
INTRODUCTION

Alpha-synuclein is a soluble, 140-residue, predominantly 
presynaptic protein that is highly conserved in vertebrates and 
has been implicated in Parkinson’s Disease as well as other 
eponymously named “synucleinopathies” such as dementia 
with Lewy bodies and multiple system atrophy [1-7]. Several 
rare mutations in the alpha-synuclein gene (SNCA), have been 
identified in cases of familial Parkinson’s Disease (A53T, A30P, 
E46K, and most recently H50Q and G51D), and SNCA gene 
duplications and triplications similarly lead to familial PD [8-
15]. Lewy Bodies and Lewy Neurites, pathological hallmarks of 

the synucleinopathies, are composed largely of beta-sheet rich 
alpha-synuclein amyloid fibrils [3]. Alpha synuclein’s contribution 
to such disorders could in principle result either from a toxic 
gain of function resulting from synuclein oligomerization 
and/or aggregation, or from a loss or perturbation of normal 
synuclein function (or possibly from a combination of the two). 
Unfortunately, the normal functions of alpha-synuclein remain 
elusive, though in general it has been implicated in synaptic 
plasticity [16] and learning [17], neurotransmitter release [18,19], 
and synaptic vesicle pool maintenance [2,20,21]. 

Alpha synuclein is intrinsically disordered when free in solution 
[22-24]. The N-terminal ~100 residues of the protein constitute 
a lipid-binding domain that contains 7 imperfect 11-residue 
repeats, each centered on a variation of  a KTKEGV core 
consensus sequence. Similar repeat sequences are found in the 
exchangeable apolipoproteins, and as for many apolipoproteins, 
the N-terminal lipid-binding domain of alpha synuclein adopts an 
amphipathic helical structure upon binding to detergent micelles 
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or phospholipid vesicles. Residues 61-95 of the N-terminal 
domain constitute a hydrophobic region referred to as the NAC 
domain (for non-Aβ component of senile plaques) that may 
contribute critically to synuclein oligomerization and aggregation 
[1]. The acidic C-terminal ~40 residues of the protein, often 
referred to as the C-terminal domain or tail, remain disordered 
even in the presence of membranes, although evidence exists 
for limited interactions of this region with membranes [1,2,25-
29]. The membrane-induced disorder-to-order transition of the 
N-terminal lipid-binding domain is considered functionally 
important and has been characterized in a wide variety of 
contexts. Several helical membrane-bound conformations have 
been observed, featuring amphipathic helices that lie along the 
surface of the membrane with their apolar face embedded as deep 
as the C3 or C4 acyl chain carbons [30-32], and interfacial lysine 
residues may “snorkel” from the membrane interior to interact 
with negatively charged lipid headgroups [33,34]. An extended-
helix conformation binds to the membrane surface via an ~100 
residue long amphipathic alpha helix [32,35-39] with an unusual 
11/3 periodicity [25,30-32]. A broken-helix conformation has 
also been observed in which the extended-helix is broken into 
two distinct helices separated by a non-helical linker region 
spanning residues 39-45 [25,40,41]. Both conformations have 
been observed in the context of both detergent micelles and 
lipid vesicles [25,30-32,35,37,41-46]. Additional binding modes 
observed on phospholipid vesicles involve a shorter helix at the 
N-terminus of the lipid-binding domain with the remainder of 
the domain remaining unbound. These include an SL1 binding 
mode involving the 25 N-terminal residues [28,47] and a binding 
mode where residues up to 19 are bound, but residues beyond 
69 are not [48]. Structures comparable to these partly helical 
binding modes have also been observed in mixtures of organic 
and aqueous solvents [49] and on n-octyl-β-glucopyranoside 
(BOG) detergent micelles [50], and one of the most recently 
reported PD-associated mutations also seems to favor such 
binding modes [51].Though such conformational states have been 
posited to contribute to synuclein's putative functions, the detailed 
relationship between synuclein membrane binding, structure, and 
function remains an important open avenue of investigation [2]. 
Likewise, membrane interactions may mediate pathological roles 
of alpha synuclein, either through membrane effects on synuclein 
aggregation or through synuclein’s effects on membrane structure 
and integrity [1,2,52]. Below we delineate possible normal 
functions of synuclein at the membrane and discuss a number of 
possible membrane-associated targets; we then consider the role 
that membranes might play in synuclein dysfunction and how this 
ultimately contributes to disease. 

RECENT DEVELOPMENTS IN SYNUCLEIN/MEMBRANE 
BIOPHYSICS AT THE SYNAPSE

A detailed mechanistic understanding of synuclein function will 
ultimately require additional characterization of its structure and 
dynamics at the membrane surface as well as of the membrane 
determinants of synuclein binding. These will be critical for 
generating and verifying hypotheses regarding mechanisms of 
action and relevant in vivo binding target(s) – ie. specific cellular 
membrane(s) at which synuclein exerts its functions. Synaptic 
vesicles are considered the “classic” cellular membrane binding 
target for alpha synuclein. Synuclein localizes to the presynaptic 
terminal and specifically to synaptic vesicles, to which it can 
directly bind [17,53-58]. It has become clear, however, that alpha-
synuclein may in fact interact with a wider variety of cellular 
membranes than previously expected and that these interactions 
may contribute to alpha synuclein function, pathology, or both. 
Efforts to characterize the membrane properties that favor 
synuclein binding indicate that both electrostatic interactions 
and hydrophobic interactions contribute to binding [1,59]. 
Membrane curvature also plays a key role, with enhanced 
binding to membranes of increased curvature [60-63]. This likely 
results from an increased size and number of so-called packing 
defects in more highly curved membranes [64,65]. Packing 
defects are regions where the hydrophobic acyl chain interior 
of the membrane is transiently exposed, and they likely act as 
effective protein binding sites [60-62,64,66-68]. Lipid headgroup 
composition, which can influence both charge and curvature, 
also modulates synuclein binding. An increased percentage of 
conical lipids such as phosphatidylethanolamine (PE) increases 
binding, perhaps through enhanced formation of  packing 
defects [66]. Finally, electrostatic interactions with positively 
charged synuclein residues (in particular the many lysines) are 
enhanced by increasing the membrane negative charge density 
[27,60,61,66,67,69-71]. Notably, synaptic vesicles present a highly 
curved, negatively charged membrane surface [72], making them 
an optimal target for synuclein binding. 

Synuclein's preference for more highly curved membranes has 
led to its classification as a “curvature sensing” protein [34,62,64]. 
In addition to sensing membrane curvature, alpha-synuclein is 
also able to actively alter membrane shape/curvature [28,36,73,74]. 
Such direct manipulation of the membrane could play a role in 
synaptic vesicle homeostasis and/or exocytosis, though whether, 
when, and how synuclein might actively model membranes in 
vivo remains unclear.

Multiple post-translational modifications of alpha-synuclein 
have been reported, including N-terminal acetylation [75], 
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serine/threonine and tyrosine phosphorylation [75-79], tyrosine 
nitration [80], ubiquitination [75,81,82], sumoylation [83], 
transglutamination [84-86], and methionine oxidation [87]. Many 
of these impact synuclein’s interaction with membranes, indicating 
that such modifications will influence synuclein behavior in ways 
that must be characterized. As an example, it was recently reported 
that alpha-synuclein is N-terminally acetylated [75], probably 
by the acetyltranferase NatB [88,89], and that this modification 
increased the transient helical propensity of the N-terminal ~10 
residues in the free state [50,89-91]. Conflicting results were 
initially reported regarding the effects of N-terminal acetylation 
on membrane binding, with enhanced binding observed in some 
cases and a negligible impact in others [89,90]. These differences 
were likely due to the differing liposome compositions and sizes 
used by the different groups, and a more recent study examining 
a larger set of liposome sizes and compositions showed that 
N-terminal acetylation has a pronounced effect on binding to 
highly curved membranes of moderate charge, but less of an 
effect on more highly charged membranes [50]. Importantly, such 
highly curved vesicles of moderate negative charge approximate 
the properties of synaptic vesicles; thus, the impact of N-terminal 
acetylation appears greatest for liposomes most closely comparable 
to a known synuclein binding target in vivo [50]. 

Alpha-synuclein can be phosphorylated at multiple serine, 
threonine and tyrosine residues in vivo (including Y39, S87, 
Y125, and S129) [75-79,92]. The structural and functional 
consequences of such modifications have begun to be addressed 
but remain incompletely understood, in part because generating 
phosphor ylated proteins for in vitro  studies remains a 
challenging task [93-95]. Several recent studies have examined 
the impact of  phosphor ylation on synuclein membrane 
binding. Phosphorylation of S87 was found to reduce binding to 
membranes and alter the detergent micelle bound conformation, 
as well as expand the free state of the protein and increase its 
conformational flexibility [94]. Phosphorylation of S129 in 
contrast has little effect on membrane association by wild type 
alpha-synuclein [95], although some effect on the membrane-
binding of PD-linked synuclein mutants was reported [96]. 
This modification was also shown to have little impact on the 
SDS-micelle bound conformation [95]. Phosphorylation of 
other residues is only just beginning to be characterized and 
further work is clearly needed to more completely elucidate 
how phosphorylation impacts membrane binding, and how its 
perturbation of synuclein structure, dynamics, and membrane 
binding might contribute to both function and pathology. 

Other post-translational modifications that have been shown 
to influence membrane binding of alpha-synuclein include 

methionine oxidation [87,97] and tyrosine nitrosylation [29], 
but as with phosphorylation, the effects of these and other 
modifications remain to be more fully characterized. Interestingly, 
lysine acetylation was recently shown to occur in the Alzheimer's 
protein tau and to be associated with tau pathology [98-100], and 
it may be interesting to see whether this or other less commonly 
reported types of modification may be discovered to occur on 
synuclein as well.

FUNCTIONAL IMPLICATIONS OF SYNUCLEIN INTERACTIONS 
WITH OTHER PROTEINS AT PRESYNAPTIC MEMBRANES

Alpha-synuclein structure/function relationships remain 
enigmatic but are perhaps best characterized in the context of 
presynaptic function and, more specifically, synaptic vesicle 
homeostasis. An area of focus is the role that synuclein/membrane 
and synuclein/protein interactions play in synuclein’s contribution 
to synaptic vesicle docking, priming, clustering, fusion, and/
or recycling. Importantly, it is likely that synuclein/membrane 
interactions at the synapse are modulated by additional proteins. 
Indeed, it has been shown that dissociation of membrane-bound 
synuclein depends on brain-specific cytosolic proteins [101], 
though none were specifically identified in this particular study. 
Synuclein also binds to calmodulin [102-104], a protein that is 
thought to regulate secretory processes at the synapse in a variety 
of ways, including by interacting with protein targets such as 
calcium-CaM-dependent kinase II and by inhibiting SNARE-
mediated membrane fusion. Binding to calmodulin is mediated 
by the N-terminal amphipathic helical region of alpha synuclein 
(ie. the membrane binding domain), and an NMR structure 
of  N-terminally acetylated synuclein bound to Ca-bound 
calmodulin has been recently described [104]. Membrane-bound 
synuclein is released upon interacting with calmodulin, suggesting 
competition for synuclein between membranes and calmodulin 
[105]. This leads to a model in which calcium bound calmodulin 
mediates presynaptic depolarization-dependent dissociation of 
alpha-synuclein from the membrane surface. Conversely, GTP-
Rab3a may stabilize synuclein on synaptic vesicles, as antibodies to 
Rab3a and RabGDI abrogated synuclein membrane binding, while 
inhibition of Rab3a recycling increased synuclein sequestration 
on intracellular membranes. Rab3a is a presynaptic Rab that 
interacts with the synapse-organizing complex of RIMalpha/
Munc13/α-liprin, and so its contribution to synuclein membrane 
interactions is intriguing, but the functional consequences of such 
interactions are as of yet unknown [106]. Rab8a, a Rab GTPase 
that modulates post-Golgi vesicle trafficking, also interacts with 
synuclein in a Ser129-phosphorylation dependent manner 
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[107]. As discussed below, Rab-mediated cellular trafficking 
is often perturbed by synuclein; thus, aberrant synuclein/Rab 
interactions could in principle contribute to neurodegeneration in 
synucleinopathies.

Synaptic vesicle fusion is mediated by three SNARE proteins 
– syntaxin-1, SNAP-25, and synaptobrevin-2 – whose SNARE 
motifs zipper into a four-helix bundle. Recent evidence suggests 
a contribution of alpha-synuclein to SNARE complex assembly 
through a direct interaction between alpha-synuclein and 
synaptobrevin-2 [18,19]. A potential role for synuclein in SNARE 
assembly first came from the observation that expression of 
synuclein rescues CSPalpha deficient mice in a phospholipid-
binding dependent fashion [18]. CSPalpha is an abundant 
presynaptic chaperone, and deletion of CSPalpha inhibits SNARE 
complex assembly. Synuclein was subsequently reported to 
directly bind to synaptobrevin-2 and was proposed as a potential 
nonclassical chaperone facilitating SNARE complex assembly 
[19]. This raised the question of how synuclein might affect 
SNARE-mediated synaptic vesicle docking, priming, and/or 
fusion, and whether membrane binding could play a role in this 
function. Indeed, it has been proposed that the broken helical 
conformation of synuclein could span both the synaptic vesicle 
and plasma membranes and so help stabilize docked vesicles at 
the presynaptic membrane [2,108], and it was recently shown 
that synaptosomal preparations of plasma-membrane associated 
docked synaptic vesicles are enriched for synuclein when 
compared with preprations of unattached undocked vesicles [109]. 
Synuclein overexpression in cultured chromaffin cells inhibits 
catecholamine release by blocking a late step in the exocytosis 
process and, specifically, by inhibiting the fusion of docked vesicles 
[110]. In addition, synuclein has been implicated to function in 
maintenance of SV pool size [111], and it may enhance vesicle 
clustering, again perhaps through a membrane-bridging mode. 
This hypothesis is suggested by initial observations in yeast 
[112-115], and by more recent work showing that synuclein 
induces clustering of synaptic vesicle mimics [116]. In the latter 
study, clustering depended on synuclein interactions with both 
synaptobrevin-2 and with anionic lipids in phospholipid bilayers. 
Synuclein also inhibits SNARE-mediated vesicle fusion in in 
vitro lipid mixing assays, likely through inhibition of docking 
rather than of the fusion step itself [117,118]. Inhibition requires 
membrane binding by synuclein and may or may not require 
SNARE binding; it is possible that the requirement for SNARE-
binding may in fact depend on synuclein's oligomeric state 
[109,118,119]. Indeed, in some contexts, synuclein fails to interact 
with SNARE proteins and instead might modulate SNARE-
mediated exocytosis through the more indirect sequestration 

of arachinoic acid, which can itself stimulate SNARE complex 
formation and exocytosis [120]. Synuclein additionally appears to 
promote clathrin-mediated endocytosis [121], and it is required 
for the fast kinetics of SV endocytosis through some impact 
on the early steps of SV endocytosis [122]. Finally, synuclein 
reportedly contributes to SV mobilization through its inhibition 
of SV reclustering after endocytosis [123]. All together, these 
observations point to some direct role for synuclein/membrane 
and synuclein/protein interactions in multiple steps of the synaptic 
vesicle cycle; however, open questions remain, particularly given 
the multitude of steps and apparent discrepancies observed across 
multiple studies. 

As mentioned above, synuclein may directly generate membrane 
curvature and so remodel membranes, an activity that could 
also have a impact on synaptic vesicle fusion with the plasma 
membrane. Additional evidence for some role for synuclein in 
membrane remodeling processes comes from the early observation 
that synuclein may interact with and inhibit phospholipase 
D2, which catalyzes the hydrolysis of phophatidylcholine to 
phosphatidic acid [112,124,125]. The synuclein/PLD2 interaction 
has been contested as well, however [126]. In vitro, PLD binding 
requires both the helical membrane binding N-terminal domain 
and the disordered C-terminal tail and can be modulated by 
synuclein phosphorylation [125,127]. PLD2 likely acts on 
the plasma membrane and is implicated in the regulation of 
secretory vesicle budding and/or fusion: phosphatidic acid may 
mediate processes involved in vesicular transport and changes 
in cell morphology by modulating membrane curvature and by 
regulating phosphatidylinositol-4-phosphate 5 kinase activity 
[128]. Interestingly, synuclein also displays higher affinity for 
membranes rich in PA [59,60,129], and so a feedback mechanism 
could be envisioned in which high levels of PA recruit synuclein, 
which then inhibits PLD2 and so reduces PA levels. The enzyme 
CTP:phosphocholine cytidyltransferase (CCT) seems to represent 
an interesting parallel to synuclein in this regard. Similarly to 
alpha-synuclein, CCT also contains 11-residue repeats that are 
capable of binding to membranes in a helical conformation. CCT 
catalyzes the rate-limiting step in phosphatidylcholine synthesis. 
Further, it may preferentially bind membranes deficient in PC 
lipids, insofar as PC deficiency increases the relative proportion of 
negatively charged (PS) headgroups and conical (PE) headgroups, 
both of  which could enhance binding. Though the CCT 
amphipathic helix is covalently attached to its relevant enzymatic 
domain, a similar feedback cycle emerges wherein PC deficiency 
enhances CCT binding, which catalyzes PC synthesis [130-139]. 

Finally, beyond potential contributions to the synaptic vesicle 
cycle, alpha-synuclein may also play a role in dopamine synthesis. 
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First, synuclein reportedly binds to and inhibits tyrosine 
hydroxylase, the rate-limiting enzyme in dopamine biosynthesis 
[140]. In addition, synuclein binds to a 14-3-3 protein that binds 
to and activates tyrosine hydroxylase [141]; homology between 
synuclein and 14-3-3 proteins has also been noted [140,141]. 
Importantly, synuclein is also reported to bind directly to the 
human dopamine transporter hDAT [142] and to inhibit its 
reuptake of dopamine from the synapse [142]. Decreased uptake 
required neither the N-terminal half of the membrane binding 
domain nor the C-terminal region, but was absolutely dependent 
on the NAC region of synuclein [143,144]. hDAT represents 
another potential functional target for synuclein at the membrane, 
though how membrane binding per se contributes to hDAT 
regulation remains unclear. More generally, synuclein is also 
reported to regulate other monoamine transporters, including 
those for serotonin and norepinephrine [143,145,146]. Finally, 
synuclein has been reported to interact with the signaling proteins 
ARPP16/19 in a membrane dependent fashion [147]. ARPP16/19 
belong to the same family as DARPP32, a phosphoprotein 
involved in signaling networks that mediate responses to the 
binding of dopamine (and other neurotransmitters) to the post-
synaptic receptors. Thus, synuclein-ARPP16/19 interactions may 
be involved in regulation of dopamine signaling pathways.

SYNUCLEIN MAY BIND TO AND FUNCTION AT OTHER 
CELLULAR MEMBRANES 

Alpha-synuclein clearly localizes to synaptic terminals, contributes 
to synaptic vesicle homeostasis and synaptic plasticity, and binds 
to synaptic vesicles. However, a number of other potential cellular 
membrane targets have been proposed and studied, including 
the plasma membrane, lipid rafts, the inner nuclear membrane, 
and mitochondrial membranes (Fig. 1); further, synuclein binds 
fatty acids and may contribute to fatty acid metabolism. These 
interactions, which may be functional, pathological, or both, are 
included here because until greater certainty is achieved regarding 
synuclein’s precise normal functions, all such observations should 
be considered as potentially relevant. 

The plasma membrane represents a target that could cooperate 
with synaptic vesicle binding in facilitating synuclein's function 
at the presynapse. As discussed above, it has been proposed that 
synuclein may span the synaptic vesicle and plasma membranes 
through its broken helical conformation [2,108] and recent data 
supports this possibility [109]. Interestingly, synuclein has been 
reported to associate specifically with lipid rafts and caveolae 
[148,149], and membrane association is specifically enhanced by 
gangliosides including, among others, GM1 and GM3 [149-153]. 

GM1 also seems to specifically enhance the binding and helical 
folding of N-terminally acetylated relative to non-acetylated 
synuclein [154]. The synuclein/GM1 association is likely due 
to a specific interaction between helical alpha synuclein and 
both the sialic acid and carbohydrate moieties of GM1, and it 
may contribute to synuclein’s presynaptic localization [149,150]. 
Notably, gangliosides are considered to reside on the outer leaflet 
of the plasma membrane, making it unclear how a cytosolic 
protein like synuclein could interact with them. However, recent 
interest in cell-to-cell transmission of synuclein pathology has 
suggested a role for extracellular synuclein in disease (see below), 
and this context may provide an opportunity for synuclein to 
interact with outer leaflet lipids and proteins.

Synuclein was initially discovered as a protein localized to both 
the presynaptic nerve terminal and to the nucleus, and indeed its 
name is derived from this observation [53]. Its nuclear localization 
has remained contentious, however, and it remains unclear 
whether synuclein really is enriched in the nucleus, whether it 
might function there, and whether aberrant nuclear localization 
might contribute to pathology. Later studies have also observed 
nuclear localization, though this appears to be antibody-dependent 
and could in part result from non-specific binding by certain 
antibodies [53,155-163]. Synuclein has, however, additionally 
been noted to interact with histones and with DNA, though these 
interactions may be pathologic rather than functional [155,164]. 
Thus, the nuclear membrane could represent an additional 
membranous target for alpha-synuclein, though synuclein-nuclear 
membrane interactions have not, to our knowledge, been clearly 
established in any study to date. 

Synuclein has also been reported to interact with mitochondria, 
which, combined with strong evidence that oxidative damage 
contributes to Parkinson’s disease, has spurred interest in the 
interplay between alpha-synuclein and lipid oxidation. Parkinson’s 
Disease is characterized by selective degeneration of dopaminergic 
neurons of the substantia nigra. These neurons may be particularly 
sensitive to oxidative stress, as dopamine metabolism generates 
a number of toxic species; eventually these cells could lose the 
capacity to handle continuously generated reactive oxygen species 
[165]. Interestingly, red blood cells contain large amounts of 
alpha-synuclein and have a high oxygen/oxidative load [166]. 
One emerging theory suggests that alpha synuclein functions as 
an antioxidant that prevents oxidation of unsaturated membrane 
lipids. Monomeric synuclein has in fact been shown to prevent 
lipid oxidation, and membrane binding is required for this 
function [97,167]. Further, increased alpha-synuclein content is 
associated with neuroprotection from oxidative stress [168]. The 
N-terminal methionine residues of synuclein (particularly M1 
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and M5) become oxidized upon binding to vesicles containing 
peroxidized lipids, and these methionine residues have been 
established as substrates for methionine sulfoxide reductase when 
synuclein is in its free, soluble form. Interestingly, methionine 
sulfoxide reductase A (MsrA) protects dopaminergic cells from 
toxic, disease-related insults, including expression of mutant 
alpha-synuclein, by repairing methionine-oxidized proteins [169]. 
MsrA’s participation in these cycles of methionine oxidation and 
reduction serves to ultimately consume reactive oxygen species 
[169]. From these observations, a cycle of synuclein membrane 
binding, methionine oxidation, release from membrane, and 
methionine reduction by Msr has been proposed [97,167]. It is 
not currently clear on which cellular membrane(s) such a cycle 
might optimally occur, or even whether this might be a general 
or membrane specific function, and the effects of methionine 
oxidation on synuclein binding to membranes of differing 
biophysical properties remain incompletely characterized. 

Mitochondria represent a particularly intriguing potential 
binding partner for synuclein, given the established roles 
of  mitochondrial dysfunction and oxidative stress in the 
pathogenesis of Parkinson’s Disease. Oxidative stress associated 

with high levels of dopamine and/or mitochondrial dysfunction 
leads to elevated levels of lipid peroxides in the neuronal tissue 
of PD patients [97,170]. Synuclein has also been associated with 
mitochondrial function [171], and is reported to localize and 
bind to mitochondria [172-178] as well as to vesicles that mimic 
mitochondrial membranes [179]. Notably, cardiolipin – an 
inner mitochondrial membrane lipid - appears able to enhance 
synuclein membrane binding and to alter its behavior on and at 
the membrane [178,179].

There are thus clear links between alpha-synuclein and lipid 
oxidation, and between oxidized lipids, oxidative damage and 
neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) 
normally serve as both an energy reservoir and as intra-and 
extracellular second messengers that contribute to signaling 
pathways. Their unsaturated acyl chain bonds, however, represent 
a target for lipid oxidation in disease states [180]. The effects of 
PUFAs on alpha-synuclein properties and the effect of synuclein 
on PUFA metabolism have thus received considerable attention. 
Alpha-synuclein was noted to have homology to fatty acid binding 
proteins, and it reportedly interacts with free fatty acids (although 
it does not bind them like a classical fatty acid binding protein) 

Fig. 1. Cellular membranes, targets and pathways potentially involved in the normal, physiological functions of alpha-synuclein.
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as well as phospholipid bilayers [180,181]. Binding to free PUFAs 
such as arachidonic acid or docosahexaeonic acid (but not to 
saturated fatty acids) is mediated by the N-terminal lipid-binding 
domain, which adopts a helical conformation upon such binding; 
binding to PUFAs reportedly prevented their micellar formation 
[182,183]. It was initially suggested that synuclein may transport 
fatty acids between cytosolic and membrane bound cellular 
compartments [180-184]. It was later proposed that synuclein 
and PUFAs may act together to enhance clathrin-mediated 
endocytosis and thus play a role in SV recycling after neuronal 
stimulation [121]. Indeed, synucleins were very recently shown to 
be required for the fast kinetics of SV endocytosis [122]. 

Alpha-synuclein also appears to contribute to fatty acid uptake 
and metabolism. Alpha-synuclein deficiency leads to: (1) disrupted 
astrocyte fatty acid uptake and trafficking, with increased 
trafficking to cholesteryl esters and triacylglycerols (ie. neutral 
lipid pools) and decreased trafficking to phospholipids [185]; (2) 
increased (whole brain) neutral lipid mass [186]; (3) decreased 
(whole brain) incorporation rate and fractional turnover of 16:0 
acyl chains in a number of phospholipid classes albeit without 
direct binding to 16:0 (but note that synuclein deficiency led 
to increased incorporation rate and fractional turnover of 16:0 
acyl chains in choline glycerophospholipids [187]); (4) reduced 
(brain) arachidonate (20:4n-6) turnover through modulation of 
endoplasmic reticulum-localized acyl-CoA synthetase, possibly 
because synuclein may play a role in substrate presentation to 
acetyl coa synthetase (and not substrate removal) [188]; and (5) 
a likely compensatory increase in 22:6n-3 incorporation and 
turnover, with a low level of synuclein/22:6n-3 binding. Such 
compensation makes sense insofar as 20:4n-6 and 22:6n-3 are two 
major PUFAs in the brain [189]. 

SYNUCLEIN/MEMBRANE INTERACTIONS IN THE 
MULTIFACETED PATHOLOGY OF PD

Alpha-synuclein represents the primary component of Lewy 
Bodies and Lewy Neurites, which are pathological hallmarks of 
Parkinson’s Disease and, more generally, the synucleinopathies 
[3,6,7]. Synuclein is genetically linked to Parkinson’s Disease 
as well: the synuclein point mutants A53T, A30P, E46K, H50Q 
and G51D have been linked to rare familial cases of Parkinson’s 
Disease, as have SNCA gene duplications and triplications [8-
15]. Intense effort has focused on the aggregation propensity 
and properties of synuclein because of the clear and extensive 
accumulation of mature beta-sheet rich amyloid fibrils in the 
brains of synucleinopathy patients. In theory, alpha-synuclein’s 
contribution to the neuronal degeneration observed in the 

synucleinopathies could arise from a toxic gain of function, or 
from a loss of synuclein’s normal function – the latter occurring 
either as a consequence of synuclein modification through 
e.g. familial mutations or post-translational modifications, or 
from sequestration into non-functional oligomeric or fibrillar 
aggregated forms. The alpha-synuclein knockout phenotype in 
mice is mild with only moderate electrophysiological anomalies, 
perhaps due to compensation by beta- and gamma-synucleins [21]. 
While alpha/beta synuclein double knockout mouse phenotypes 
are similarly moderate [190], a synuclein triple knockout mouse 
does displays age-dependent neurological impairments, including 
decreased SNARE-complex assembly and decreased life span [19]. 
It may be worth nothing that because gamma synuclein expression 
is largely orthogonal to that of alpha- and beta-synuclein, closer 
reexamination of  the alpha/beta knockout mouse may be 
warranted.

Systematic examination of the role of distinct regions of the 
synuclein primary sequence on its physiological vs. pathological 
activities suggested that the normal and neuropathogenic effects 
of synuclein may be molecularly distinct and separable. The 
N-terminal and C-terminal sequences were required for synuclein 
function as a SNARE complex chaperone but were dispensable for 
its toxic function; conversely, the central NAC region was more 
essential for synuclein neurotoxicity but played a negligible role 
in SNARE-complex assembly [191]. These data favor a model 
in which some toxic gain of function primarily contributes to 
neurodegeneration in the synucleinopathies, particularly given the 
potential toxicity of synuclein oligomeric aggregates (see below). 
However, some caution is warranted as the model for toxicity used 
in these studies relied on overexpression and such models have not 
succeeded in completely capturing the features of human disease.

If a toxic gain of function causes neurodegeneration, this raises 
the critical question: what are the toxic species? Intense study has 
focused on defining the specific mechanisms and pathways of 
synuclein aggregation and on defining the toxic contributions 
of any and all species along such a pathway, from monomeric 
synuclein, to intermediate oligomeric or prefibrillar aggregates, 
and ultimately to mature amyloid fibrils. Oligomeric synuclein 
intermediates are increasingly favored as the key contributor 
to cellular dysfunction and death. Oligomeric or protofibrillar 
synuclein species have been reported to permeabilize membranes 
by acting as a pore or channel [192,193]. One or more molecules 
of monomeric synuclein, too, may at times form membrane 
permeabilizing channels [194]. Such pore formation could 
clearly alter membrane potential and ion distribution across 
the membrane and thus contribute to cellular toxicity [194]. 
Interestingly, membrane binding modulates synuclein aggregation, 
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though results are conflicting as to whether membrane-bound 
synuclein is more or less prone to aggregation; membrane 
composition and relative concentration of protein vs. lipid are 
likely key factors determining the contribution of the membrane 
to synuclein aggregation [195-199]. Indeed, depending on 
protein:lipid (P:L) ratios, membrane binding could either protect 
against aggregation by isolating monomeric synuclein (at lower 
P:L ratios), or favor self-association and aggregation by raising 
the effective local concentration of synuclein on a reduced 
dimensionality (2D) surface [70,108,200,201]. 

The behavior and properties of the PD-linked synuclein mutants 
have also been intensely studied in the hopes that recurring 
themes might emerge that would shed light on PD pathogenesis. 
Notably, there is considerable variety in the effects of the mutants 
on aggregation. A53T, E46K and H50Q [202-204] enhance mature 
fibril formation [202-206], A30P enhances oligomer formation 
but retards mature fibril formation [205-207], while G51D retards 
aggregation [51,204], suggesting different mechanisms of toxicity. 
Different mutants also have differing effects on membrane binding 
affinity: Of the original three PD mutations, A30P clearly perturbs 
binding [47,55,59,66,69], A53T has no effect [47,59,69,129], and 
E46K shows enhanced binding [2,47,61,108,208]. Despite differing 
effects on overall membrane affinity, the membrane binding 
behavior of these mutants was unified by the observation that 
they all increase the population of the aggregation prone partly 
helical SL1 binding mode in which the N-terminal 25 residues 
are bound, while the remainder of the protein remains free. 
Enhanced concentration, due to the reduced dimensionality of the 
membrane surface, of an exposed hydrophobic NAC region in the 
SL1 binding mode could help nucleate synuclein aggregation [47]. 
A conformation similar to the SL1 binding mode has also been 
observed on BOG micelles [50]. The H50Q and G51D mutations 
have emerged much more recently and so have not yet been as 
extensively studied. G51D appears to decrease membrane binding 
affinity, but promotes the formation of partly helical states [51], 
while H50Q did not alter binding affinity nor obviously alter the 
bound-state structure [202]. 

Cellular studies of synuclein overexpression, oligomerization, 
and aggregation have also proven informative. Studies in yeast 
suggested that synuclein overexpression could contribute to 
trafficking defects [113,114]. In light of synuclein’s potential 
interactions at the membrane with Rab and SNARE proteins 
during synaptic vesicle cycling and homeostasis, it is plausible 
that these interactions may go awry in disease states. Upon 
overexpression, synuclein accumulates in yeast cells, leads to 
ER stress and cytotoxicity, and blocks ER to golgi trafficking. 
Synuclein toxicity can be rescued by the Rab GTPase Ypt1p, which 

also functions at this trafficking step. Rab1, the mammalian YPT1 
homolog, protected against synuclein-induced dopaminergic 
cell loss [113]. The effects of synuclein on trafficking result 
from a direct effect on the transport machinery, as vesicles bud 
efficiently from the ER but fail to dock and/or fuse to the Golgi 
membrane [113,114]. Cytoplasmic synuclein accumulations are 
associated with clusters of vesicles originating form the ER-Golgi 
transport step of the secretory pathway, further implying that 
synuclein expression impairs vesicular transport [115]. Rab3a and 
Rab8a – localized to presynaptic termini and post-Golgi vesicles, 
respectively – also suppress toxicity in synuclein-based neuronal 
models of PD, implying that synuclein overexpression can affect 
multiple membrane trafficking steps [114]. Overexpression 
of synuclein in mammalian kidney and neuroendocrine cells 
similarly delayed ER to Golgi transport, and this was rescued by 
expression of SNARE proteins, implying that the overexpressed 
synuclein antagonized SNARE function [209]. Purified A53T 
synuclein inhibited COPII vesicle docking and fusion at a pre-
Golgi step, and soluble A53T bound ER/Golgi SNAREs to inhibit 
SNARE complex assembly [209]. This particular observation 
represents a possible toxic perturbation of synuclein’s normal 
function as a putative SNARE complex chaperone contributing to 
SV exocytosis [19].

Aggregation of synuclein in yeast has also been associated with 
defects in endosomal trafficking and phospholipid biosynthesis. 
Synuclein aggregation was enhanced in the presence of higher 
levels of acidic phospholipids, colocalized with yeast membranes 
enriched for phosphatidic acid, and induced the aggregation of 
many yeast Rab GTPase proteins [210]. Synuclein expression 
further induced sensitivity to perturbations in retrograde 
endosome-Golgi transport [210]. Finally, direct synuclein/Rab 
interactions have been observed in disease or disease-related 
situations. Abnormal rab3a/synuclein interactions have been 
observed in brains of patients with multiple system atrophy, 
Parkinson’s Disease [211], and Lewy Body Disease [212]. Rab8a 
interacts with synuclein in a Ser129 phosphorylation dependent 
manner [107] and Rab8a enhanced synuclein aggregation and 
reduced synuclein induced cellular toxicity [107]. Rab3a, Rab5, 
and Rab8 are associated with synuclein aggregates in transgenic 
mice overexpressing wild type or A30P synuclein [213]. These 
results suggest that synuclein aggregates may sequester a subset 
of Rab proteins, and that synuclein overexpression could perturb 
neuronal vesicular trafficking (particularly at docking and fusion 
steps) and so contribute to cellular toxicity. 

Mitochondrial dysfunction has been extensively linked to PD 
pathogenesis. First, mitochondrial toxins such as MPTP, 6-OHDA, 
and others have been used to mimic PD symptoms in the absence 
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of Lewy Body formation. MPTP can arise as an accidental 
impurity in heroin manufacture and produces PD-like symptoms 
in people exposed to the toxin. MPP+, the active metabolite of 
MPTP, can enter neurons via the dopamine transporter and 
inhibit mitochondrial complex I. Inherited mitochondrial DNA 
mutations can cause familial Parkinson’s disease, and a number of 
proteins with roles in mitochondrial function have been linked 
to PD, including Parkin (a ubiquitin E3 ligase that functions in 
mitophogy-related pathways), and the mitochondrial kinase 
PINK1 (which functions together with Parkin). The PD-linked 
kinase LRRK2, and the oxidative stress response protein DJ-1 have 
also been linked to mitochondria. Mitochondrial dysfunction 
could enhance cellular reactive oxygen species (ROS), which 
can exert toxicity in many ways. An interesting example is that 
ROS may alter membrane fusion and transmitter exocytosis 
by impacting the SNARE proteins [180]. Thus, synuclein/
mitochondria interactions are of particular interest in the context 
of PD pathophysiology. Synuclein can directly interact with 
mitochondria [177] and overexpression of synuclein increases 
cellular susceptibility to mitochondrial toxins and inhibits 
mitochondrial complex I activity [214]. Synuclein can increase 
intra-mitochondrial ROS, nitric oxide, and Ca2+ levels and thereby 
lead to cytochrome c release and apoptosis [174,180,215,216]. 
Synuclein has been shown to inhibit mitochondrial fusion and 
drive mitochondrial fission in a cardiolipin-dependent manner 
[178,217]. Synuclein thus has a direct effect on mitochondrial 
mor pholog y, and s ynuclein-ass o ci ate d mito chondri a l 
fragmentation is followed by a decline in cellular respiration and 
ultimately neuronal death. These mitochondrial effects depend 
on the direct interaction between synuclein and mitochondrial 
membranes and so establish a role for this interaction in PD-
associated mitochondrial toxicity [178]. It should be noted, 
however, that synuclein has also at times been shown to have an 
anti-apoptotic, protective role against mitochondrial-mediated cell 
death [180]. Interestingly, the G51D mutant was found to enhance 
mitochondrial fragmentation [51].

Incre ased oxidative stress  can reportedly le ad to the 
translocation of alpha-synuclein from the cytoplasm into the 
nucleus and perhaps generate a devastating positive feedback 
cycle: oxidative stress could disrupt the nuclear membrane, lead 
to synuclein translocation into the disrupted nucleus (specifically 
of a C-terminal fragment of synuclein), and then enhance cellular 
susceptibility to further oxidative stress (although the specific 
mechanisms for this last step are not presently clear) [218,219]. 
Iron has also been shown to alter mitochondrial morphology, 
disrupt the nuclear membrane, and cause the translocation of 
synuclein from the perinuclear region into the disrupted nucleus 

[220]. Synuclein may somehow mediate neurotoxicity in the 
nucleus, perhaps through some effect on histones, or on DNA itself 
[155,164]; synuclein can directly bind both DNA and histones, 
and was reported to reduce the level of acetylated histone H3 
while also inhibiting histone acetylation [155,164,221]. It has also 
been suggested that nuclear synuclein accumulation is mediated 
by importin alpha, and that this promotes neurotoxicity through 
cell cycle acceleration [222]. Finally, the PD-linked G51D mutant 
was found to be enriched in the nuclear compartment [51].

As discussed above, synuclein may interact with a wide 
variety of cellular membranes, and so a number of membrane 
properties and membrane lipid components may contribute to 
synuclein/membrane binding and to synuclein dysfunction on 
the membrane surface (Fig. 2). First, synuclein may bind to lipid 
rafts, and this interaction may localize synuclein to synapses, 
which contain cholesterol rich lipid microdomains [148]. 
Synuclein also binds directly to artificial lipid raft membrane 
mimetics; this binding requires acidic phospholipids - particularly 
phosphatidylserine(PS) and, more specifically, a combination 
of PS with oleic (18:1) and polyunsaturated (20:4 or 22:6) fatty 
acyl chains. Binding was particularly enhanced with PS on the 
polyunsaturated fatty acyl chain (vs. the oleoyl chain), suggesting 
that synuclein membrane interactions are subject to a strict 
“combinatorial code” [223]. Interestingly, synuclein redistributed 
away from synapses upon raft disruption [148]. The membrane-
binding impairing A30P synuclein mutation similarly exhibited 
impaired localization at the synapse [148]. If lipid rafts mediate 
synuclein localization in some functionally requisite fashion, 
perturbation of lipid rafts or of this association could lead to 
synuclein mislocalization and so contribute to disease [148]. 
In yeast, synuclein binds to lipid rafts [88] and inhibition of 
sterol synthesis led to decreased plasma membrane association 
by synuclein, increased (aberrant) vesicular association, and 
increased cellular toxicity [224]. Thus, higher membrane sterol 
concentrations favor plasma membrane binding of synuclein, 
though whether this is of functional or pathological relevance 
remains to be determined [224]. Finally, given the interactions 
between synuclein and fatty acids discussed above, it is of interest 
that PUFAs are able to directly promote synuclein oligomerization 
both in vitro and in vivo [180,198]. In each of these cases 
a contribution of specific lipids, membrane properties, and 
membrane compositions to synuclein function vs. dysfunction has 
been established yet remains incompletely understood. 

Thus far, discussion of synuclein function and toxicity has 
focused on the view that the effects of alpha-synuclein will be cell 
autonomous. Recently, it has become apparent that this may not 
be the case, as cell-to-cell spread of synuclein oligomers/aggregates 
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has become an attractive model for how neurodegeneration 
may spread through the synucleinopathy-diseased brain [5,225-
227]. First, synuclein has been detected in extracellular biological 
fluids of both healthy and PD subjects, including the CSF and 
blood plasma [153,228-230]. A key observation resulted from 
an experimental Parkinson’s Disease treatment in which patients 
received fetal ventral mesencephalic tissue transplants. Lewy 
body-like inclusions were found in these exogenously grafted 
nigral neurons in the brains of multiple patients with Parkinson’s 
Disease; this implies spread of synuclein from endogenous 
neurons into disease-free, grafted neurons in a potentially prion-
like manner [231-233]. Experimentally, both synuclein exocytosis 
and endocytosis have been observed. A portion of cellular 
synuclein is present in the lumen of vesicles, and this intravesicular 
synuclein is more aggregation prone than cytosolic protein [234]. 

Also, a small percentage of newly synthesized synuclein is rapidly 
secreted via ER/Golgi-independent exocytosis, and aggregated 
synuclein is also secreted [234]. Interestingly, both monomeric and 
aggregated synuclein secretion and transmission are elevated upon 
proteasomal and mitochondrial dysfunction [235], suggesting that 
synuclein exocytosis may increase in synucleinopathy patients. In 
general, extracellular synuclein is cytotoxic in culture media [236], 
and aggregated extracellular synuclein can induce microglial 
activation, dopaminergic neurotoxicity [237], and production 
of pro-inflammatory factors from astrocytes and astrocytoma 
cells [238,239]. Released synuclein acts as an endogenous agonist 
for Toll-like receptor 2, which activates microglial inflammatory 
responses [240]. Exogenous synuclein further induced neuronal 
cell death through Rab5A-dependent endocytosis [236], though 
the mechanism of synuclein internalization appears to be 

Fig. 2. Cellular membranes, targets and pathways potentially involved in alpha-synuclein dysfunction and its role in disease states in the 
synucleinopathies.
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synuclein assembly-state specific: aggregated fibrils or oligomers 
display receptor mediated endocytosis, while monomeric 
synuclein passively diffuses across the plasma membrane [241]. 
Some exogenous synuclein can also be resecreted by recycling 
endosomes; this process is regulated by rab11a. Hsp90 interacts 
with rab11a and is critical for the toxicity of exogenous synuclein 
[242]. Alternately, endocytosed synuclein aggregates can be 
degraded by lysosomes [241], which is particularly interesting 
given that impaired autophagy and lysosomal function have 
been implicated in Parkinson’s pathogenesis [226,243]. Impaired 
autophagy could enhance synuclein accumulation, and increased 
exophagy of both synuclein monomers and aggregates has been 
observed upon manipulations that perturb autophagosomes 
(either by increasing the pool of autophagosomes/amphisomes 
through e.g. lysosomal disturbance, or by altering the polarity of 
vesicular transport of autophagosomes on microtubules) [244]. 
Finally, a dysfunctional interaction between alpha-synuclein and 
the Gaucher’s Disase linked lysosomal glucocerebrosidase (GCase) 
has recently emerged. Functional loss of GCase causes synuclein 
accumulation, and synuclein inhibits the lysosomal activity of 
GCase [245]. This suggests that GCase and synuclein form a 
bidirectional pathogenic loop in the synucleinopathies and that 
GCase depletion contributions to synucleinopathy pathogensis. 
Further, the substrate of GCase, glucosylceramide, stabilized 
soluble synuclein oligomeric intermediate species [245]. Reduced 
GCase with synuclein accumulation has been observed in PD 
brain tissue as well [246]. Failure of cellular protein quality control 
systems (particularly lysosomes) also promotes the accumulation 
of transmitted synuclein (i.e. that spread from adjacent cells) 
and inclusion formation [235]. Indeed, synuclein aggregates 
appear to spread from cell to cell through a cycle of external 
aggregate uptake, co-aggregation with endogenous synuclein, 
and coaggregate exocytosis [247]. GCase depletion promotes 
this propagation of synuclein aggregates [247], and the enhanced 
spread of synuclein could further contribute to mechanism(s) 
by which GCase mutations contribute to PD and to increased 
cognitive impairment [247]. Clearly, then, as synuclein monomers 
and aggregates are secreted, endocytosed, and trafficked through 
endosomal, autophagosomal, or lysosomal compartments, they 
will contact a wealth of proteins and cellular membranes whose 
relevance to synuclein function or dysfunction was not previously 
considered or appreciated. The putative contribution, if any, of 
synuclein/membrane interactions within such compartments 
has not been extensively considered or examined, though it 
now appears likely that these pathways and interactions could 
contribute to the synucleinopathies.

The newly established cell-to-cell spread and endosomal/

lysosomal trafficking of  synuclein requires consideration 
of an increasing number of extracellular and intravesicular 
binding targets, including both proteins – as in the case of 
glucocerebrosidase - and novel cellular membrane binding 
partners such as the outer plasma membrane leaflet or inner 
endosomal and lysosomal leaflets. In this context, synuclein/
sphingolipid and, more specifically, synuclein/gangliocide 
interactions become particularly relevant, as gangliocides are 
found primarily exposed to the cell exterior. Of note, gangliocides 
are negatively charged and so would be expected to interact 
favorably with synuclein [150]. Extracellular synuclein is 
internalized into microglia via the monosialoganglioside GM1 
in a lipid raft-dependent (but clathrin-, caveolae, and dynamin-
independent) manner [153]. Gangliocides also appear to have 
interesting effects on the biophysical behavior of synuclein at 
the membrane. Residues 34-50 of synuclein have been identified 
as a putative ganglioside-binding domain [152]. It has thus 
been proposed that synuclein first interacts with a cell surface 
glycophingolipid such as GM3 (in astrocytes) or GM1 (in neurons) 
through these residues; tyrosine 39 appears particularly critical for 
this interaction [150,151]. This binding then induces the helical 
folding of synuclein, including of residues 67~78, which then 
form a so-called “tilted peptide” with high affinity for cholesterol. 
The tilted geometry of the cholesterol/synuclein complex then 
facilitates the formation of an oligomeric channel with potential 
dysfunctional consequences [150]. It has been shown that GM1 
(and to a lesser extent GM2 and GM3) can induce the formation 
of helical synuclein oligomers yet inhibit amyloid fibrillation [152].

CONCLUSION

While both the normal functions of alpha-synuclein and the 
specific mechanisms by which it leads to cell death and disease 
remain elusive, it is clear that the interactions of alpha-synuclein 
with membranes play an important role in both synuclein 
biology and synuclein pathology. Here we have covered much of 
the information currently available regarding the structural and 
biophysical aspects of synuclein-membrane interactions, how 
these are influenced by post-translational modifications, how 
they relate to synuclein's interactions with other proteins, which 
organelles they may involve and how they may influence synuclein 
aggregation and dysfunction. Much remains to be learned in each 
of these areas, but it is hoped that this review will help to provide 
both current and future investigators in this topic area with a snap 
shot of some of the most promising directions to pursue in order 
to fill in critical gaps in our knowledge. It is clearer than ever that 
alpha-synuclein is perhaps the most important single protein in 
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the etiology of Parkinson's disease, and we posit that advances in 
our understanding of synuclein-membrane interactions will help 
bring us closer to improved treatments.
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