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DiffMC-Gen: A Dual Denoising Diffusion Model for
Multi-Conditional Molecular Generation

Yuwei Yang, Shukai Gu, Bo Liu, Xiaoqing Gong, Ruiqiang Lu, Jiayue Qiu, Xiaojun Yao,*
and Huanxiang Liu*

The precise and efficient design of potential drug molecules with diverse
physicochemical properties has long been a critical challenge. In recent years,
the emergence of various deep learning-based de novo molecular generation
algorithms offered new directions to this issue, among which denoising
diffusion models have demonstrated significant potential. However, previous
methods often fail to simultaneously optimize multiple properties of
candidate compounds, which may stem from directly employing
nongeometric graph neural networks (GNNs), rendering them incapable of
accurately capturing molecular topologic and geometric information. In this
study, a dual denoising diffusion model is developed for multi-conditional
molecular generation (DiffMC-Gen), which integrates both discrete and
continuous features to enhance its ability to perceive 3D molecular structures.
Additionally, it involves a multi-objective optimization strategy to
simultaneously optimize multiple properties of the target molecule, including
binding affinity, drug-likeness, synthesizability, and toxicity. From the
perspectives of both 2D and 3D molecular generation, the molecules
generated by DiffMC-Gen exhibit state-of-the-art (SOTA) performance in
terms of novelty and uniqueness, meanwhile achieving comparable results to
previous methods in drug-likeness and synthesizability. Furthermore, the
generated molecules have well-predicted biological activity and druglike
properties for three target proteins—LRRK2, HPK1, and GLP-1 receptor, while
also maintaining high standards of validity, uniqueness, and novelty. These
results underscore its potential for practical applications in drug design.

1. Introduction

Drug discovery is a highly complex process characterized by
long timelines, high risks, and substantial investments. In recent
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years, computer-aided drug design (CADD)
has shown great potential in assisting
various stages of drug development, sig-
nificantly improving the efficiency of
drug discovery.[1] However, the vast po-
tential chemical space of candidate drug
molecules, estimated to be as large as
1060, presents a significant challenge. Iden-
tifying potential drug compounds from
such an immense chemical space is akin
to searching for a needle in a haystack.
In addition, it involves simultaneously
refining various properties of the target
compound which are essential for further
research, such as novelty, uniqueness,
drug-likeness, and synthesizability. There-
fore, overcoming numerous obstacles,
especially multi-objective optimization, is
critical for drug discovery. Experimental
approaches often focus on one or a few
highly correlated properties at a time, while
requiring substantial time investment.
With the rapid advancement of artificial
intelligence, deep learning-basedmolecular
generation models have emerged, offering
new possibilities to address this challenge.
The 3D geometry of a molecule is a key
determinant of its physicochemical prop-
erties, which directly impact its pharma-
cology, pharmacokinetics, metabolism, and
toxicity. Consequently, exploring molecular

structures in 3D space is advantageous for advancing drug dis-
covery. Graph neural networks (GNNs) excel at capturing the
explicit characteristics of molecular graphs, making them well-
suited for learning structural information. GNNs integrate mul-
tiple algorithms dedicated to generating the molecules in the
3D space, such as autoregressive models, latent representation-
basedmodels, equivariant normalizing flows, and diffusionmod-
els. Among thesemethods, diffusionmodels canmore effectively
capture the intrinsic features of the data through a series of dif-
fusion steps, thereby generating molecular graphs with greater
realism and detail.[2] This characteristic facilitates a deeper un-
derstanding of the process and mechanisms of molecular gener-
ation, which arouses the interest of researchers.[3] For 3D molec-
ular generation based on diffusion models, a common approach
involves separately addressing chemical bonds and intramolecu-
lar weak interactions by introducing noise to the adjacency ma-
trix of edges.[4] Discrete molecular graphs are embedded into
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continuous space for processing, making crucial structural infor-
mation undefined or obscured. This operation also hinders accu-
rately capturing the relationships between atoms and bonds in
the original molecular graph, leading to false connecting.[4c,5]

A valuable strategy for addressing the above issue in the diffu-
sion model for 3D molecular generation is to integrate discrete
and continuous diffusion models, enabling the management of
both 2D and 3D features to guide the bond formation process.[6]

Although these methods improve molecular stability, their con-
ditional generative capacity remains limited to a narrow range of
heavy atom sets. Besides, current generativemodels based on dif-
fusionmodels are barely concerned with the special properties of
drug candidates, leading to a disconnect between evaluationmet-
rics and real-world performance. Therefore, there is an urgent
need to make advancements in model design, particularly focus-
ing on enhancing accuracy, scalability, and the capacity to create
genuinely innovative and varied chemical compounds that fulfill
the intricate demands of drug discovery.[7]

In this paper, we proposed a novelmethod namedDiffMC-Gen
(dual denoisingDiffusionmodel forMulti-Conditionalmolecular
Generation) by integrating the discrete and continuous denois-
ing diffusion model to address these challenges. We incorporate
the Dynamically Composable Multi-Head Attention method into
the discrete graph network architecture, which reduces network
parameters and improves operational speed.[8] Furthermore, we
introduce a novel local hierarchy of 3D isomorphism encoding
algorithm for capturing geometric features, especially molecu-
lar special information.[9] This methodology improves traditional
equivariant processing by incorporating considerations for bond
angles and employing spatial distance transformations to estab-
lish bond connections. Additionally, DiffMC-Gen simultaneously
optimizes pharmacophore matching coefficients,[10] acute toxic-
ity evaluations, as well as Quantitative Estimate of Drug-likeness
(QED)[11] and Synthetic accessibility (SA)[12] scores to enhance
drug-likeness and potential biological activity. Finally, we demon-
strate the utility of DiffMC-Gen through case studies focusing on
Hematopoietic progenitor kinase 1 (HPK1), Leucine-rich repeat
kinase 2 (LRRK2), and Glucagon-like peptide-1 (GLP-1) receptor.
Evaluation results show that the generated molecules based on
DiffMC-Gen align well with specified pharmacophore hypothe-
ses and pharmacokinetic criteria while maintaining high validity,
uniqueness, and novelty.

2. Methods

In this section, we will provide a brief overview of the datasets
used, along with a detailed description of the design concepts and
technological advancements incorporated into our model.

2.1. Datasets

For the development and assessment of themolecular generation
model, three datasets were used, including Quantum Machine
9 (QM9),[13] Cambridge Structural Database (CSD) from Cam-
bridge Crystallographic Data Centre (CCDC), andMolecular Sets
(MOSES).[14] Among the three datasets, QM9 and MOSES are
the most commonly used and widely recognized datasets in the

development of molecular generation methods. In addition, the
Cambridge Structural Database (CSD), which provides reliable
3D geometric structures for a wide range of compounds, is also
utilized in our models to enhance the reliability of the generated
3D molecular conformations. The structural information statis-
tics of the molecules in the three datasets are provided in Table
S1 (Supporting Information). A detailed introduction to the three
datasets is given below.

2.1.1. QM9

The QM9 dataset consists of computed geometric, energetic,
electronic, and thermodynamic properties for 134k stable small
organic molecules made up of C, H, O, N, and F. The molecules
within the QM9 dataset typically consist of nine heavy atoms
without hydrogen atoms, and generally, 18 atoms when hydro-
gen atoms are included. This dataset plays an important role in
evaluating the capability of generating small, diverse, and physi-
cally realistic molecules with defined quantum properties.

2.1.2. CSD

The CSD dataset essentially includes all published organic and
metal-organic compounds with crystal structures. This dataset
contains over 60K molecules with experimental 3D conforma-
tions. Molecules that deviate significantly from drug-like struc-
tures or contain more than 40 atoms have been filtered out.
Since stable crystal conformations serve as a reliable reference
for small-molecule generation, leveraging this dataset may im-
prove the model’s ability to generate stable 3D molecular confor-
mations.

2.1.3. MOSES

This dataset consists of 1.9 million clean, lead-like molecules
sourced from the ZINC database. Each molecule contains an av-
erage of 29 atoms. This dataset designed to encompass drug-
like and bioactive molecules, provides a robust benchmark for
assessing the capacity to generate synthetically accessible and
drug-like compounds. This dataset does not include 3D struc-
ture information originally. To train our model to generate 3D
molecular structure, we need to generate 3D conformers for each
compound in this dataset. As we know, 3D conformers play an
important role in the development of the 3D molecular genera-
tion method. The commonly used methods for 3D conformation
generation mainly include rule-based methods, distance geome-
try, systematic search, stochastic methods, molecular dynamics,
deep learning-based methods, and hybrid methods.[15] Hybrid
methods and deep learning-based approaches are increasingly
popular due to their ability to combine speed, accuracy, and scala-
bility. RDKit integrates rule-based and stochasticmethods to gen-
erate molecular 3D conformers, which belong to hybrid methods
for 3D conformation generation. It has advantages in balancing
speed, accuracy, and diversity for 3D conformation generation.
Thus here, we used RDKit[16] to generate 3D structures and em-
ployed a Universal Force Field (UFF)[17] for minimum energy op-
timization.
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Figure 1. The overall architecture of DiffMC-Gen. The model is composed of four components: a) data preparation, b) the noise diffusion process, c)
the denoising diffusion process for both kinds of graphs, and d) constrained sampling.

To test our molecular generationmodel, several targets includ-
ing HPK1, LRRK2, and GLP1 were used. Their 3D structures in-
cluding HPK1 (PDB ID: 7M0M), LRRK2 (PDB ID: 8FO7), and
GLP-1 receptor (PDB ID: 7S15) were downloaded from the PDB
database.[18] The detailed medicinal therapeutic significance of
the three targets can be found in Supporting Information.

2.2. Model Design

Diffusion models have been applied successfully to image gen-
eration and related fields. It defines a process that gradually in-

troduces noise into the data and then trains neural networks to
reverse this degradation through iterative denoising. As shown
in Figure 1a, the inputs of DiffMC-Gen include discrete molecu-
lar features, global features, and conformational geometrics. Dis-
crete graphs are decomposed into categorical node and edge at-
tributes, which are represented by one-hot encodings and de-
noted by the space X and E, respectively. The global feature of
each graph is concentrated on the feature y, which involves
structural features (e.g., cycle features and spectral features) and
molecular features (e.g., charge, valency, and weight distribu-
tions). Multiple constrained properties are incorporated with dy-
namic weight w. The conformational data (positions, distances,
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angles) are also encoded as part of a continuous graph. Categori-
cal and geometric features are transformed into discrete and con-
tinuous representations, respectively.
Figure 1b shows the gradual addition of noise leads to x0 los-

ing its distinguishable features progressively and changing to
q(xt|xt − 1) in the forward diffusion process. For discrete graphs,
noise is represented by transition matrices Q1,…,QT, which in-
fluence the marginal distribution of node and edge types. For
continuous graph, Gaussian noise is applied to the atomic 3D
coordinates and atomic weights over T sampling steps, result-
ing in outcomes that follow an isotropic Gaussian distribution

N
(
xt
|||𝛼tx(t−1) , 𝜎2t I

)
. Here, 𝛼t controls the amount of signal re-

tained, and 𝜎t controls the amount of noise added. The noisy data
are tokens as inputs of discrete and continuous denoising net-
works. Denoising diffusion networks learn to inert the diffusion
trajectories to predict the clean output x′ from xt, which need to
learn the distribution: p

𝜃
(xt − 1|xt). Then the Kullback–Leibler di-

vergence between x′ and x0 would be minimized to approximate
the conditioned probability distributions.

2.2.1. Discrete Denoising Generative Network: Graph Transformer
with Dynamically Composable Multihead Attention

In this study, we employ graph transformer layers to construct
the discrete graph denoising network. The graph transformer is
inspired by the success of transformer in natural language pro-
cessing (NLP) and computer vision, combined with the proven
effectiveness of graph neural networks (GNNs).[19] Through the
integration of graph inductive bias, graph transformers adjust
to dynamic and heterogeneous graphs, utilizing feature equiv-
alence across nodes and edges. Nevertheless, the computational
expenses and memory usage increase significantly when aiming
to improve the scalability and efficiency of applying self-attention
to large-scale graphs, like those in datasets such as MOSES and
CSD.
Graph attention mechanisms enable transformers to priori-

tize and emphasize the most relevant and important elements
for the given task. Dynamically Composable Multi-Head Atten-
tion (DCMHA) integrates edge attention scores and conditional
features as weight matrices, enhancing its ability to explore drug-
like molecules under multiple condition constraints while opti-
mizing computational efficiency.[8] Figure 1c illustrates how the
approach facilitates information exchange between different at-
tention heads and guides the extraction of edge features from
the latent space. Additionally, it helps to mitigate the issue of in-
sufficient computational resources. The Adaptive Instance Norm
layer is also used to integrate conditional information with node
and edge information. Training on nodes, edges, and weighted
global features helps prevent DiffMC-Gen from over-relying on
conditional information.

2.2.2. Continuous Denoising Generative Network: Powerful and
Efficient Geometric Graph Neural Networks

Accurately incorporating local conformation information is cru-
cial for the 3D generation of small molecules. Currently, Equiv-
ariant Graph Neural Network (EGNN)[9] and other methods that

widely adopted in denoising diffusion framework for 3D molec-
ular generation. When they capture local geometry and global
topological structures at multiple scales, they rely on node coor-
dinate updates, which leads to high memory and computational
requirements.[4a,c,5a,20] Partial information may be lost when the
topological structure ofmolecules is complex or when amolecule
possesses chiral characteristics.[21] In this work, we employed
SE(3)-equivariant local isomorphism to quantify the local simi-
larity of 3D structures.[9] This powerful and efficient geometric
graph neural network is constructed as a continuous denoising
generative network.
The denoising diffusion process has incorporated Markov

chains 𝜎21 , 𝜎
2
2 ,… , 𝜎2T to denoise molecular graph inputsG, which

are associated with atomic weights and positions xi ∈ ℝ3 of each
node. A local frame transition block here is designed to eluci-
date global alterations among local geometries. While maintain-
ing equivariance, it enhances sensitivity to local geometric struc-
tures. Leveraging implicit geometry-aware mechanisms avoids
direct coordinate updates and efficiently extracts geometric in-
formation through edge weights and attention mechanisms. The
multi-level attention framework also effectively captures both lo-
cal geometric details and global topological features. Meanwhile,
the pharmacophore matching coefficient is incorporated as con-
ditional guidance, steering the geometric denoising process. This
strategy aims to improve the potential bioactivity of the generated
3D molecular structures to their target molecules.
To analyze the impact of key components in DiffMC-Gen, ab-

lation experiments were performed and the detailed process to-
gether with results were given in the supporting information.

2.2.3. Constrained Properties

The core of drug discovery lies in the creation of novel molecules
with the desired properties. Thus here, to ensure the gener-
ated molecules with the desired properties, various drug-related
properties including activity, drug-likeness, synthetic accessibil-
ity, and toxicity are used as constraints during the generation pro-
cess. Drug-likeness is influenced by multiple factors, including
physicochemical properties, and pharmacokinetics. The interac-
tion among these factors is often more critical than any single
attribute,[22] which also suggests that molecular generation is a
multi-objective optimization problem. In this study, a set of com-
prehensive evaluation metrics are employed as constrained indi-
cators to avoid unintended biases from multiple simple criteria.
The properties used are described below.
Pharmacophorematching score. To improve the potential activity

of generated molecules, a ligand-based pharmacophore match-
ing score is commonly used as one of the optimization objec-
tives to guide the generation of highly active molecules.[10,23] In
this work, we downloaded the target-related inhibitors or ago-
nists from the PubChem database to construct a proper pharma-
cophore hypothesis. The selected activemolecules for specific tar-
gets are classified into five distinct categories based on their core
scaffolds. Common functionalmoieties were utilized to construct
a pharmacophore model for each target. Then the spatial distri-
bution of pharmacophore sites and the pharmacophoric features
of the reference dataset were represented as a complete graph.[10]

Details of the process are shown in Figure S1 (Supporting
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Information). The highest graph matching scores to the phar-
macophore hypothesis are set as a constrained indicator, which
ranges from 0 (unfavorable) to 1 (favorable).
QED. Drug-likeness is an important criterion used to assess

the potential of compounds for drug development, which is sig-
nificant in increasing the success rate of drug development and
reducing costs. Quantitative estimates of drug-likeness (QED) ad-
dress the limitations of drug-likeness rules based on physical and
chemical properties. It integrates eight physicochemical proper-
ties (molecular weight, H-bond donors, H-bond acceptors, LogP,
charge, aromaticity, solubility, and stereochemistry) to produce a
score ranging from 0 to 1. A score closer to 1 indicates a more
drug-like molecule. QED can serve as an optimization target or
assessment metric, guiding the model to generate compounds
with high drug-likeness.[11]

SA score. The essence of drug discovery is the design of novel
molecules that achieve a balance between efficacy, safety, and
manufacturability. The synthetic accessibility of generated com-
pounds is the main concern for medicinal chemists. The syn-
thetic accessibility score (SA score) is calculated by integrating
fragment contributions and a complexity penalty in a predefined
database. Fragment contributions have been derived from the
analysis of one million representative molecules in PubChem,
where frequent fragments receive positive scores and less fre-
quent ones receive negative scores. On the other hand, themolec-
ular complexity penalty reflects the presence of non-standard
structural features, including spiro rings, ring fusions, multiple
potential stereocenters, and rings of size > 8. SA score is nor-
malized within the range from 0 (favorable) to 1 (unfavorable).
It is calculated sufficiently fast and provides results consistent
with an estimation of ease of synthesis by experienced medicinal
chemists. It is widely used as a constrained objective to assess the
synthesized difficulty of the generated compounds.[12]

Acute Oral Toxicity. Toxicity is one of the major factors con-
tributing to the failure of drug development. Here, we used acute
oral toxicity as one constrained objective to reduce the toxicity of
the generated compounds. Acute oral toxicity is the toxic reac-
tion of a drug over a certain period after multiple administration
within a single or 24-hour period. As shown in the PubChem
database, Rat oral LD50 is always used as the evaluation criterion
for the acute toxicity of molecules. The normalized acute toxicity
dataset with the Lethal Dose Fifty (LD50) values was downloaded
from the TOXRIC database.[24] We developed amachine learning
prediction model based on this dataset to predict the likelihood
of acute toxicity according to the 2D structure of the compounds.
The detailed performance of this prediction model is shown in
Figures S2 and S3 (Supporting Information). The value of toxic-
ity is normalized within the range from 0 (favorable) to 1 (unfa-
vorable).

2.2.4. Multiobjective Optimization Strategy

In this work, generated molecules would be optimized in the
generated process by multiple comprehensive evaluated metrics
to enhance their potential. Here, we developed a multi-objective
optimization strategy that alternates between a conditional dif-
fusion model and an unconditional diffusion model to enhance
control over the generated outputs. The conditional diffusion

model incorporates both discrete and continuous diffusion pro-
cesses, while the unconditional model focuses solely on discrete
diffusion. In the conditional diffusion model, the discrete sub-
model explicitly embeds the conditional distribution, which in-
corporates four different constraints, while employing an atten-
tion mechanism for implicit control. Meanwhile, the continu-
ous sub-model only considers the pharmacophore matching co-
efficient. The unconditional diffusion model training focuses
on discrete sub-models without incorporating global features. A
regressor-guided diffusion approach is employed in sampling,
where ϕ

𝜃
Modulates the predicted distribution at each sampling

step, steering it toward molecular graphs with the desired prop-
erties.

2.2.5. Evaluation Metrics

We adopt widely usedmetrics to evaluate the quality of molecules
generated by our model. 1) Glide score (Gscore) estimates the
binding affinity between ligand and target. We assessed different
docking protocols on the selected targets in the case study and
ultimately selected the Glide module of Schrödinger to evaluate
the binding affinity and binding pose of representativemolecules
due to its superior performance in molecular docking verified by
many researchers [25] and our evaluation results. The proteins
and molecules were first prepared by using the Protein Prepa-
ration Wizard and LigPrep modules in Schrödinger, respectively,
with all the default settings.[26] ThenGlide SP was employed with
semi-flexible receptor docking, generating 20 poses per ligand
without specific constraints. 2) Success rate is defined as the pro-
portion of generated molecules that exhibit desirable drug-like
properties, specifically those with QED ≥ 0.6 and SA score ≤

0.4, indicating high drug-likeness and favorable synthetic acces-
sibility. 3) Novelty represents the ability of the model to generate
molecules that are structurally different from those in the train-
ing set or existing known molecules. 4) Uniqueness is judged by
assessing whether the chemical graph of a generated molecule
is unique among the produced samples. 5) Validity is the per-
centage of generated molecules that obey common chemical
rules (like valency). 6)Diversity comprises two attributes: Internal
Diversity (IntDiv), which assesses the variety within the gener-
ated set by uncovering structural distinctions among the gener-
ated molecules, and the Fréchet ChemNet Distance (FCD), which
gauges the resemblance between the distributions of generated
and real molecules, encompassing both structural and chemical
similarities.[27] 7) The energy ratio in PoseBusters is used to evalu-
ate the reliability of generatedmolecules.[28] This metric provides
a more reliable assessment of molecular feasibility by compar-
ing the stability of the generated conformation against a distribu-
tion of unconstrained conformations. It represents the fraction of
molecules in the generated dataset whose calculated energy does
not exceed seven times the average energy of an ensemble of 50
unconstrained conformations generated for each molecule.

2.2.6. Statistical Analysis

Preprocessing of data: RDKit was employed to standardize
molecules across all datasets, ensuring the removal of incorrectly
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Table 1. The evaluation and comparison of DiffMC-Gen for 2D molecular generation (n = 2000).

Dataset Model Validity Diversity Novelty Uniqueness Success Rate

IntDiv FCD

QM9 MARS[29] 100.00% 0.92 7.343 70.95% 22.19% –

LSTM-HC[30] 100.00% 0.80 18.43 100.00% 100.00% –

DiGress[32] 99.39% 0.92 0.90 32.08% 96.16% –

GDSS[33] 95.13% 0.92 2.54 81.76% 97.74% –

Graph DiT[34] 92.21% 0.92 1.43 71.56% 88.54% –

DiffMC-Gen 89.00% 0.92 2.57 100.00% 100.00% –

MOSES MARS[29] 99.8% 0.86 18.73 99.95% 35.12% 54.61%

LSTM-HC[30] 50.04% 0.86 9.97 3.67% 100.00% 85.04%

JTVAE-BO[31] 100.00% 0.87 17.06 100.00% 58.90% 51.70%

DiGress[32] 86.34% 0.85 0.81 95.84% 100.00% 94.38%

GDSS[33] 97.01% 0.89 17.96 100.00% 99.64% 28.07%

Graph DiT[34] 76.48% 0.86 1.81 95.22% 98.90% 90.16%

DiffMC-Gen 81.39% 0.89 16.06 100.00% 100.00% 95.23%

processed molecules and performing deduplication. Addition-
ally, the constrained properties of molecules were normalized to
ensure data consistency.
Data presentation: All experiments were performed in three

replicates. The comparison results between different methods
are reported as the mean values of the evaluation metrics.
Sample size for each statistical analysis: The sample size of each

statistical analysis corresponds to the number of generated or
randomly selected molecules in each experiment. Specific sam-
ple sizes are provided in relevant figure legends and table state-
ments.
Statistical methods: In this study, the evaluation primarily relies

on predictive estimations and proportion-based comparisons. No
inferential statistical tests (e.g., hypothesis testing) were applied,
as the focus is on performance assessment using predefined eval-
uation metrics.
Software for statistical analysis: All statistical analyses were con-

ducted in Python 3.8.

3. Results and Discussion

3.1. The Quality of Generated Molecules from DiffMC-Gen

3.1.1. The Performance Evaluation of DiffMC-Gen for 2D Molecular
Generation

For the task of 2Dmolecular generation, we compared the gener-
ation performance between ourmodel and several recently devel-
oped generation models with good performance. Among the se-
lected models, MARS is a powerful and versatile molecular gen-
eration model by combines GNNs and the Markov chain Monte
Carlo sampling method.[29] LSTM with Hill Climbing (LSTM-
HC), a representative method in the GuacaMol benchmark, ex-
cels at generating molecules with nearly 90 nodes.[30] JTVAE-BO
was designed to generate target-oriented molecular graphs, ef-
fectively guiding the optimization of molecular structures.[12,31]

DiGress is a discrete diffusion model, leveraging the exceptional
denoising capabilities of diffusion models to learn the attributes
of nodes and edges inmolecular graphs. Thismodel has achieved
outstanding performance on molecular and graph datasets.[32]

GDSS constructed a graph diffusion process that models the
joint distribution of the nodes and edges through a system of
stochastic differential equations (SDEs).[33] Graph DiT is built
upon the exceptional combination of transformer and diffusion
models and has beenmodified specifically for conditional molec-
ular generation.[34]

Here, the comparison between DiffMC-Gen and these base-
line models was performed based on both the QM9 dataset
and the MOSES dataset. On the QM9 dataset, DiffMC-Gen was
compared with baseline models, emphasizing the generation of
small-scale molecular graphs under the guidance of quantum
chemical properties. Meanwhile, the MOSES dataset was used to
assess its ability to produce a large volume of molecular graphs.
Table 1 provides a summary of the overall assessment and com-
parison results.

Table 2. The evaluation and comparison of DiffMC-Gen for 3D molecular
generation (n = 2000).

Dataset Methods Validity Uniqueness Novelty Energy
Ratio

QM9 GFMDiff[20] 91.67% 100.0% 90.98% –

MDM[4c] 65.01% 44.18% 99.93% 7.00%

GCDM[5a] 92.70% 93.40% 58.70% 72.88%

GeoLDM[35] 76.60% 99.86% 74.90% 31.90%

DiffMC-Gen 89.00% 100.00% 93.33% 55.30%

CSD GFMDiff[20] 53.20% – – –

MDM[4c] 25.85% 71.49% 98.38% 6.23%

GCDM[5a] 46.8% 95.5% 95.5% 12.25%

GeoLDM[35] 1.2% 81.82% 100.0% 5.77%

DiffMC-Gen 75.00% 100.0% 100.0% 11.35%
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Figure 2. Histogram of distribution for atom and bond types of generated molecules (n = 10000) by DiffMC-Gen and those in the training dataset.

From Table 1, it can be seen that DiffMC-Gen generates
molecules with good Validity, highest Uniqueness, and Novelty
on both the QM9 and MOSES datasets. These indicators re-
flect that our model can effectively reconstruct topological in-
formation to generate molecules with simple or complex struc-
tures. Additionally, DiffMC-Gen performs well on diverse met-
rics. The internal diversity of DiffMC-Gen is 0.92when trained on
the QM9 dataset and 0.89 when trained on the MOSES dataset,
demonstrating performance comparable to most baseline mod-
els and DiffMC-Gen is good at discovering more diverse molecu-
lar structures even constrained by multiple indicators. Molecules
generated by DiffMC-Gen exhibit high FCD values, indicating
that DiffMC-Gen has greater potential to effectively explore the
marginal distribution of node and edge types undermultiple con-
ditional constraints. Furthermore, the highest success rate, calcu-
lated based on a combination of QED and SA Score, highlights
the effectiveness of the multi-objective optimization strategy in
our model.

3.1.2. The Performance Evaluation of DiffMC-Gen for 3D Molecular
Generation

Two datasets are used to evaluate the performance of DiffMC-
Gen in generating novel 3D molecules with multi-objective op-
timization, including the QM9 dataset for generating small-
scale molecular graphs and the CSD dataset for generating
larger, drug-like molecules. Baseline models selected for com-

parison with our model mainly include recent proposed mod-
els based on diffusion models. MDM is a dual diffusion-based
generative model designed to independently consider chemical
bonds and intramolecular weak interactions.[4c] GeoLDM inte-
grates equivariant latent features into the latent space, enhanc-
ing the validity percentage of large molecules and the ability
for controllable generation.[35] GFMDiff reinforces the multi-
body relationship between binary edges and molecular geom-
etry, effectively enhancing molecular stability as well as spe-
cific molecular properties.[20] GCDM achieves enhanced Vina
scores and high validity by prioritizing molecular stability in its
design.[5a]

For a standardized assessment of 3D molecular generation
performance, 2000 molecules generated from each model men-
tioned above were utilized. The properties optimized during
training on the QM9 dataset align with those used in the 2D
molecular generation task, whereas the properties optimized dur-
ing training on the CSD dataset match those employed in the
MOSES training process. Generally, the generation performance
of the model will decline when the balance between global fea-
tures and local features is not optimal. DiffMC-Gen tries to over-
come this problem.
As shown in Table 2, DiffMC-Gen shows excellent perfor-

mance in both datasets QM9 and CSD. Especially, DiffMC-
Gen has the best Uniqueness and best or second-best Validity
compared with the baseline models. The novelty of generated
molecules by DiffMC-Gen is also prominent, with the best and
second-best results for CSD and QM9 datasets, respectively. This
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Figure 3. Comparison of the properties of generated molecules by DiffMC-Gen and baseline methods for a) multi-conditional 2D molecular generation
models, b) multi-conditional 3D molecular generation models, and c) the distribution of docking score in generated molecules (n = 1000).

Figure 4. T-SNE analysis of the chemical space of the VS results from the MOSES dataset and the molecules generated by DiffMC-Gen (n = 1000).
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Figure 5. The distribution of properties of generated molecules and the binding pose of representative molecules targeting GLP-1 receptor. a) The
distribution of three key properties of generated molecules (n = 400). b) Interaction diagram between GLP-1 receptor and one known agonist (PDB ID:
7S15). c, d) Two representative molecules and their detailed interactions with the GLP-1 receptor. e Overlay of two representative molecules and known
agonist in the binding site of GLP-1 receptor.

indicates that DiffMC-Gen is capable of generating molecules
distinct from those in the training dataset, even when the in-
put information is complex. Meanwhile, the high validity indi-
cates that DiffMC-Gen can effectively learn the structure distri-
bution of the training set. Here, the Energy ratio was used to
evaluate the physicochemical plausibility of generatedmolecules.

As shown in Table 2, DiffMC-Gen demonstrates exceptional per-
formance in the energy ratio metric, highlighting its capability to
producemolecules with reasonable conformations. These results
highlight DiffMC-Gen’s superior performance in 3D molecular
generation tasks, showcasing its capability to efficiently balance
multiple constraints.
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Figure 6. The distribution of properties of generated molecules and the binding pose of representative molecules targeting HPK1. a) The distribution of
three key properties of generatedmolecules (n= 1000). b) Interaction diagrambetweenHPK1 and one inhibitor (PDB ID: 7M0M). c, d) Two representative
molecules and their detailed interactions with HPK1. e) Overlay of two representative molecules and known inhibitors in the binding site of HPK1.

3.1.3. Molecular Properties Distribution

We assessed the node type distribution and edge type distribu-
tion of molecules generated by DiffMC-Gen and the molecules
in the training set. As shown in Figure 2, the atom type and
bond type distributions of molecules generated by DiffMC-Gen
closely align with those of the training data, demonstrating its
strong ability to learn molecular topological structure distribu-
tions. Based on the Similarity Property Principle,[36] which posits
that chemically similar molecules are likely to exhibit similar bi-
ological activities or properties, DiffMC-Gen is expected to gen-

erate molecules with physicochemical and pharmacokinetic pro-
files that closely resemble those in the training set. To verify this,
we further compared the molecules generated by DiffMC-Gen
with those from baseline models across four critical properties
essential for drug development.
We randomly selected 1000 molecules from the generated

dataset in the 2D multi-conditional molecular generation task
to evaluate their properties and compare the distribution of
these properties with those of molecules generated by the base-
line models. The comparison results are given in Figure 3a. As
shown in Figure 3a, DiffMC-Gen shows a similar drug-likeness
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Figure 7. The distribution of properties of generated molecules and the binding pose of representative molecules targeting LRRK2. a) The distribution of
three key properties of generatedmolecules (n= 1000). b) Interaction diagrambetween LRRK2 and one inhibitor (PDB ID: 8FO7). c, d) Two representative
molecules and their detailed interactions with LRRK2. e) Overlay of two representative molecules and known inhibitors in the binding site of LRRK2.

estimated score distribution to Graph-DiT with the highest con-
centration around 0.8, slightly higher than DiGress and GDSS,
indicating that DiffMC-Gen has the substructure learning ability
to reconstruct molecules that satisfy Lipinski’s five rules. For syn-
thetic accessibility, DiffMC-Gen demonstrates comparable per-
formance to Graph-DiT, with both models achieving scores cen-
tered around 0.2, which is significantly better than those of Di-
Gress and GDSS. This observation indicates that after incor-
porating multiple global features as constraints, DiffMC-Gen
can effectively adjust the structural complexity of the generated
molecules and balance various constraint attributes. Instead,
it can effectively balance the learning of both global and local
features. Furthermore, the elevated distribution of the median

pharmacophore matching coefficient in molecules generated by
DiffMC-Gen suggests that thismodel is particularly adept at iden-
tifying regions of chemical space enriched with target-specific ac-
tive structures, while simultaneously preserving favorable QED
and SA scores. For potential toxicity, both DiffMC-Gen and the
baseline models exhibit a low probability of acute toxicity in the
generated datasets. This is because acute toxicity is typically as-
sociated with specific representative atom types and structures,
and the data used for the training set has undergone partial fil-
tering. As a result, the models effectively learn and reproduce
this broadly distributed property. From the above comparison,
DiffMC-Gen shows the potential to generate novel molecules
with constrained properties.
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As for the 3D molecular generation task, can our model
generate molecules with the expected properties and reason-
able 3D conformations? To answer this question, we further
compared the distribution of expected properties of generated
molecules by our model DiffMC-Gen and other baseline mod-
els at multi-conditional 3D molecular generative tasks. As illus-
trated in Figure 3b, DiffMC-Gen demonstrates exceptional per-
formance in generating molecules with strong drug-likeness, as
the majority of scores fall within the 0.7–0.8 range. DiffMC-
Gen also outperforms GeoLDM and MDM in pharmacophore
matching, with the highest proportion of scores between 0.5
and 1.0, demonstrating the model’s strength in leveraging con-
ditional guidance during conformation generation. In terms of
acute toxicity and synthetic accessibility distribution, DiffMC-
Gen performs similarly to baseline models, with most values
concentrated in the desired attribute ranges. It shows that our
model can still better adjust the structure complexity and the fre-
quency of special structures after the optimization of geometric
information.
Furthermore, we applied molecular docking to assess the po-

tential binding ability of generated molecules to target. LRRK2
(PDB ID: 8FO7) was selected as a target to test our model and
baseline models. As shown in Figure 3c, DiffMC-Gen exhibits
a Glide Gscore most frequently around −6.4, which is superior
to all baseline models. This demonstrates that DiffMC-Gen im-
proves the potential activity of generated molecules by leveraging
conditional 3D geometric optimization, underscoring its ability
to design molecular structures with high bioactivity. These re-
sults further support that DiffMC-Gen generatesmolecular struc-
tures with expected properties, especially good drug-like proper-
ties and activity.

3.2. DiffMC-Gen Can Generate Bioactive Molecules Toward
Specific Targets

As we know, the focus and key of the drug discovery process is
to obtain novel molecules with good activity for the concerned
biological target. So here, to evaluate the ability of our model to
generate biologically active molecules, we used three popular tar-
gets including GLP-1 receptor, HPK1, and LRRK2 as examples
to analyze the binding affinity and binding pose of generated
molecules.
Compared with molecular generation models, virtual screen-

ing (VS) is a commonly used computational technique to iden-
tify potential bioactive molecules by searching large compound
libraries.[37] However, the virtual screening methods generally
only can identify lead compounds from the known and limited
chemical space. Relatively, molecular generation methods excel
in exploring novel chemical space and optimizing specific prop-
erties. Here, to verify if our molecular generation model can ex-
plore new chemical space and obtain structurally novel and ac-
tive molecules, we utilized three popular targets GLP-1 receptor,
HPK1, and LRRK2 to compare the features of hit compounds
by virtual screening and generated by our DiffMC-Gen model.
For virtual screening, a multi-hierarchical workflow comprising
HTVS, Glide-SP, and Glide-XP in Schrödinger was applied, re-
taining the top 10% of compounds at each stage.[38] The top 1000
molecules for each target screened from the MOSES database

were chosen to compare with the 1000 molecules generated by
our DiffMC-Gen model.
T-SNE (t-distributed stochastic neighbor embedding) based on

Extended-Connectivity Fingerprints (ECFP) of molecules was ap-
plied to visualize the distribution of generated molecules and
the molecules obtained by virtual screening.[39] T-SNE is a ma-
chine learning algorithm used for visualizing high-dimensional
data in a low-dimensional space, typically 2D or 3D. The smaller
the distance between data points, the higher the similarity be-
tweenmolecular structures. As shown in Figure 4, the molecules
generated by DiffMC-Gen show different aggregation patterns
with the molecules screened out from the MOSES database. The
generated molecules targeting HPK1 and LRRK2 are favorably
distributed in similar areas but tend to cluster in different re-
gions compared to the screened molecules. This suggests that
the generated molecules may share similar structural features
with the screened molecules, indicating that our molecular gen-
eration model holds great promise for generating potentially ac-
tivemolecules during the exploration of new chemical space. The
generated molecules targeting the GLP-1 receptor exhibit a more
distinct distribution from the screened molecules, indicating a
certain degree of structural divergence relative to the generated
molecules against two kinase targets. The difference in the distri-
bution of chemical space between the generated molecules and
the screenedmolecules can be attributed to the differences in the
structure of the two types of targets themselves.
The distribution of docking scores for the generated

molecules, along with the binding mode analysis of repre-
sentative molecules, can provide valuable insights into the
potential of these molecules for target binding and therapeutic
applications. Thus here, we first evaluated the performance of
the generated molecules targeting the GLP-1 receptor, a key
target in treating type 2 diabetes and obesity by enhancing in-
sulin secretion, reducing glucagon levels, and promoting satiety.
Figure 5a illustrates the distribution of three key properties in
generated molecules, such as QED, SA score, and docking score
to the target protein (PDB ID: 7S15). The aggregated region
demonstrates that DiffMC-Gen effectively generates molecules
with favorable binding affinities and desirable physicochemical
properties. Figure 5b illustrates the detailed interaction between
one known agonist (EC50 = 0.75 nM) and the GLP-1 receptor
obtained from the PDB database (PDB ID: 7S15).[40] Figure 5c,d
shows the binding pose of representative molecules (compounds
215 and 334) generated by DiffMC-Gen. These molecules form
𝜋-cation interaction with Trp33 and strong hydrogen bonds with
Lys197. In addition, compound 215 forms an ion-pair interac-
tion with Arg380. These generated molecules fit well within the
binding pocket, sharing similar favorable interactions to target
with known agonists. Figure 5e shows the overlay between two
representative molecules and known agonists in the binding site
of the GLP-1 receptor. It can be seen from Figure 5e that two
representative molecules share a similar binding mode with the
known agonist, suggesting that small molecules generated by
DiffMC-Gen can form a favorable interaction with the GLP-1
receptor and may produce the desired physiological response
with high probability.
Figure 6 shows the distribution of the docking score of gener-

ated molecules and the binding pose of known inhibitors and
representative molecules targeting HPK1, which is a potential
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target for tumor immunotherapy and autoimmune diseases.
Figure 6a presents the distribution of three critical properties for
the molecules generated by DiffMC-Gen. The clustering region
of the three attributes is concentrated in the advantage range of
each attribute, which indicates that themodel has good structural
optimization ability. The binding mode between one known in-
hibitor (IC50 = 453 nM) and HPK1 (PDB ID: 7M0M) is shown
in Figure 6b.[41] The binding poses of two represented gener-
ated molecules (compound 642 and 376) with top-ranking dock-
ing scores are shown in Figure 6c,d. These generated molecules
form similar hydrogen bond interaction with Cys94 and water-
mediated interaction with Asp155 to target. These interactions
are critical for the activity and selectivity of HPK1. Besides, com-
pound 642 forms a similar hydrogen bond interaction to Glu92
and a salt bridge to Asp101 as displayed in Figure 6b. These gen-
erated molecules share similar interactions to target with estab-
lished inhibitors, demonstrating the capability of DiffMC-Gen to
design molecules with potential pharmacological activity. More-
over, Figure 6e shows the well-aligned overlaps between gener-
atedmolecules and known inhibitors in the binding site ofHPK1,
further validating the effectiveness of DiffMC-Gen.
We also assess the generation performance of a model tar-

geting LRRK2, a kinase target for developing potential therapies
for Parkinson’s disease and other neurodegenerative disorders.
From the distribution of the three key attributes, as depicted in
Figure 7a, DiffMC-Gen can effectively generate molecules with
good binding affinity and low synthetic complexity as well as high
drug-likeness estimates. The detailed interactions of a known in-
hibitor LRRK2-IN-1 in complex with LRRK2 (PDB ID: 8FO7) is
shown in Figure 7b.[42] Figure 7c,d shows the binding pose of
two representative generatedmolecules (compound 904 and 691)
with better docking results. These two molecules form hydrogen
bonds to Ala1950 and van der Waals interactions with surround-
ing residues in the binding pocket. These interactions are sim-
ilar to those between LRRK2 and known inhibitors, supporting
their potential activity. Figure 7e presents the overlay of two rep-
resentative molecules with LRRK2-IN-1 in the LRRK2 binding
site. Both representative molecules adopt binding modes similar
to that of the known inhibitor. The results indicate that ourmodel
can explore novel molecular structures with potential activity.

4. Conclusion

In this paper, we developed a novel molecular generation model
DiffMC-Gen for multi-conditional molecular generation by in-
tegrating both discrete and continuous diffusion models to en-
hance its ability to perceive 3D molecular structures. In the dis-
crete graph diffusion network, a dynamically composable multi-
head attention mechanism is employed, combining attention
scores and conditional weight matrices to reduce computational
cost while enhancing the influence of conditional information
during diffusion steps. In the continuous graph diffusion net-
work, not only a novel hierarchy of SE(3)-equivariant local iso-
morphisms is used to evaluate local structural similarities but a
local frame transition block is also used to capture global changes
in local geometries. Additionally, it involves a multi-objective op-
timization strategy to simultaneously optimize multiple prop-
erties of generated molecules, including binding affinity, drug-
likeness, synthesizability, and toxicity.

The comparison between DiffMC-Gen and baseline models
verifies that DiffMC-Gen consistently outperforms or matches
baseline models in both the general generation performance and
the distribution of expected properties of generated molecules.
Through the case studies using three targets—HPK1, LRRK2,
and GLP-1 receptor, the obtained results show that the generated
molecules based on DiffMC-Gen not only have good biological
activity but also maintain good druglike properties, structural di-
versity, and novelty, highlighting that our method can generate
high-quality candidature with expected properties and will be-
come a useful de novo drug design tool.
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