectrum of dose constraints on 

the mandible for radiation planning with respect to this complication. The unsupervised-learning 

approach is extendable to other radiation therapy side effects to improve the current state of 

NTCP modeling. 

 

 

References 
 

[1]   A. S. Jacobson, D. Buchbinder, K. Hu, and M. L. Urken. Paradigm shifts in the management 

of osteoradionecrosis of the mandible. Oral Oncology, 46(11):795–801, 2010. 

[2]   I. J. Lee, W. S. Koom, C. G. Lee, Y. B. Kim, S. W. Yoo, K. C. Keum, G. E. Kim, E. C. 

Choi, and I. H. Cha. Risk factors and dose-effect relationship for mandibular 

osteoradionecrosis in oral and oropharyngeal cancer patients. International Journal of 

Radiation Oncology, Biology, Physics, 75(4):1084–1091, 2009. 

[3]   C. G. Murray, J. Herson, T. E. Daly, and S. Zimmerman. Radiation necrosis of the 

mandible: A 10 year study. Part I. Factors influencing the onset of necrosis. International 

Journal of Radiation Oncology, Biology, Physics, 6(5):543–548, 1980. 

[4]   M. S. Teng and N. D. Futran. Osteoradionecrosis of the mandible. Current Opinion in 

Otolaryngology & Head and Neck Surgery, 13(4):217–221, 2005. 

[5]   C. J. Tsai, T. M. Hofstede, E. M. Sturgis, A. S. Garden, M. E. Lindberg, Q. Wei, S. L. 

Tucker, and L. Dong. Osteoradionecrosis and radiation dose to the mandible in patients with 

oropharyngeal cancer. International Journal of Radiation Oncology, Biology, Physics, 

85(2):415–420, 2013. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.24.23287710doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.24.23287710
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 
 

[6]   A. Chronopoulos, T. Zarra, M. Ehrenfeld, and S. Otto. Osteoradionecrosis of the jaws: 

Definition, epidemiology, staging and clinical and radiological findings. A concise review. 

International Dental Journal, 68(1):22–30, 2018. 

[7]   R. E. Marx. A new concept in the treatment of osteoradionecrosis. Journal of Oral and 

Maxillofacial Surgery, 41(6):351–357, 1983. 

[8]   P. Pitak-Arnnop, R. Sader, K. Dhanuthai, P. Masaratana, C. Bertolus, A. Chaine, J-C. 

Bertrand, and A. Hemprich. Management of osteoradionecrosis of the jaws: An analysis of 

evidence. European Journal of Surgical Oncology, 34(10):1123–1134, 2008. 

[9]   B. M. Beadle, K-P. Liao, M. S. Chambers, L. S. Elting, T. A. Buchholz, K. Kian Ang, A. S. 

Garden, and B. A. Guadagnolo. Evaluating the impact of patient, tumor, and treatment 

characteristics on the development of jaw complications in patients treated for oral cancers: 

A SEER–Medicare analysis. Head & Neck, 35(11):1599–1605, 2013. 

[10]   T. Reuther, T. Schuster, U. Mende, and A. Kübler. Osteoradionecrosis of the jaws as a side 

effect of radiotherapy of head and neck tumour patients—A report of a thirty year 

retrospective review. International Journal of Oral and Maxillofacial Surgery, 32(3):289–

295, 2003. 

[11]   L. V. van Dijk, A. A. Abusaif, J. Rigert, M. A. Naser, K. A. Hutcheson, S. Y. Lai, C. D. 

Fuller, A. S. Mohamed, et al. Normal Tissue Complication Probability (NTCP) prediction 

model for osteoradionecrosis of the mandible in patients with head and neck cancer after 

radiation therapy: Large-scale observational cohort. International Journal of Radiation 

Oncology, Biology, Physics, 111(2):549–558, 2021. 

[12]   B. A. Jereczek-Fossa and R. Orecchia. Radiotherapy-induced mandibular bone 

complications. Cancer Treatment Reviews, 28(1):65–74, 2002. 

[13]   S. Otto, C. Pautke, T. Van den Wyngaert, D. Niepel, and M. Schiødt. Medication-related 

osteonecrosis of the jaw: Prevention, diagnosis and management in patients with cancer and 

bone metastases. Cancer Treatment Reviews, 69:177–187, 2018. 

[14]   D. Yang, F. Zhou, X. Fu, J. Hou, L. Lin, Q. Huang, and C. H. Yeh. Symptom distress and 

interference among cancer patients with osteoradionecrosis of jaw: A cross-sectional study. 

International Journal of Nursing Sciences, 6(3):278–282, 2019. 

[15]   X. A. Li, M. Alber, J. O. Deasy, A. Jackson, K. K. Jee, L. B. Marks, M. K. Martel, C. Mayo, 

V. Moiseenko, A. E. Nahum, et al. The use and QA of biologically related models for 

treatment planning: Short report of the TG-166 of the therapy physics committee of the 

AAPM. Medical Physics, 39(3):1386–1409, 2012. 

[16]   L. B. Marks, E. D. Yorke, A. Jackson, R. K. Ten Haken, L. S. Constine, A. Eisbruch, S. M. 

Bentzen, J. Nam, and J. O. Deasy. Use of normal tissue complication probability models in 

the clinic. International Journal of Radiation Oncology, Biology, Physics, 76(3):S10–S19, 

2010. 

[17]   G. Palma, S. Monti, M. Conson, R. Pacelli, and L. Cella. Normal tissue complication 

probability (NTCP) models for modern radiation therapy. In Seminars in Oncology, volume 

46, pages 210–218. Elsevier, 2019. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.24.23287710doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.24.23287710
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 
 

[18]   G. J. Kutcher and C. Burman. Calculation of complication probability factors for non-

uniform normal tissue irradiation: The effective volume method gerald. International 

Journal of Radiation Oncology, Biology, Physics, 16(6):1623–1630, 1989. 

[19]   A. Niemierko. A generalized concept of equivalent uniform dose (EUD). Medical Physics. 

26(6):1100, 1999. (Abstract) 

[20]   S. Stieb, A. Lee, L. V. Van Dijk, S. Frank, C. D. Fuller, and P. Blanchard. NTCP modeling 

of late effects for head and neck cancer: A systematic review. International Journal of 

Particle Therapy, 8(1):95–107, 2021. 

[21]   M. Bakhshandeh, B. Hashemi, S. R. M. Mahdavi, A. Nikoofar, and A. Vasheghani, M.and 

Kazemnejad. Normal tissue complication probability modeling of radiation-induced 

hypothyroidism after head-and-neck radiation therapy. International Journal of Radiation 

Oncology, Biology, Physics, 85(2):514–521, 2013. 

[22]   I. Beetz, C. Schilstra, F. R. Burlage, P. W. Koken, P. Doornaert, H. P. Bijl, O. Chouvalova, 

C. R. Leemans, G. H. de Bock, M. E. Christianen, et al. Development of NTCP models for 

head and neck cancer patients treated with three-dimensional conformal radiotherapy for 

xerostomia and sticky saliva: the role of dosimetric and clinical factors. Radiotherapy and 

Oncology, 105(1):86–93, 2012. 

[23]   I. Beetz, C. Schilstra, A. van der Schaaf, E. R. van den Heuvel, P. Doornaert, P. van Luijk, 

A. Vissink, B. F. van der Laan, C. R. Leemans, H. P. Bijl, et al. NTCP models for 

patientrated xerostomia and sticky saliva after treatment with intensity modulated 

radiotherapy for head and neck cancer: the role of dosimetric and clinical factors. 

Radiotherapy and Oncology, 105(1):101–106, 2012. 

[24]   F. Buettner, A. B. Miah, S. L. Gulliford, E. Hall, K. J. Harrington, S. Webb, M. Partridge, 

and C. M. Nutting. Novel approaches to improve the therapeutic index of head and neck 

radiotherapy: an analysis of data from the PARSPORT randomised phase III trial. 

Radiotherapy and Oncology, 103(1):82–87, 2012. 

[25]   J. A. Dean, K. H. Wong, H. Gay, L. C. Welsh, A-B. Jones, U. Schick, J. H. Oh, A. Apte, K. 

L. Newbold, S. A. Bhide, et al. Incorporating spatial dose metrics in machine learning-based 

normal tissue complication probability (NTCP) models of severe acute dysphagia resulting 

from head and neck radiotherapy. Clinical and Translational Radiation Oncology, 8:27–39, 

2018. 

[26]   J. A. Dean, K. H. Wong, L. C. Welsh, A-B. Jones, U. Schick, K. L. Newbold, S. A. Bhide, 

K. J. Harrington, C. M. Nutting, and S. L. Gulliford. Normal tissue complication probability 

(NTCP) modelling using spatial dose metrics and machine learning methods for severe acute 

oral mucositis resulting from head and neck radiotherapy. Radiotherapy and Oncology, 

120(1):21–27, 2016. 

[27]   M. Morimoto, H. P. Bijl, A. van der Schaaf, C-J. Xu, R. J. Steenbakkers, O. Chouvalova, Y. 

Yoshioka, T. Teshima, and J. A. Langendijk. Development of normal tissue complication 

probability model for trismus in head and neck cancer patients treated with radiotherapy: 

The role of dosimetric and clinical factors. Anticancer Research, 39(12):6787–6798, 2019. 

[28]   L. van den Bosch, A. van der Schaaf, H. P. van der Laan, F. J. Hoebers, O. B. Wijers, J. G. 

van den Hoek, K. G. Moons, J. B. Reitsma, R. J. Steenbakkers, E. Schuit, et al. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.24.23287710doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.24.23287710
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 
 

Comprehensive toxicity risk profiling in radiation therapy for head and neck cancer: A new 

concept for individually optimised treatment. Radiotherapy and Oncology, 157:147–154, 

2021. 

[29]   K. Wopken, H. P. Bijl, A. van der Schaaf, H. P. van der Laan, O. Chouvalova, R. J. 

Steenbakkers, P. Doornaert, B. J. Slotman, S. F. Oosting, M. E. Christianen, et al. 

Development of a multivariable normal tissue complication probability (NTCP) model for 

tube feeding dependence after curative radiotherapy/chemo-radiotherapy in head and neck 

cancer. Radiotherapy and Oncology, 113(1):95–101, 2014. 

[30]   G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction to statistical learning, 

volume 112. Springer, 2013. 

[31]   L. V. van Dijk, C. D. Fuller, and A. S. Mohamed. Dose-volume histogram (DVH) 

parameters of the mandible for normal tissue complication probability modelling. 2021. 

Available at: https://doi.org/10.6084/m9.figshare.13568207. 

[32]   F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. 

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, 

M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine 

Learning Research, 12:2825–2830, 2011.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.24.23287710doi: medRxiv preprint 

https://doi.org/10.6084/m9.figshare.13568207
https://doi.org/10.1101/2023.03.24.23287710
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 
 

Appendix A: Effect of Data Inseparability on Classification Accuracy 

 

(a) Separable data leading to a well-fitted model  (b) Inseparable data leading to a poorly fitted model 

Figure A.1: Data inseparability and its effect on logistic regression performance 
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Appendix B: ORN Data Inseparability by DVH Features 

The following figures show that the two classes of ORN-negative and ORN-positive patients in our 

data set are inseparable by D30% and pre-radiation dental extraction (PDE) status. Given only two 

variables, this could be shown on a single plot. However, for better visualization and providing more 

insight on the structure of the data, we illustrate the data inseparability in smaller groups; that is, for 

each pair of DVH cluster and PDE status separately. Evidently, if the whole data set is separable, it 

remains separable when divided in smaller groups. Also, for each patient, we have plotted D30% 

against the standard deviation (SD) of the delivered dose, for visualization purposes only, so all data 

points are not located on a horizontal line. 

 
(a) Cluster No. 1 (Cyan)    (b) Cluster No. 2 (Magenta) 

 
(c) Cluster No. 3 (Green)    (d) Cluster No. 4 (Blue) 

 
(e) Cluster No. 5 (Red)  (b) Cluster No. 6 (Black) 

Figure B.1: Data inseparability within the clusters for PDE = 0 
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(a) Cluster No. 1 (Cyan)    (b) Cluster No. 2 (Magenta) 

 
(c) Cluster No. 3 (Green)    (d) Cluster No. 4 (Blue) 

 
(e) Cluster No. 5 (Red)  (b) Cluster No. 6 (Black) 

Figure B.2: Data inseparability within the clusters for PDE = 1 

Figures B.1 and B.2 show that, in all D30%-PDE categories, the class of ORN-negative patients is 

dominant, and the two classes are highly mixed (inseparable). As we have used SD (y axis) for better 

visualization, the data inseparability by D30% (for each PDE status) is implied by nonexistence of 

vertical separators of “Negative ORN” and “Positive ORN” points. However, the fact that these classes 

cannot be separated by other lines/curves implies that including SD as a feature is not expected to 

improve the performance of a logistic regression model. These figures also reveal that introducing 

“DVH cluster” as an independent feature to a logistic regression model is not likely to significantly 

improve its performance, due to inseparability of data in all D30%-cluster-PDE categories. Finally, the 

existence of high (linear) correlations among Dx% features implies that replacing D30% with any 

other DVH feature (including the mean dose) will not improve the inseparability.  
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Appendix C: Logistic Regression vs. Naive Bayes 

 

(a) Logistic Regression     (b) Naive Bayes 

Figure C.1: Comparison of the performances of logistic regression and naive Bayes on the data (The 

features include D30% and PDE status for both models.) 
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