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Discovery and enrichment of favorable alleles in landraces are key to making them
accessible for crop improvement. Here, we present two fundamentally different con-
cepts for genome-based selection in landrace-derived maize populations, one based on
doubled-haploid (DH) lines derived directly from individual landrace plants and the
other based on crossing landrace plants to a capture line. For both types of populations,
we show theoretically how allele frequencies of the ancestral landrace and the capture
line translate into expectations for molecular and genetic variances. We show that the
DH approach has clear advantages over gamete capture with generally higher prediction
accuracies and no risk of masking valuable variation of the landrace. Prediction accura-
cies as high as 0.58 for dry matter yield in the DH population indicate high potential of
genome-based selection. Based on a comparison among traits, we show that the genetic
makeup of the capture line has great influence on the success of genome-based selection
and that confounding effects between the alleles of the landrace and the capture line are
best controlled for traits for which the capture line does not outperform the ancestral
population per se or in testcrosses. Our results will guide the optimization of genome-
enabled prebreeding schemes.
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Genetic improvement is essential to secure sustainable crop production. Future crops
will have to combine high yield potential with major sustainability factors, such as
stress tolerance and resource efficiency. To meet these demands, plant breeding will
require a reservoir of genetic variation much larger than what is currently found in
commercial varieties (1). For maize, it has been estimated that US breeding populations
represent only 2% of the entire maize germplasm (2). In contrast, seed banks around
the world harbor thousands of untapped landrace accessions (1, 3, 4). Revisiting this
vast diversity of landraces is considered promising for elite germplasm improvement (1,
5–9), and developments in molecular, computational, and quantitative genetics open
new avenues to make native diversity accessible.
Landraces have been shown to harbor beneficial alleles for traits with limited genetic

variation in breeding populations (10), but for most agronomically important traits,
they exhibit a substantial performance gap compared with elite germplasm (11–13).
While for qualitative traits targeted introgression of favorable alleles discovered in land-
races is possible, many traits have a polygenic foundation, which is determined by a
large number of genes with small effects. Consequently, marker-based introgression of
individual alleles is limited for those traits. Extracting inbred lines directly from landra-
ces and selecting them for superior performance can close the performance gap only
partially. Therefore, recurrent population improvement with additional rounds of
recombination and selection is necessary to increase the frequency of favorable alleles
before introducing landrace-derived genetic material into elite populations. Genome-
based selection can accelerate this process, but the theoretical basis of its implementa-
tion in prebreeding still needs to be developed.
In outcrossing species, population improvement generally includes three distinct

phases (14): 1) sampling candidates from the population to establish progeny for evalu-
ation, 2) evaluating them in multienvironment field trials, and 3) recombining the best
candidates to form the next cycle. In genome-based recurrent selection, genomic data
are collected in the first phase, and together with data from the second phase, a statisti-
cal model is trained for prediction of breeding values of untested candidates from the
same or future breeding cycles. The success of this approach depends strongly on the
prediction accuracy that can be achieved with the training data. One major determi-
nant is the type of progenies that can be derived from the ancestral landrace (e.g.,
inbred lines, full- or half-sib families). Additional factors are the quality of phenotyping
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expressed as the heritability (h2) of the target traits, the sample
size (N), and the number of markers (M).
Here, we developed the quantitative genetic framework for

two fundamentally different concepts for establishing training
populations from landraces. The two concepts are displayed in
Fig. 1 and differ with respect to the proportion of landrace
genome and technical steps for their production. The “pure”
approach entails the production of fully homozygous doubled-
haploid (DH) lines from the ancestral landraces. The DH lines
exhibit twice the additive genetic variance of the ancestral land-
race and allow high-precision phenotyping. The “admixed”
approach captures gametes of the landraces in a cross with an
inbred (capture) line of different genetic background followed by
subsequent selfing of the offspring. When the aim of the pre-
breeding program is the immediate development of superior
inbred lines, a natural choice for the capture line would be a
high-performing elite line to increase the usefulness of the result-
ing population compared with the pure approach. However, the
use of an elite capture line has been shown to carry a high risk of
reconstructing the elite genome, associated with a loss of landrace
alleles in later selection steps (15). We, therefore, investigated the
role of the capture line for the genetic improvement of landrace-
derived populations with a focus on genome-based recurrent
selection. We link generic theory with population-specific molec-
ular parameters and experimental results on several traits, includ-
ing yield, in four unique populations representing the pure and
the admixed approach as well as two ancestral landraces.

Results

Molecular Variances of DH and Gamete Capture Populations
Can Be Predicted. We developed populations of DH and gam-
ete capture (GC) lines from two flint maize landraces, Kemater
Landmais Gelb (KE) and Petkuser Ferdinand Rot (PE). The
French inbred FV2 derived from population Lacaune served as
the capture line. Both populations were produced from the
same seed batch of the respective landrace, which we defined as
the ancestral landrace. In addition to the derived DH and GC
populations, a random sample from the ancestral landrace (LS)
was genotyped. Across populations, 85 and 92% of the total
472,169 single nucleotide polymorphisms (SNPs) were poly-
morphic in KE and PE, respectively. The majority of the

polymorphic markers (80.9% for KE and 78.4% for PE) segre-
gated in all three populations (Fig. 2A and SI Appendix, Fig.
S1A). In both landraces, each population showed a small per-
centage of segregating markers that were fixed in one or both of
the other two populations due to independent sampling from
the ancestral landrace. The capture line FV2 carried a SNP
allele not present in the LS and DH lines at 13,315 (KE) and
11,488 (PE) genomic positions, thus contributing about half of
the private polymorphisms of the GC lines. For both landraces,
allele frequencies observed in DH and GC corresponded with
allele frequencies estimated from LS and FV2 (Fig. 2 E and F
and SI Appendix, Fig. S1 E and F).

Mean pairwise genetic distances of genotypes ð�X GD) in the
three types of populations are depicted in Fig. 2B and SI
Appendix, Fig. S1B for landrace KE and PE, respectively. Under
the assumption of Hardy–Weinberg equilibrium in the ances-
tral landrace and no selection, the expected �X GD in LS and
DH is a function of the ancestral allele frequencies with
�X GDðLSÞ ¼ �X GDðDH Þ (SI Appendix, SI Text A1 and Table A1).
In the GC populations, the allele frequencies of the capture
line need to be accounted for. In the experimental LS and DH
populations, mean and range of pairwise genetic distances were
similar but not identical, with �X GDðLSÞ < �X GDðDH Þ in KE and
vice versa in PE. The more pronounced difference between LS
and DH in KE was most likely the result of mild population
admixture in the LS, which is reflected by an excess of closely
related genotypes (Fig. 2B). Mean genetic distances between GC
lines and the capture line FV2 calculated based on SNPs for
which the LS and DH were monomorphic for the allele not
carried by FV2 were in agreement with the expected value 0.5
in both landraces (Fig. 2C and SI Appendix, Fig. S1C). For
this reduced set of markers, the variation of genetic distances
to FV2 in GC reflects the effect of Mendelian sampling, as
GC-S0 plants are fully heterozygous, and the resulting genetic
distances should be equivalent to what is expected in the F2
generation of a biparental cross.

For all three types of populations, we derived expectations of
the total molecular variance and its decomposition between and
within genotypes assuming absence of selection. For a single locus,
the total molecular variance calculated based on biallelic SNP allele
frequencies is expected to be identical for DH and the sample
from the ancestral landrace (LS) with ς2DH ¼ ς2LS ¼ 2p 1� pð Þ,

Fig. 1. Scheme of population development for the pure and admixed approaches.
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with p being the frequency of the allele carried by the capture line
(SI Appendix, Table A3). For GC, the expected total molecular var-
iance amounts to ς2GC�S1 ¼ 0:5 1þ pð Þ 1� pð Þ (SI Appendix,
Table A3). Consequently, for a given locus, ς2GC�S1 ≥ ς2LS if and
only if the allele present in the capture line has frequency p ≤ 1=3
in the ancestral landrace. Loci where the ancestral landrace and
therefore also its sample are fixed for an allele different from FV2
(i.e., p ¼ 0) contribute maximally to ς2GC�S1 but not to ς2LS and
ς2DH . Our theoretical results demonstrate the importance of the
genetic makeup of the capture line for building the GC. Here, the
capture line FV2 contributed new alleles (p ¼ 0 in LS and DH) at
2% (PE) and 3% (KE) of all polymorphic SNP positions, and the
proportion of SNPs with p ≤ 1=3 in LS was about 25% in both
landraces (Fig. 2D and SI Appendix, Fig. S1D). Thus, the observed
molecular variances for LS, DH, and GC (SI Appendix, Table S1)
meet expectations.
The linkage disequilibrium (LD) decay distance (δ), for which

the pairwise LD of markers on the same chromosome was
greater than r2 > 0.2, was slightly higher in the GC than in the
DH lines and was higher in populations derived from KE
(1,032 ≤ δ ≤ 1,263 kb) than from PE (399 ≤ δ ≤ 660 kb)
(Fig. 3A). Within landraces, linkage-phase similarities (LPS)
were high for the pairwise comparison of LS and DH but

substantially reduced for LS and GC (Fig. 3B). Across landraces,
LPS for the pairwise comparison of the same type of population
was low for LS and DH but moderate to high for GC (Fig. 3C).
Average LD between markers on different chromosomes was
negligible in all populations and both landraces.

Experimental and Theoretical Results Are in Good Agreement
for All Populations. The conceptual differences between the
pure and the admixed approach with respect to means and
genetic variances in DH and GC are visualized in SI Appendix,
Fig. A1 based on the theoretical expectations given in Table 1
and SI Appendix, Table A2. In hybrid breeding, selection candi-
dates are evaluated not only for their per se performance (PP)
but mainly, for their combining ability with a tester from a dif-
ferent heterotic group. We, therefore, considered both the PP
of the LS and of GC-S1:2 and DH lines as well as their testcross
performance (TP) with an inbred line from the dent heterotic
pool. Assuming absence of epistasis, the PP of fully inbred gen-
erations (DH lines, GC-S1:∞ lines) and of all testcrosses can be
described with a purely additive model (Table 1 and SI
Appendix, SI Text A2 and Table A2). For PP of the LS and for
GC-S1:2 lines, the mean and dispersion of the genotypic values
depend on unknown landrace- and capture line specific domi-
nance effects d½ � and d �½ �, respectively (Table 1).

Fig. 2. Venn diagram of the number and percentage of marker polymorphisms shared by and exclusive to the sample of the ancestral landrace (LS), DH
lines, and GC lines of KE (A). Means and estimated densities of genetic distances (GD) between genotypes within LS, DH, and GC using all markers (B) and
between GC lines and FV2 using only markers for which DH and LS were monomorphic for the allele not carried by FV2 (C). Estimated density of the fre-
quency of the FV2 allele in LS and GC (D). Allele frequencies in DH vs. LS (E) and expected frequencies in GC (calculated from LS and known FV2 genotype)
vs. observed GC (F). The calculated numbers of marker polymorphisms (A) are the result of sampling 80 gametes per population with 500 replications and
are shown as the absolute number and percentage of polymorphic markers (± SD). In GC, the number of polymorphic markers resulting from the cross
with FV2 (LS and DH monomorphic for the allele not carried by FV2) is shown as the average across 500 sampling replications. The tables in B and C show
the means of the genetic distances and their expected values (calculated from LS allele frequencies). B–F are based on the whole set of lines (i.e., N = 48
[LS], N = 471 [DH], and N = 274 [GC]).
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In the following, we use the trait flowering time exemplarily
to link theoretical and experimental results (Fig. 4 and SI
Appendix, Fig. S2). Phenotypic values should be indicative
of genotypic values, as heritabilities were high, ranging between
0.85 and 0.93 (Fig. 4 A and B and SI Appendix, Fig. S2 A

and B). The LS flowered significantly earlier than most DH
lines, and estimates of d½ � amounted to about 7% of the LS
performance for both landraces. The inbred capture line FV2
flowered significantly earlier than the mean of the DH lines
from KE and PE, pointing to an enrichment of early flowering

Fig. 3. Decay of LD with physical distance for the sample of the ancestral landrace (LS), the DH lines, and the GC lines of landraces KE and PE (A). Linkage
phase similarities (LPS) for pairwise comparisons of the three types of populations within each landrace (B) and LPS for pairwise comparisons of the same
type of population across the two landraces (C). For all calculations, 94 gametes were randomly sampled for each group.

Table 1. Quantitative-genetic expectations of means and genetic variances for per se (PP) and testcross (TP)
performance in the sample of the ancestral landrace (LS), derived DH, and GC lines

Population

Coefficient of parameters†

Population mean‡ �x

Genetic variances

Primary
variance

Variance
within families Total variance

aþΔ p� ð1� pÞð Þa
d½ � ¼

2pð1� pÞd12

d�½ � ¼
pd1x þ ð1� pÞd2x σ2A σ2A� σ2A σ2A� σ2A σ2A�

LS 0 1 1 0 1 0 — — 1 0
DH 0 1 0 0 2 0 0 0 2 0
GC-S1:2 1/2 1/2 0 1/4 3/4 1/4 1/8 1/8 7/8 3/8
GC-S1:∞ 1/2 1/2 0 0 3/4 1/4 1/4 1/4 1 1/2
FV2 1 0 0 0 — — — — — —

For GC lines, the total genetic variance is decomposed into the primary variance between families as observed for GC-S1:2 lines in this study and the variance within families.
†Parameters ½d� and ½d�� are not required for TP.
‡p and ð1� pÞ refer to the frequencies of alleles A1 and A2 in LS, respectively. a and aþΔ refer to the additive effects in LS and the capture line, respectively, with different meanings for
PP and TP. d½ � and d�½ � refer to the contribution of dominance effects to the PP of LS and GC-S1:2, respectively, where d12, d1x , and d2x refer to the dominance effect of genotypes A1A2,
A1Ax , and A2Ax , respectively, with Ax being the allele of the capture line. σ2A refers to the additive variance inherent in the ancestral landrace, with σ2A ¼ 2pð1�pÞa2. σ2A� refers to the
additive variance resulting from the effects of the capture line alleles, with σ2A� ¼ 2 1� pð ÞaþΔ=2ð Þ2 (details are in SI Appendix, SI Text A2).
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alleles in FV2. Mean flowering time of GC lines was signifi-
cantly earlier than of DH lines. Under an additive model, the
mean of the GC lines is expected to lie exactly between the
mean of the DH lines and the capture line but was shifted
toward FV2 in both landraces, indicating capture line specific
dominance effects d �½ � contributing to GC per se performance.
In the testcrosses, differences between the capture line and the
mean of the DH lines were attenuated, and consequently,
mean DH and GC testcross performance was not significantly
different in both landraces.
We derived expected genetic variances of the DH and GC pop-

ulations (Table 1). The DH delivers the maximum additive genetic

variance inherent in the respective landrace with σ2gðDH Þ ¼ 2σ2A.

The additive genetic variance among GC lines is σ2gðGC�S1:2Þ ¼
3
4
σ2A þ

1
4
σ2A� (Table 1), with σ2A� ¼ 2 1� pð ÞaþΔ=2ð Þ2 being a

function of the effect and frequency of the alleles in the ances-
tral landrace and the effects of alleles originating from the cap-
ture line. If for a given trait the capture line contributes only
alleles present in the ancestral landrace, as would be the case for
a random DH line derived from the ancestral landrace, the
genetic variance of the GC lines should be half the genetic vari-
ance among DH lines as σ2A� = σ2A (SI Appendix, SI Text A2).

Fig. 4. Estimated densities showing the distribution of phenotypic values for per se performance (PP; A) and testcross performance (TP; B) of the DH and
GC lines for landrace KE, scatterplots of proportions of FV2 genome vs. TP for flowering time (C), and estimated genetic values of PP vs. estimated genetic
values of TP for flowering time in DH (D) and GC (E) lines. In A and B, the means (vertical lines) of the landrace sample (LS, dark green) and the capture line
FV2 (yellow) are indicated, and the tables show the means (�X ), genetic variances (σ̂g2), and heritabilities (h2). Means with a shared letter are not significantly
different (P > 0.05). C–E indicate the Pearson correlation coefficients and corresponding P values of the shown correlations.
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If the capture line contributes alleles not present in the landrace
at many loci and the allelic effects at these loci differ substan-
tially from the respective landrace alleles, the genetic variance
among GC lines can be equal to or even larger than the variance
among DH lines.
Estimates of genetic variances for flowering time were signifi-

cant for PP and TP in both landraces (Fig. 4 A and B and SI
Appendix, Fig. S2 A and B). For PP, the ratio σ2g GCð Þ=σ

2
gðDH Þ

was 0.55 in KE and 0.67 in PE. The results suggest that the
additive genetic variance σ2A� generated by crossing the landrace
with FV2 did not differ substantially from σ2A, despite the
enrichment of earliness alleles in FV2. In the testcrosses, how-
ever, the ratio σ2g GCð Þ=σ

2
gðDH Þ was 1.28 in KE and 1.35 in PE,

indicating σ2A� > σ2A. The reduction in σ2g in the testcrosses
compared with per se performance was much higher for DH
than GC lines. These results indicate that dominance interac-
tions with the tester allele differed for the DH and FV2, and
consequently also for GC, in both landraces. Nevertheless,
genetic covariances between PP and TP were significant for
both types of populations and both landraces. Genotypic corre-
lations as well as correlations of estimated genetic values
between PP and TP for flowering time were higher for DH
than for GC lines (Fig. 4 D and E and SI Appendix, Fig. S2 D
and E and Table S2).
One concern with the GC population is the overrepresenta-

tion of the capture line genome in the progeny after selection.
The proportion of FV2 genome of GC-S1 plants determined
with the reduced marker set (SNP alleles with p ¼ 0 in LS and
DH) ranged from 21.9 to 75.6% in KE and from 21.5 to
73.1% in PE, with averages of 50.3 and 50.2%, respectively,
meeting expectations. A significant correlation of FV2 genome
proportion and phenotypic performance was observed for flower-
ing time only in the testcrosses of KE. As expected, the correlation
was negative but weak (r = �0.25) (Fig. 4C and SI Appendix,
Fig. S2C), demonstrating that GC lines enriched with earliness
alleles can be selected without strong overrepresentation of the
FV2 genome.
Results for the other traits are presented in SI Appendix, Figs.

S3 and S4. In general, experimental results were in agreement
with theoretical expectations and highly consistent across land-
races. Estimates of d½ � for the two plant height traits amounted
on average to about 26% relative to the performance of the LS.
The mean of the GC lines for plant height was about halfway
between LS and FV2, also indicating dominant type of gene
action. For all traits, the ratio of genetic variances
σ2g GCð Þ=σ

2
gðDH Þ followed the same trend as shown for flowering

time in both landraces for PP and TP. Correlations of FV2
genome proportion and observed phenotypic performance were
not significant for all traits and both landraces (except flowering
time in testcrosses as described above). For early plant height,
the GC lines showed only low (PE) or nonsignificant (KE)
genetic correlations between PP and TP, while for DH lines,
they were intermediate to high (SI Appendix, Table S2).

Population Type Determines Accuracy of Genomic Prediction.
The accuracy ρ of genome-based prediction is the success crite-
rion for genomic selection. Increasing the sample size of the
training set affected the magnitude and precision of ρ, and no
plateau was reached up to N = 250 (Fig. 5A and SI Appendix,
Fig. S5A). With respect to marker density, an increase in pre-
diction accuracy could be observed up to 15,000 SNPs (SI
Appendix, Fig. S6). Prediction accuracies ρ were consistently
higher in DH lines compared with GC lines for the two plant

height traits for all tested sample sizes of the training set. Dif-
ferences were most pronounced for small sample sizes. For
flowering time, differences between the two types of popula-
tions were negligible. Yield and dry matter content were
assessed in testcrosses only. Accuracies for yield exceeded 0.5 in
DH lines even with sample sizes N < 200 (Fig. 5B and SI
Appendix, Fig. S5B). However, in the GC lines, prediction for
yield failed (ρ = �0.09 in KE) and was very low for early plant
height. The strong decrease in prediction accuracies of testcross
traits in the GC can partially be accounted for by a combina-
tion of nonsignificant genetic variances in a high number of
training sets (Fig. 5D and SI Appendix, Fig. S5D) and the lim-
ited size of the prediction sets in cross-validation (N = 25). In
DH lines, however, testcross accuracies exceeded those of per se
performance in some cases, despite lower genetic variances,
lower heritabilities, and smaller training set size (plant height at
V6 stage in KE, flowering time in PE).

Prediction accuracies across the two types of populations
(Fig. 5 C and D and SI Appendix, Fig. S5 C and D) were low
(0.20 to 0.49 for lines per se, 0.03 to 0.41 for testcrosses). The
higher accuracies observed within DH lines (e.g., for final plant
height) were not reflected in prediction across populations.
Accuracies were similar irrespective if the prediction model was
trained on DH to predict GC or vice versa. We also investi-
gated if combining the two populations yielded a predictive
advantage over within-population prediction. Despite a sub-
stantial increase in sample size, accuracies changed only margin-
ally (from 0.53 to 0.55 on average across traits) (SI Appendix,
Table S3), which was not expected considering the increase in
prediction accuracy within populations with increasing N (Fig.
5A and SI Appendix, Fig. S5A).

Prediction across landraces (e.g., using DH lines of KE for
training and DH lines of PE for prediction or vice versa)
yielded estimates of ρ close to zero for DH lines irrespective of
which landrace was used for model training (Fig. 5E and SI
Appendix, Fig. S5E). For GC lines, higher values were obtained
especially for final plant height and flowering time (0.25 ≤ ρ ≤
0.29), most likely due to shared haplotypes originating from
FV2, resulting in much higher linkage phase similarities of GC
compared with DH populations (Fig. 3C).

Estimates of ρ varied substantially for the different (cross-)
validation runs (Fig. 5 and SI Appendix, Fig. S5) within and
across populations as well as across landraces. In testcrosses
with a training set size of N = 75 (per se N = 200), this was
most pronounced. The variation was in part attributable to
nonsignificant estimates of the genetic variance in the training
set, which was more common in GC and most pronounced in
testcross prediction.

Discussion

Extraction of beneficial haplotypes from landraces is a long-
term endeavor. In landrace genomes, favorable alleles for one
trait are often in high LD with unfavorable alleles for the same
or other traits, and consequently several rounds of recombina-
tion and selection are required to close the performance gap to
elite material and reduce linkage drag (16). With this study, we
aimed to fill the knowledge gap on genome-based prediction
accuracies that can be achieved in landrace-derived material in
outcrossing species.

Prediction Accuracies Are High in Landrace-Derived DH Popu-
lations. Prediction accuracies achieved in this study with
landrace-derived DH lines clearly demonstrate that genome-
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Fig. 5. Prediction accuracy (ρ) in landrace KE for per se performance (PP) in the DH and GC lines as a function of sample size N (A), for prediction of PP and test-
cross performance (TP) at the maximum available number of lines (Nmax; B), for predictions within and across populations for PP (C) and TP (D) in DH and GC, and
for across-landrace prediction for PP from KE (training on PE; E). Traits are plant height at V6 stage (PH_V6), final plant height (PH_final), and flowering time (FF) in
PP and TP and dry matter content (DMC) and total dry matter yield (TDMY) in TP. For each N (A), sampling of lines was repeated 100 times, and 10 times fivefold
cross-validation was carried out within each sample, yielding the basis for calculating the presented means and 95% quantiles (shaded areas around the curve).
Prediction across and within populations as well as across landraces was carried out by randomly sampling N = 200 and N = 75 lines for training in PP (C and E)
and TP (D), respectively, for predicting N = 50 (PP; C and E) or N = 25 (D) genotypes of the same or corresponding population (C and D) or the same population of
the other landrace (E). Sampling was repeated 100 times. The violin plots (C–E) show all 100 values, with the diamonds indicating the means. Black dots show val-
ues of the prediction accuracy estimated from models where the genomic variance estimate was not significant (likelihood-ratio-test, P > 0.05).
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based selection has great potential. Cross-validated accuracies
for prediction of total dry matter yield were as high as 0.58 in
testcrosses of PE DH lines (0.51 in KE) and even higher for
other traits, despite sample sizes of less than 150 DH lines in
the training set. Correlated estimated genetic values for PP and
TP indicate effective genomic selection for traits like flowering
time and plant height on the per se level, carrying over to corre-
lated response for TP.
In landrace-derived DH populations, prediction accuracies

should be merely a function of LD between markers and quan-
titative trait loci (QTL), as gametes are sampled at random
from the ancestral population. Thus, it was surprising that
accuracies were of similar magnitude as reported for elite maize
germplasm with much higher LD and substantial relatedness
between genotypes (17). Inflation of accuracies caused by DH
lines with extreme values due to strong inbreeding depression
could be ruled out by investigating cross-validation prediction
sets manually. Hidden relatedness and population structure in
the DH population, both factors that might inflate prediction
accuracy, were not observed when investigating pairwise genetic
distances of DH lines (Fig. 2 and SI Appendix, Fig. S1).
We, therefore, conclude that in DH populations derived

from landraces preselected for molecular and phenotypic prop-
erties as suggested by Mayer et al. (18), prediction accuracies of
0.5 or higher can be considered a realistic benchmark in
genome-based selection of complex traits with training set sizes
of N ≥ 200 due to large additive genetic variance, high herit-
abilities, and moderate LD.

Efficiency of the Admixed Approach. Some landrace popula-
tions carry high genetic load, leading to low efficiency of DH
production. Thus, crossing the landrace with an inbred capture
line from a different genetic background might be the only
option to avoid homozygous deleterious allele combinations.
So, what are the consequences for prediction accuracies in com-
parison with DH populations? As expected from theory and
observed in the experimental populations of this study, average
allele frequencies of polymorphic SNPs were shifted toward
more unbalanced allele frequencies in the GC lines (Fig. 2 and
SI Appendix, Fig. S1), affecting locus-specific contributions to
the total genetic variance. If the capture line carries an allele
present in the ancestral landrace, the locus-specific variance in
the GC decreases compared with the DH population, except
for loci with extreme allele frequencies in the ancestral landrace
(p ≤ 1=6) (SI Appendix, SI Text A3). If the capture line carries
an allele not present in the ancestral landrace, the locus-specific
variance in the GC will depend on the effect of this allele as
well as on the frequencies and effects of the alleles in the ances-
tral landrace. If the allele of the capture line exhibits dominance
over the landrace alleles (i.e., d �½ � > 0), the dominance variance
might increase at this locus (SI Appendix, SI Text A2). Thus,
when training the model on DH or GC lines, the weight
assigned to individual SNPs can differ markedly between the
two populations, explaining the fairly low prediction accuracies
across populations, irrespective if model training was conducted
on DH or GC lines.
Crossing with a capture line will affect linkage phases

between markers and QTL and the extent of LD compared
with the DH lines (Fig. 3). All GC-S0 plants are half-sibs and
share one identical gamete. Through the subsequent selfing
process, haplotypes may arise with different linkage phases and
LD decay compared with those of the ancestral landrace,
compromising prediction accuracies within the GC and across
populations. This effect will be trait-specific and will depend

strongly on the genetic makeup of the capture line. As could be
seen from the experimental data, linkage phase similarities with
the LS were considerably reduced in GC compared with DH
lines. Prediction accuracies for plant height and especially for
testcross yield were substantially reduced in the GC popula-
tions, but not for flowering time or dry matter content. We
hypothesize that for the two maturity-related traits, the capture
line FV2 enriched the GC populations with alleles not present
in either of the two landraces at a substantial number of loci.
These alleles occur with frequency 0.5 in the GC population
and thus, obtain high weight in prediction compensating for
the negative effects of opposing linkage phases between markers
and QTL at other loci.

When predicting across landraces, accuracies were close to 0
for DH populations but >0.2 for GC lines when predicting in
KE onto PE and vice versa. These results corroborate the
hypothesis that prediction in the GC populations was at least
partially driven by additive effects of shared FV2 haplotypes
and/or their dominance over the landrace alleles (Fig. 3C).

Genome-Based Improvement of Landraces. In this study, we
investigated the potential of genome-based prediction to
increase the frequency of favorable alleles of target traits in
landrace-derived populations. We conclude that the pure
approach is to be preferred over the admixed approach, because
with the admixed approach a substantial reduction in prediction
accuracy must be expected unless prediction is driven by capture
line alleles. When implementing the admixed approach, the
choice of capture line will have a major impact on the success of
the prebreeding program. It determines the mean and genetic
variance of the GC population and the risk of masking favorable
landrace alleles. Molecular data can inform about locus-specific
allele frequencies in the ancestral landrace and the capture line,
and under certain assumptions, these allele frequencies translate
directly into expectations for the molecular and genetic variance
in the GC population (SI Appendix, SI Text A3). For quantitative
traits, however, many loci contribute to the genetic variance, and
unless a large proportion of causal variants for the traits of interest
is known, molecular parameters will provide little guidance on
the choice of capture line. In this study, the phenotypic per se
performance of inbred line FV2 compared with the LS and the
mean of the DH lines provided a first indication for which traits
the capture line might contribute alleles not present in the ances-
tral landrace and which type of gene action to expect. It remains
to be shown for other GC populations derived from different
landraces and capture lines if this pattern holds. We could also
show that dominance interactions with the tester alleles differed
for landrace and capture line alleles, affecting prediction accura-
cies in the DH and the GC populations differently. Thus, not
only the capture line per se but also its interaction with the tester
had a direct effect on the genetic variance accessible for selection.

In summary, the results of this study show that the pure
approach has clear advantages over the admixed approach for
genome-based improvement of landraces. With continuous tech-
nological advances, the application of DH technologies is likely
to become routine in many plant genetic resources (19). If the
production of fully inbred lines either by the DH technology or
by recurrent selfing is not possible, the admixed approach is still
a good alternative. The risk of masking valuable variation present
in the landrace needs to be minimized by an informed choice of
capture line and tester. Our study shows that the confounding
effects between the alleles of the landrace and the capture line
are best controlled for traits for which the capture line does not
outperform the ancestral population per se or in testcrosses.
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Materials and Methods

Plant Material. We applied two different strategies (Fig. 1) for sampling game-
tes from European maize landraces. The landraces KE and PE of European flint
maize were chosen of 35 landraces for this study on the basis of population-
genetic analyses described by Mayer et al. (18) and phenotypic screening for vari-
ation in early-development traits assessed in field trials. DH lines were derived
directly from the landraces for the first sampling strategy (pure approach) (11).
For the second sampling strategy (admixed approach), we modified a scheme
originally proposed by Stadler (20): pollen mixtures from the landraces were
used to pollinate the capture line FV2. FV2 is an important founder line of the
European flint heterotic group developed by INRA from the French landrace
Lacaune and was intensively used as parent in commercial hybrids between the
1960s and 1990s. We termed this procedure “gamete capture” (GC). The GC-S0
plants are half-sibs, with one gamete from FV2 and the other gamete from the
landrace. Subsequently, the GC-S0 plants were selfed to produce GC-S1 ears. One
GC-S1 plant per ear was genotyped and selfed. Field evaluation was performed
with the corresponding GC-S2 lines planted ear to row, subsequently referred to
as GC-S1:2. For each landrace, all populations were derived from the same seed
source, which we define as the ancestral landrace. Three different sets of seeds
from this ancestral landrace were randomly sampled to obtain 1) the sample of
the ancestral landrace (LS), 2) the landrace plants used for DH induction, and 3)
the landrace plants used to pollinate the capture line. For production of testcross
seed, randomly chosen lines from each population as well as FV2 and plants sam-
pled from the ancestral landrace were hand-crossed as pollinators onto the inbred
line F353 (INRA, France), a prominent line of the European dent heterotic group.

Field Experiments and Phenotypic Data Analysis. The DH and GC popula-
tions were evaluated in adjacent field trials connected through common checks.
Field experiments for the DH populations were described in detail by H€olker
et al. (11); phenotyping of the GC populations was performed analogously.
Briefly, per se performance (PP) was evaluated in four environments in Germany:
Roggenstein (ROG) and Einbeck (EIN) in 2017 and 2018. Two separate but adja-
cent sets of 8 (DH 2018) or 10 (DH and GC 2017, GC 2018) 10 × 10 lattice
designs with two replicates per line were used in each environment. As common
checks, we added plants sampled from the ancestral landrace (LS) as well as 15
(2017) or 4 (2018) inbred lines, including in both years the line FV2. Plots were
single rows of 3 m length, with 0.75 m distance between rows, and planting
density was 8.8 plants m�2.

Testcross performance (TP) was evaluated in two environments (ROG and EIN)
in 2019. Testcrosses of DH lines were grown in four 10 × 10 lattice designs; for
GC lines, a generalized α-lattice design with 200 entries was used. Testcrosses of
the LS and of two inbred lines together with six commercial hybrids were
included as checks in all trials, and FV2 was included in GC trials only. Plots
were double rows of 6 m length, with 0.75 m distance between rows and plant-
ing density of 9 or 11 plants m�2. Sowing, fertilization, and plant protection in
per se and testcross evaluation followed standard agricultural practice at the
experimental stations.

The traits plant height at V6 stage (PH_V6, cm), final plant height (PH_final,
cm), flowering time (FF, days from sowing until 50% of plants in the plot silked),
dry matter content (DMC, percentage, only TP), and total dry matter yield (TDMY,
dt/ha, only TP) at forage harvest were investigated.

We expanded the analysis described for the DH experiments in H€olker et al.
(11) for joint analysis of the GC and DH experiments in a single step using the
following model:

yijkopst ¼ μþ mi þ δCheckslj þ gkðijÞ þ uo þ guko ijð Þ

þ δDHflujo þ kp oð Þ þ rs opð Þ þ bt opsð Þg
þ δGCflujo þ kp oð Þ þ rs opð Þ þ bt opsð Þg þ εijkopst , [1]

where i = 1, 2, 3, 4 denotes four groups (GC, DH, LS, and checks); j = 1, 2, 3, 4
denotes the different populations (GC_KE, GC_PE, DH_KE, and DH_PE); μ is the
overall mean; mi is the effect of group i; lj is the effect of population j in groups
i = 1 and 2; δChecks is a dummy variable with δChecks = 1 if the line belongs to
DH or GC populations and δChecks = 0 for LS or inbred lines used as checks; δDH
(δGC ) is a dummy variable with δDH = 1 (δGC = 1) if data belong to the DH
(GC) experiment and δDH = 0 (δGC = 0) otherwise; gkðijÞ is the genotypic effect
of line k nested in group i and population j; uo is the effect of environment o;

lujo is the interaction of population j and environment o; and guko ijð Þ is the inter-
action of genotype k and environment o. The effects kp oð Þ, rs opð Þ, bt opsð Þ, and
εijkopst refer to the effect of the lattice (nested in environments), replicate (nested
in lattices in environments), incomplete block (nested in replicates in lattices in
environments), and the residual error, respectively. All effects except mi and lj
were treated as random. Genotype [gkðijÞ] and genotype × environment
[guko ijð Þ] variance components were modeled individually for the populations
(j = 1, 2, 3, 4), assuming that DH and GC lines across and within landraces were
stochastically independent. Residuals were assumed to be normally distributed
with mean zero and four heterogeneous variances, one each for δChecks = 1 and
δChecks = 0 in GC and DH experiments, assigning the same residual variance to
all GC and DH lines within all environments. Raw data and outliers were manu-
ally curated by inspection of residual plots. The model in Eq. 1 refers to the anal-
ysis of PP. TP was analyzed analogously, adjusting for the generalized α-lattice
design used in GC trials. Variance components and their SEs were estimated
with ASReml-R package 3.0 (21). Entry-mean heritabilities were calculated for
each population following Hallauer et al. (14), and SEs of heritability estimates
were derived using the delta method (22). Heritabilities (h2) and variance com-
ponent estimates exceeding twice their SEs were considered significant. For
obtaining best linear unbiased estimates (BLUEs) of the genotypic value of each
entry, the model from Eq. 1 was simplified, replacing factors mi, δCheckslj with a
factor separating the two experiments (DH and GC), dropping δDHlujo and
δGC lujo from the model, and treating genotype as a fixed effect. This model was
also used to test for significant differences (t-tests) between LS, DH, GC, and FV2
in linear contrasts calculated with the package asremlPlus (23). For estimating
genetic covariances and genetic correlations between PP and TP for a given phe-
notypic trait, we expanded the model from Eq. 1 to a bivariate model treating
PP as one trait and TP as the other trait. Significance of genetic covariances was
tested in likelihood-ratio-tests comparing the model including the covariance
with the reduced model without the covariance.

Genetic Data Analysis. The inbred line FV2, samples from each ancestral land-
race (LS), DH lines, and GC plants were genotyped with the 600k Affymetrix
Axiom Maize Array (24). The quality filtering of the SNP data for the LS and DH
populations was described in detail in H€olker et al. (11) and was done analo-
gously for the GC populations. Briefly, markers were filtered according to the
best quality class (24) and an unambiguously mapped physical position in the
B73 reference sequence AGPv4 (25). Markers and individuals with>10% miss-
ing values were removed. For DH lines, markers and individuals with>5% het-
erozygous genotype calls were removed, and the remaining heterozygous calls
(0.19%) were set to missing values. For DH lines, missing values were imputed
separately for each population using Beagle version 5.0 (26) with default set-
tings. Missing values in the LS and GC were imputed, and two gametes from
each individual were phased using Beagle version 5.0, with parameters itera-
tions = 50, phase-segment = 10, and phase-states = 500. Markers were coded
as counts of the FV2 allele (0: homozygous for opposite allele of FV2; 1: hetero-
zygous; 2: homozygous for FV2 allele). In total, 1,512 genotypes (LS_KE = 48,
LS_PE = 47, DH_KE = 471, DH_PE = 402, GC_KE = 274, GC_PE = 270) with
472,169 polymorphic SNPs remained for further analysis. Thereof, all DH and GC
have been evaluated for PP, and a subset (DH_KE = 183, DH_PE = 173, GC_KE
= 103, GC_PE = 54) has also been evaluated for TP.

Analysis of Molecular Variance and Genetic Diversity. We sampled 80
gametes from each population (LS, DH, and GC) and landrace with 500 repli-
cates for comparing the number and percentage of polymorphic markers across
populations.

LD was measured using r2 (27) for samples of 94 gametes within each popu-
lation. We calculated r2 for pairs of SNPs within a distance of 1 Mb and used
nonlinear regression to investigate the r2 decay with physical distance (28). The
LD decay distance is defined as the physical distance δ for which the curve
reaches r2 = 0.2. For estimating LD across chromosomes, we sampled 5,000
markers per chromosome with replacement for all 45 pairwise combinations of
chromosomes and calculated r2 for all pairs of markers across chromosomes.
Linkage phase similarities (LPS) between populations were calculated according
to Schopp et al. (29). LPS according to physical distance was calculated grouping
marker pairs into bins of 10 kb up to a maximum distance of 1 Mb.

Genetic distance (GD) between two genotypes was measured as GD¼
1� SM, where SM is the simple matching coefficient across all SNP loci calcu-
lated as detailed by Jacobson et al. (30). We also compared allele frequencies 1)
between DH and LS and 2) between the experimental and expected GC, where
the expected GC was obtained by ðpþ 1Þ=2, with p being the frequency of the
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FV2 allele in the respective LS. An analysis of molecular variance (31) based on
Euclidean distances was used to estimate the molecular variance within and
between individuals of LS, DH, and GC for each landrace. Calculations of the pro-
portion of markers with p¼ 0 and p ≤ 1=3 as well as the average allele fre-
quency for each population were based on 415,346 (KE) and 446,687 (PE)
markers polymorphic across LS, DH, and GC.

Genome-Based Prediction Model. We performed genomic best linear unbi-
ased prediction (GBLUP) in several scenarios for PP and TP, always applying the
model

y ¼ 1μþ Zuþ e, [2]

where y is a vector of BLUEs of the training set obtained from the phenotypic
analysis, 1 is a vector of 1s, μ is the population mean, u is a vector of random
estimated genetic values with the distribution u ∼ Nð0, Uσ2gÞ, and Z is the
corresponding incidence matrix. U is the realized relationship matrix calculated
on the basis of marker data following method 1 of VanRaden (32), and σ2g is the
genetic variance pertaining to the GBLUP model. The matrix U was calculated
considering all genotypes (both population types and landraces) as one popula-
tion. The vector of residuals e is assumed to be normally distributed with a
mean of zero and equal variance [e ∼ Nð0, Iσ2eÞ], where I is the identity
matrix and σ2e denotes the residual variance pertaining to the GBLUP model.
The relationship matrices were calculated using R [version 3.6.0 (33)] and the
R-package synbreed version 0.12-9 (34). Variance components pertaining to the
GBLUP model were estimated using the R-package ASReml-R version 3.0 (21).

Genomic prediction accuracy (ρ) is reported as the correlation between pre-
dicted and unobservable true genetic values. Estimates of ρ were obtained from
the Pearson correlation between the observed phenotypes and the estimated
genetic values divided by the square root of h2 of the prediction set (35).

Scenarios for Genomic Prediction. We studied the influence of the number
of markers M and sample size N on ρ within populations by randomly sampling
M markers using all genotypes from the respective population or sampling N
lines without replacement from the population using all markers and carrying
out 10 times fivefold cross-validation. The number of markers M was increased
from 1,000 to 250,000. Sample size N was increased from 50 lines to the
maximum possible number for the respective population in increments of 50.
Sampling was repeated 100 times for each M and N. Prediction accuracy ρ was
averaged across replications. The 95% quantile of ρ was calculated from the

sampling replications. With small sample sizes N, ρ was set to “missing value” if
the mixed model algorithm for a particular training set did not converge.

For comparing the prediction accuracy ρ within and between the DH and GC
populations from the same landrace, N = 200 (PP) or N = 75 (TP) lines were
sampled randomly from one population (either DH or GC) for training the
model. The prediction set always comprised a disjoint set of N = 50 (PP) or N =
25 (TP) lines either from the same or from a different population. Sampling was
repeated 100 times. The same sampling procedure was applied for investigating
across landrace predictions using the same type of population of the other land-
race as the prediction set.

Data Availability. Seeds from all genotypes used in the study are available
through material transfer agreements. The genotypic data of the inbred line FV2,
873 DH lines, 544 GC lines, and 95 landrace plants and all corresponding phe-
notypic data of PP and TP have been deposited in Figshare (https://doi.org/10.
6084/m9.figshare.17014421) (36).
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