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Abstract: The role of autophagy in colorectal cancer (CRC) pathogenesis appears to be crucial.
Autophagy acts both as a tumor suppressor, by removing redundant cellular material, and a
tumor-promoting factor, by providing access to components necessary for growth, metabolism,
and proliferation. To date, little is known about the expression of genes that play a basal role in the
autophagy in CRC. In this study, we aimed to compare the expression levels of 46 genes involved in
the autophagy pathway between tumor-adjacent and tumor tissue, employing large RNA sequencing
(RNA-seq) and microarray datasets. Additionally, we verified our results using data on 38 CRC cell
lines. Gene set enrichment analysis revealed a significant deregulation of autophagy-related gene sets
in CRC. The unsupervised clustering of tumors using the mRNA levels of autophagy-related genes
revealed the existence of two major clusters: microsatellite instability (MSI)-enriched and -depleted.
In cluster 1 (MSI-depleted), ATG9B and LAMP1 genes were the most prominently expressed, whereas
cluster 2 (MSI-enriched) was characterized by DRAM1 upregulation. CRC cell lines were also clustered
according to MSI-enriched/-depleted subgroups. The moderate deregulation of autophagy-related
genes in cancer tissue, as compared to adjacent tissue, suggests a prominent field cancerization or
early disruption of autophagy. Genes differentiating these clusters are promising candidates for CRC
targeting therapy worthy of further investigation.
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1. Introduction

Colorectal cancer (CRC) is among the most frequent cancers (3rd) and is one of the major causes
of cancer-related deaths (4th) worldwide [1,2]. In analyses of the time period from 2000 to 2010,
it has been shown that age-standardized cancer mortality rates (ASMRs) decreased in most countries,
especially in the USA [3,4]. However, in many countries, despite great progress in both cancer screening
(e.g., capsule endoscopy and/or fecal occult blood testing) and early cancer diagnosis, racial and
socioeconomic disparity remains, leading to late cancer diagnosis and hence to a low level of 5-year
survival [1]. Interestingly, the past two decades have shown that CRC incidence among younger
populations (less than 50 years of age) has increased, especially in well-developed, highly industrialized
countries [5,6]. The majority of CRC cases (more than 70%) are sporadic; therefore, the combination of
an individual’s genetic makeup, exposure to environmental factors, and personal habits modulate the
risk of colorectal cancer development [7].

The classification of cancer subtypes based on gene expression is widely accepted as an important
component of disease taxonomy [8–11]. Integrated genome-wide studies have revealed that the
single-tissue cancer type may be divided into several molecular subtypes. Definitions of cancer
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subtypes are undoubtedly required for the implementation of individual effective therapy [8–11].
Recently, an international consortium consisting of expert groups divided CRCs into four consensus
molecular subtypes (CMS1–CMS4), each of which presents with distinct biological features and specific
gene expression patterns. This taxonomy implements self-contained prognostic information that
transcends tumor stages and tissue of origin. Further studies may provide new pathway-based insights
with directions for treatment optimization [8,12].

In this aspect, macroautophagy (henceforth referred to as autophagy) appears to be a promising
process for seeking new biomarkers and thus may serve to enhance our knowledge of potential
therapeutic molecular targets in CRC treatment. Autophagy is a highly evolutionary conserved
housekeeping process that relies on the degradation of cellular components (e.g., organelles, protein
aggregates) in autophagosomes. Altered activity in this pathway (compared to normal conditions) is
associated with numerous human diseases, including cancer [13,14]. Autophagy has a multifaceted
nature, and its role in cancerogenesis from the initiation of tumor formation to metastasis may have
opposite consequences in a context-dependent manner [15,16]. On the one hand, enhanced autophagy
allows the elimination of cells susceptible to becoming malignant (by the elimination of potentially
tumor prone factors) because of its “repair” function and thus inhibits cancer development and acts
as a tumor suppressor. This view is supported by the observation of monoallelic deletion of the
BECN1 gene that has been found to be common in various human cancers such as breast, prostate,
or ovarian [17,18]. Consequently, insufficient autophagy may contribute to the accumulation of
genomic defects, leading to cancer development [14]. On the other hand, in developed tumor cells that
are often exposed to unfavorable conditions such as hypoxia, starvation, or stress induced by treatment
(chemo-/radiotherapy), enhanced autophagy may help these cells to survive (as supplier of recycled
molecules crucial for survival); hence, it acts as a tumor promoter [19]. Therefore, elucidating the
autophagy process in cancer development remains a great challenge also in the context of anticancer
treatment. In the therapy aspect, there are two suggested approaches: in the first one, autophagy
is targeted by well-known inhibitors such as hydroxychloroquine (to stop a supportive influence
of autophagy by promoting apoptosis); in the second one, autophagy is induced (to enhance the
antitumor therapy by the induction of autophagy-dependent cell death, a cytotoxic role) by, for instance
everolimus or perifosine [20–22]. Hitherto, many clinical trials have been carried out with promising
results. The above-mentioned agents were usually well tolerated along with standard treatment,
but further studies are needed to clarify the role of autophagy and its modulation in cancer treatment.

As a result of the complex and unclear role of autophagy in CRC, we performed an analysis of
transcriptomic data of chosen autophagy genes. Our goal was to define the contribution of autophagy
(in terms of gene expression) in colorectal cancer samples in comparison to adjacent tissue and to
investigate a potential specific pattern to identify a new molecular CRC subtype that might be helpful
in the molecular classification and/or in the development of future treatment approaches.

2. Results

2.1. Ensemble of Gene Set Enrichment Analysis (EGSEA)

To evaluate the involvement of autophagy in the process of CRC carcinogenesis, we preformed
gene set enrichment analysis in a CRC RNA sequencing (RNA-seq) dataset by comparing 2055 gene
sets in cancerous vs. normal tissue using the Ensemble of Gene Set Enrichment Analysis (EGSEA)
approach. Results are provided in Supplementary Table S1. Five out of six autophagy-related gene sets
were significantly deregulated (up or downregulated) in colorectal cancer when compared to normal
tumor-adjacent tissues. However, autophagy-related gene sets were relatively low ranked when
compared to other gene sets. For example, “Late endosomal microautophagy” reached the highest
ranking among autophagy gene sets and was ranked 1305/2055. The other significantly deregulated
autophagy-related gene sets were ranked as follows 1413, 1493, 1815, and 1854 (see Supplementary
Table S1).
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2.2. Unsupervised Clustering of Colorectal Tumor Samples and Cell Lines

Next, we posed a question of whether there are subgroups of CRC differing in terms of the
expression of selected autophagy genes (genes are listed in Supplementary Table S2). In all three
studied datasets (CRC RNA-seq, CRC array, and CRC cell lines), samples were separated into two
clusters (optimal k = 2) based on the expression of autophagy genes (defined as clusters 1 and 2).
Tables 1 and 2 provide characteristics of resultant CRC clusters. In the RNA-seq tumor dataset, 46% of
samples belonged to cluster 1 and 54% belonged to cluster 2. In the Affymetrix tumor dataset, 41%
of samples belonged to cluster 1 and 59% belonged to cluster 2. In the CRC cell line dataset, 31% of
samples belonged to cluster 1, and 69% belonged to cluster 2 (data not shown). In general, we found
cluster 1 to be depleted in (MSI) samples, whereas, in comparison, cluster 2 was significantly enriched
in MSI samples.

Table 1. Molecular characteristics of autophagy clusters (The Cancer Genome Atlas (TCGA)
RNA-seq data).

Clinicopathological
Characteristics

[ALL] Cluster 1 Cluster 2 adj. p-Value * N **

N = 502 N = 232 N = 270

MSI: <0.001 497
MSI 71 (14.3%) 11 (4.8%) 60 (22.2%)
MSS 426 (85.7%) 216 (95.2%) 210 (77.8%)

CMScaller: <0.001 457
CMS1 83 (18.2%) 18 (9.0%) 65 (25.4%)
CMS2 141 (30.9%) 104 (51.7%) 37 (14.5%)
CMS3 82 (17.9%) 21 (10.4%) 61 (23.8%)
CMS4 151 (33.0%) 58 (28.9%) 93 (36.3%)

age 68.0 [58.0; 76.0] 68.0 [59.0; 75.0] 68.0 [57.0; 77.0] 0.828 502

location: <0.001 487
distal 273 (56.1%) 149 (66.2%) 124 (47.3%)

proximal 214 (43.9%) 76 (33.8%) 138 (52.7%)

stage: 0.003 486
I 84 (17.3%) 27 (12.1%) 57 (21.8%)
II 189 (38.9%) 84 (37.5%) 105 (40.1%)
III 138 (28.4%) 67 (29.9%) 71 (27.1%)
IV 75 (15.4%) 46 (20.5%) 29 (11.1%)

gender: 0.941 502
female 227 (45.2%) 104 (44.8%) 123 (45.6%)
male 275 (54.8%) 128 (55.2%) 147 (54.4%)

Single nucleotide variants 54.0 [41.0; 80.0] 51.0 [37.0; 66.0] 60.0 [41.0; 303.5] <0.001 389
Non-silent mutation rate 2.7 [2.1; 3.8] 2.6 [1.9; 3.3] 2.9 [2.2; 5.0] <0.001 382

Aneuploidy score 10.0 [4.0; 16.0] 11.0 [7.0; 16.0] 8.0 [2.0; 16.0] <0.001 469
APCmut: <0.001 422

0 96 (22.7%) 24 (13.0%) 72 (30.4%)
1 326 (77.3%) 161 (87.0%) 165 (69.6%)

TP53mut: <0.001 422
0 172 (40.8%) 45 (24.3%) 127 (53.6%)
1 250 (59.2%) 140 (75.7%) 110 (46.4%)

KRASmut: 0.837 422
0 252 (59.7%) 112 (60.5%) 140 (59.1%)
1 170 (40.3%) 73 (39.5%) 97 (40.9%)

BRAFmut: <0.001 422
0 365 (86.5%) 175 (94.6%) 190 (80.2%)
1 57 (13.5%) 10 (5.4%) 47 (19.8%)

* p-values adjusted using overall comparisons employing the Benjamini–Hochberg. ** samples with available data.
MSI: microsatellite instability; MSS: microsatellite stability.
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Table 2. Data of colorectal cancer patients (Affymetrix array data).

Clinicopathological
Characteristics

[ALL] Cluster 1 Cluster 2 adj. p-Value * N **

N = 1229 N = 505 N = 724

age 69.0 [60.0; 77.0] 68.0 [59.0; 75.0] 70.0 [60.0; 78.0] 0.022 566

gender: 0.302 703
female 304 (43.2%) 135 (41.0%) 169 (45.2%)
male 399 (56.8%) 194 (59.0%) 205 (54.8%)

stage: 0.081 603
I 70 (11.6%) 31 (10.9%) 39 (12.3%)
II 265 (43.9%) 119 (41.8%) 146 (45.9%)
III 189 (31.3%) 87 (30.5%) 102 (32.1%)
IV 79 (13.1%) 48 (16.8%) 31 (9.7%)

MSI_native: <0.001 685
MSI 162 (23.6%) 32 (10.4%) 130 (34.6%)
MSS 523 (76.4%) 277 (89.6%) 246 (65.4%)

CMScaller: <0.001 1229
CMS1 218 (17.7%) 37 (7.3%) 181 (25.0%)
CMS2 373 (30.3%) 254 (50.3%) 119 (16.4%)
CMS3 215 (17.5%) 87 (17.2%) 128 (17.7%)
CMS4 423 (34.4%) 127 (25.1%) 296 (40.9%)

* p-values adjusted using overall comparisons employing the Benjamini–Hochberg. ** Samples with available data.
MSI: microsatellite instability.

2.3. Molecular Characteristics of Autophagy Clusters (RNA-seq Data)

Table 1 provides detailed molecular characteristics of resultant CRC clusters in RNA-seq
data. Cluster 1 was associated with a higher aneuploidy score, homologous recombination defects,
and a higher frequency of APC and TP53 mutations (all p-values < 0.001), whereas cluster 2 was
associated with a higher frequency of microsatellite instability, proximal tumor location, BRAF
mutations, single nucleotide variant neoantigens, indel neoantigens, and non-synonymous mutations
(all p-values < 0.001). We observed differences in the distribution of CMS subtypes and stages across
two autophagy clusters. Higher frequencies of CMS1 (25 vs. 9%) and CMS3 (24 vs. 10%) were noted in
cluster 2, whereas cluster 1 was significantly enriched in CMS2 (52 vs. 14%). A slightly greater number
of stage 1 tumors were noted in cluster 2 than in cluster 1 (12 vs. 21%, respectively). Stage 4 tumors
were observed more frequently in cluster 1 than in cluster 2 (20 vs. 12%, respectively). No significant
differences between clusters were detected for overall survival (p-value = 0.55, data not shown), age,
gender, or mutation frequency of KRAS, NRAS, and PIK3CA.

2.4. Molecular Characteristics of Autophagy Clusters (Affymetrix Data)

Table 2 provides the molecular characteristics of resultant CRC clusters in array data. Cluster
2 was associated with a higher frequency of microsatellite instability and a higher age of morbidity.
We observed differences in the distribution of CMS subtypes and stages across two autophagy clusters.
Higher frequencies of CMS1 (25 vs. 7%) and CMS4 (40 vs. 25%) were noted in cluster 2, whereas
cluster 1 was significantly enriched in CMS2 (50 vs. 16%). No significant differences were noted
between autophagy clusters in terms of overall survival (p-value = 0.35, data not shown) or stage and
gender distribution.

2.5. Selection of the Autophagy Genes that Best Define Autophagy Clusters

With the use of sparse partial last squares discriminant analysis PLS (sPLS-DA), we attempted to
define which of the autophagy genes best differentiate CRC samples between two autophagy clusters.
Results from three datasets are presented in Figures 1 and 2. Sixteen genes were selected in the array
dataset (Figure 1A), and nine genes were selected based on RNA-seq analysis (Figure 1B). Four genes
(ATG16L2, ATG9B, DRAM1, and LAMP1) were found to be common to both datasets. The most highly
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ranked genes in terms of separation of clusters were ATG9B, and DRAM1 (Figure 1C,D). ATG9B and
LAMP1 were characterized by the highest expression level in cluster 1, while DRAM1 was characterized
by the highest expression level in cluster 2. In the CRC cell lines dataset, 16 genes were selected by
sPLS-DA (Figure 2A). The most highly ranked genes in terms of separation of clusters were UVRAG
and ATG4C (Figure 2B).
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Figure 1. Results of unsupervised clustering and partial last squares discriminant analysis PLS
(sPLS-DA) of colorectal cancer (CRC) datasets (RNA-seq and array) using selected autophagy-related
genes. Samples were separated based on unsupervised clustering, and visualized genes were selected
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array; (D)—CRC RNA-seq]. MSI: microsatellite instability; MSS: microsatellite stability.
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Figure 2. Results of unsupervised clustering and sPLS-DA in cell line dataset using selected
autophagy-related genes. (A) Samples were separated based on unsupervised clustering and
visualized genes were selected according to sPLS-DA. (B) The corresponding box plots illustrate
the most highly ranked genes in terms of separation of clusters. MSI: microsatellite instability; MSS:
microsatellite stability.
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2.6. Differential Expression (DE) of Autophagy Genes

To illustrate differences in the expression of autophagy genes in resultant autophagy clusters,
we performed differential expression analysis by comparing the transcriptome of each cluster with
normal-adjacent tissues. This has been done in CRC RNA-seq and CRC array datasets. The results of
DE analysis are presented in Figure 3, and lists of genes with important parameters are provided in
Supplementary Table S3. In general, the detected effects in two CRC clusters were relatively small,
not exceeding absolute log fold change (logFC) = 1, with the exception of ATG4A, ATG4D, ATG9B,
DRAM1, GABARAPL1, and ULK4. For these genes, absolute logFC values were above 1; however,
it was not consistent across datasets and/or clusters except for DRAM1, for which logFC > 1 was
noted in cluster 2 in both datasets. Clusters 1 and 2 were similar in terms of the direction of gene
expression. Fifteen genes in both clusters and both datasets were downregulated: ATG4D, ATG4A,
CALCOCO2, GABARAPL1, ULK3, WIPI1, MAP1LC3B2, SH3GLB1, GABARAP, BECN1, GABARAPL2,
MAP1LC3B, ATG5, DRAM2, and ATG13. Six genes exhibited upregulation in both clusters and both
datasets: LAMP1, SQSTM1, WIPI2, VCP, DRAM1, and ATG9B. As for cluster-specific deregulation,
ATG4C displayed cluster-1-specific downregulation, whereas no gene was specifically downregulated
in cluster 2. Furthermore, none of the genes showed cluster-specific upregulation.
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Figure 3. Differential expression (DE) analysis between autophagy-based clusters and normal adjacent
tissues. (A,B) depict volcano plots based on DE analysis in the ‘limma’ package in CRC array dataset
(A—cluster 1 vs. normal; B—cluster 2 vs. normal). (C,D) depicts volcano plots based on DE analysis in
the limma package (RNA-seq datasets). (C—cluster 1 vs. normal; D—cluster 2 vs. normal). The vertical
lines correspond to 1.0-fold up and down, respectively. The blue dot in the plot represents the gene
with a False Discovery Rate (FDR) ≤ 0.05 and logFC < −1, whereas the red dot represents the gene with
a FDR ≤ 0.05 and logFC > 1. Black dots indicate insignificant changes in gene expression. Data used to
build volcano plots are included in Supplementary Table S3.
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3. Discussion

Currently, the molecular characteristics of highly heterogeneous CRC constitute a medical standard
for the prognosis, prediction, and selection of the most effective treatment approach [23]. As the
survival ratio of CRC patients remains unsatisfactory (especially in groups of patients at advanced
stages), new biomarkers may enable the implementation of novel anticancer strategies that target
pathways other than the classic apoptosis–death. Recently, autophagy has been extensively studied
in different types of cancer in order to obtain a better understanding of its involvement in both the
molecular process of carcinogenesis and treatment resistance. It is postulated that the modulation
(induction and inhibition) of autophagy may be essential for the improvement of anticancer adjuvant
therapy [24,25].

EGSEA analysis preformed in this study revealed the significant deregulation of autophagy-related
pathways in CRC. In general, autophagy gene sets were lowly ranked in EGSEA analysis, which was
possibly due to the moderate gene expression changes that we observed in DE analysis. This explains
why autophagy has been often overlooked in gene set enrichment results provided for CRC or CRC
clusters [8]. However, moderate gene expression changes may still represent a biologically meaningful
factor [26]. Our study, based on the expression pattern of autophagy-related genes in colon tumors vs.
tumor-adjacent normal tissue, using two large RNA-seq and microarray datasets, revealed the existence
of two separate clusters. In terms of clinical and molecular characteristics, the two clusters differ
significantly, suggesting the existence of two groups of CRCs: cluster 1, presenting with prominent
chromosomal instability, distal tumor localization, and high TP53 and APC mutation rates, and cluster
2, with a high mutation rate, proximal tumor localization, and microsatellite instability. This result has
been confirmed in the CRC cell lines dataset with respect to MSI status.

Interestingly, in the aspect of widely accepted CMS clustering, our study showed that cluster
1 covers the majority of CMS2 and CMS4, while cluster 2 covers the majority of CMS1 and CMS3.
These results are in agreement with the biological nature of CMSs and may be used as an additional
biomarker for CRC subtyping and selecting therapeutic approaches. As revealed by differential
expression analysis, the two clusters were similar in terms of the direction of expression changes
of significantly deregulated genes. Importantly, most expression changes were of little magnitude.
This result may indicate that changes in the expression of autophagy genes in adjacent normal tissue are
relatively numerous, suggesting a prominent field defect or the early disruption of autophagy in CRC.
Similarly, a recent study by Aran et al. has demonstrated major gene expression changes in tissues
adjacent to tumors [27]. Therefore, we suggest that future studies on changes in gene expression in
autophagy-related genes should employ normal colon tissue dissected from individuals free of cancer.

The machine learning approach (sPLS-DA) indicated that the two clusters in tumor samples differ
with respect to the expression levels of several autophagy-associated genes: cluster 1, with the prominent
expression of ATG9B along with LAMP1, and cluster 2, with high levels of DRAM1. Intriguingly,
the genes differentiating these two clusters are closely associated with lysosomal degradation.

LAMP1 (lysosomal associated membrane protein 1) is a highly glycosylated protein associated with
the regulation of lysosome mobility and its fusion with the autophagosome membrane [28]. LAMP1 is
expressed on (apart from the lysosomal membrane) the cell surface of many different human cells [29].
The overexpression of LAMP1 has been linked to high-grade breast tumors capable of metastasis; hence,
its high expression appears to be associated with malignant attributes [30]. Recent studies have shown
LAMP1 overexpression of both mRNA and protein levels in high-grade glioblastoma multiforme
(GBM) [31]. Moreover, high expression levels of LAMP1 in the plasma membrane were observed, inter
alia, in colorectal neoplasm tissues, advanced prostate cancer (PCa), and castration-resistant prostate
cancer (CRPC) [29,32]. Recently, Takeda et al. demonstrated that the number of autophagy genes
including LAMP1 is effectively downregulated by mefloquine hydrochloride (an antimalarial drug) in
colorectal cell lines and PDX models, and it has a strong negative effect on cancer cells [33].

Another highly expressed gene in cluster 1 was ATG9B, encoding the multi-spanning
transmembrane protein that plays a key role in the biogenesis of autophagosome membranes [34].
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Kang et al. have shown a high rate of ATG9B mutations in human high-MSI gastric and colorectal
cancers. It has been postulated that the deregulation of ATG9B may contribute to promotion of the
development of stomach and colorectal cancers [34].

In the second cluster, DRAM1 (DNA damage regulated autophagy modulator 1) is the most
expressed gene. DRAM1 is a lysosomal membrane protein that participates in the process of
autophagosome–lysosome fusion [35], and thus, its expression promotes autophagosome formation.
It has been shown that in response to adverse genotoxic stimuli, TP53, a major tumor-suppressing gene
responsible for apoptotic cell death, induces autophagy via the transcriptional activation of DRAM1 [36].
Crighton et al. have demonstrated that DRAM1 is part of the network of cell death pathways dependent
on TP53, which simultaneously activates DRAM1 and other unknown proapoptotic gene/genes, which
in turn contribute together to the cell-death response. It is also possible that the autophagic and
apoptotic potential of DRAM1 is separable and acts in parallel [36].

Since DRAM1 is a target gene for TP53, it is critical in TP53-induced apoptosis. DRAM1 influences
apoptosis via lysosomes thorough the proapoptotic BAX gene. DRAM1 improves the translocation of
BAX to lysosomes to initiate lysosome-dependent apoptotic death [37]. Therefore, it is suggested that
DRAM1 may connect the autophagy and apoptosis pathways. The induction of autophagy by TP53
via DRAM1 contributes to apoptotic cell death, which appears to be crucial for the development of
novel standards of anticancer treatment.

Recently, many research groups have been searching for new candidate genes related to autophagy
(as a prognostic and/or prediction biomarkers) in CRC using available datasets [38,39]. We emphasize
that our study differs especially with respect to the level of gene selection. In databases, in the section
of autophagy-related genes, different genes that participate in autophagy solely are included along
with genes from other important pathways that overlap with the autophagy pathway under certain
conditions. We claim that naming VEGFA, NRG1, or CDKN2A as autophagy-related genes is at least
misleading, because their major role does not involve the autophagy pathway [38]. Hence, to avoid
ambiguous results, the genes chosen for this study include those that are highly engaged in the
autophagy pathway.

In the current study, we were unable to demonstrate the intersection between tumor and cell
lines in relation to deregulated autophagy genes. This may reflect differences between tumor samples
and cell lines. In the latter, an intact immune system and stroma are lacking, and specific lineage
subtypes are overrepresented. Indeed, Koustas et al. and Folkerts et al. recently discussed the close
interplay between autophagy, tumor environment, and immune response [40,41], thus demonstrating
the limitations of cell lines as a model of autophagy in CRC. Nevertheless, our study clearly showed
that the expression of autophagy-related genes in CRC displays two distinctive patterns for two
different subgroups, i.e., MSI-enriched and MSI-depleted. Given that MSI-enriched CRCs display
strong infiltration of the tumor microenvironment with immune cells, the differences observed in
this study may be linked to autophagic processes in the tumor microenvironment rather than to the
epithelial fraction of the tumors. This may be supported by the notion that autophagy is a key factor in
various immune responses against tumors, including antigen presentation and T-cell activation [42].

4. Study Limitations

There are potential limitations to this study that should be considered. A relatively small control
group is available in databases (normal tissues or adjacent normal tissues). The most convenient
setting for statistical analysis is when the sample size is comparable in terms of gender and age.
Hence, more population/epidemiological data on RNA profiles (transcriptome) are required. To our
best knowledge, there is a lack of access to proteomic data concerning autophagy in colorectal
cancer. This situation impeded a comprehensive analysis of protein levels that undoubtedly would
raise the power of this analysis. Further studies on protein levels are needed as well as accessible
protein databases.
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The goal of the current study was not to determine if autophagy plays a suppressing or promoting
function in CRC because of its context-dependent manner. This study is descriptive, and unfortunately,
we are a long way from this definition being made.

5. Materials and Methods

5.1. Data Acquisition

RNA-seq data (raw counts) for colon and rectal adenocarcinoma (CRC, 620 samples) were obtained
along with tumor-adjacent tissue (53 samples) from compiled RNA-Sequencing TCGA data published
by Rahman et al. under accession number GSE62944 in Gene Expression Omnibus (GEO) [43].

Raw CEL (.cel) files (Affymetrix U133 Plus 2.0 microarray expression)(Affymetrix, Santa Clara,
CA, USA) were collected from 15 studies that included 1597 tumor and 125 normal colon samples
(Gene Expression Omnibus accession numbers: GSE69657, GSE8671, GSE9254, GSE13067, GSE13294,
GSE14333, GSE17536, GSE17537, GSE18105, GSE19860, GSE28702, GSE33113, GSE35896, GSE37364,
and GSE39582 [44–56]).

Non-synonymous mutation data (TCGA dataset only) were obtained from Genomic Data
Commons. Clinical and molecular data, including overall survival and microsatellite instability
status, were obtained from accompanying phenotype files specific to each study. Other variables,
including single nucleotide variants and non-silent mutation and aneuploidy scores, were obtained
from Thorsson et al. [57].

Raw CRC files (.crc) of cell lines (Affymetrix U133 Plus 2.0 microarray expression) were downloaded
from Array Express (E-MTAB-3610) [58].

5.2. Consensus Molecular Subtyping

In order to assess consensus molecular subtypes (CMS) for CRC samples, we used the nearest
template prediction (NTP) algorithm implemented in the CMScaller package with default settings
using normalized data [59]. Samples with false discovery rate adjusted p-values > 0.05 were designated
“not assigned” (NA) and removed from subsequent analysis.

5.3. Data Pre-Processing

RNAseq data for CRC and tumor-adjacent tissues data were obtained from GSE62944 [43].
Subsequently, lowly expressed genes were removed by means of filtering. Next, data were normalized
using variance-stabilizing transformation and smooth quantile normalization. Outlier samples were
detected and removed automatically employing PCDIST algorithm [60].

Affymetrix raw data were normalized by Robust Multi-array Average (RMA) using the “affy”
package, mapped to the NCBI Entrez Gene identifiers using a custom chip definition file (Brainarray,
Version 20) [61,62]. Outlier samples were detected and removed automatically using PCDIST
algorithm [60]. For both datasets, we used the ComBat algorithm implemented in the “swamp”
package to correct the data for batch effects [63].

5.4. Selection of Genes of Interest

We carried out extensive searches of the literature and databases (for example, Human Autophagy
Database: http://autophagy.lu/clustering/index.html) in order to select important genes involved in the
autophagy pathway. We attempted at selecting genes with roles non-overlapping with other pathways.
Our final list comprises 46 genes involved in autophagy (Supplementary Table S2).

5.5. Ensemble of Gene Set Enrichment Analysis

The RNA-seq dataset was used to analyze gene set enrichment. In brief, we applied the Ensemble
of Gene Set Enrichment Analyses (EGSEA) method for gene set testing in the RNA-seq dataset by
comparing tumor versus tumor-adjacent tissue [64]. We utilized the analysis of four prominent GSE

http://autophagy.lu/clustering/index.html
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algorithms: camera, fry, ora, and z-score to calculate the collective significance scores for each gene
set (we used 2055 Human Reactome definitions from January 2020) [65]. Gene sets were ordered by
median ranking (median across the ranks assigned by four selected methods).

5.6. Unsupervised Clustering of Autophagy Genes

We used the (COMMUNAL—Combined Mapping of Multiple clUsteriNg ALgorithms) approach
to provide robust clusters based on the expression of selected autophagy genes [66]. The optimal
number of clusters was deduced based on integrative analysis of three clustering algorithms and nine
cluster validity metrics across increasing autophagy gene subsets: 12, 24, and 36.

5.7. Selection of the Autophagy Genes that Best Define Autophagy Clusters

We applied sparse partial least squares discriminant analysis (sPLS-DA) to obtain the most
relevant autophagy genes differentiating between autophagy clusters. Each dataset (RNAseq and
Affymetrix) was analyzed separately with the use of a sPLS-DA classifier that had been trained and
evaluated using 10-fold cross-validation repeated 100 times. The genes selected most frequently by
the sPLS-DA classifier (frequency ≥ 0.9) were selected for the drawing of heat maps in the Complex
Heatmap package.

5.8. Differential Expression (DE) Analysis

For array-based data, differential expression between study groups was assessed by applying a
moderated t-test implemented in the “limma” package. For the RNAseq data, differential expression
between study groups was assessed by applying the voom method.

p-values were adjusted using overall comparisons employing the Benjamini–Hochberg (BH)
method. Gene expression with a p-value ≤ 0.05 after the BH correction was considered significantly
deregulated. All available genes were included in this analysis.

5.9. Comparison of Expression of Selected Autophagy-Related Genes in CRC Cell Lines

Differences in gene expression between cell line clusters were assessed by applying a t-test
(for normal distribution) or non-parametric Kruskal–Wallis test (for non-normal distribution).
All reported p-values were corrected for multiple testing using the BH method.

5.10. Molecular Characteristics of Clusters

Differences between clusters in terms of categorical variables were assessed using a chi-squared
test. Continuous variables were assessed for distribution (normal, non-normal) using the Shapiro–Wilk
test. Subsequently, we assessed differences between subtypes using a t-test (for normal distribution) or
non-parametric Kruskal–Wallis test (for non-normal distribution). All reported p-values were corrected
for multiple testing using the BH method. The workflow of the current study is summarized in
Supplementary Table S4.

6. Conclusions

We found a moderate deregulation of autophagy-related genes in CRC compared to adjacent
tissue. This may indicate that changes in the expression of autophagy genes in adjacent tissue are
relatively high, thus suggesting a prominent premalignant field defect or early disruption of autophagy.
This implies that future studies on changes in the expression of autophagy-related genes should employ
normal colon tissue dissected from individuals free of cancer. Moreover, our study identified two
autophagy sets of genes (modules) in CRC: MSI-enriched and MSI-depleted. Genes that differ between
clusters are connected to the lysosomal degradation pathway and may constitute candidates for CRC
targeting therapy.
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