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CVD is a major cause of morbidity and mortality with an 
estimated worldwide aggregated lifetime risk of over 60% 
(1). Globally, 422 million patients suffer from CVD, and 
CVD causes more than 4 million deaths annually in Europe 
alone, accounting for 45% of all deaths (2, 3). Moreover, 
10–18% of the number of years lost due to poor health, 
disability, or early death are allotted to CVD, resulting in a 
projected global cost of USD 47 trillion worldwide in the 
next 25 years (4).

Abnormal plasma lipid profiles constitute the single 
most important risk factor for CVD (5–7). Particularly, el-
evated non-HDL cholesterol levels and hypertriglyceride-
mia are considered as the main risk indicators (8, 9). 
Mechanistically, LDLs and VLDLs, as well as their rem-
nants, can penetrate the endothelial lining of the arterial 
walls and be retained in the underlying intima, where they 
promote inflammation, as well as atherosclerotic plaque 
formation and progression (10).

Lipoprotein cargo, processing, and transport are tightly 
linked to apolipoprotein composition, and measurement 
of apolipoprotein plasma concentrations instead of lipid 
levels can serve as a simplified method for risk assessment 
in vascular disease (11, 12). In total, the human genome 
encodes 21 apolipoproteins, of which APOAs (APOA1, 
APOA2, APOA4, and APOA5), APOCs (APOC1, APOC2, 
and APOC3), APOB, and APOE have been demonstrated 
to play essential roles in triglyceride and cholesterol trans-
port and metabolism (13). Furthermore, the atypical apoli-
poproteins APOH and APOM have been convincingly 
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implicated in the regulation of postprandial triglyceride 
clearance, as well as lipid and HDL metabolism (14–16).

Seminal studies have firmly established the importance 
of selected SNPs in APO genes as important genetic risk 
factors for dyslipidemias as well as its comorbidities and se-
quelae. Prominent examples include the association be-
tween familial hypercholesterolemia [Online Mendelian 
Inheritance in Man (OMIM) identifier 144010]; increased 
risk of ischemic heart disease and genetic variants in APOB 
(17); and the association of the APOA5 variants with hy-
pertriglyceridemia (OMIM identifier 145750) in African-
Americans, Spanish, and Caucasians (18); as well as APOE 
genotypes with circulating lipid levels and with coronary 
risk (19, 20). Besides constituting a risk factor for CVD,  
genetic variants in APOE are strongly linked to the risk of 
developing Alzheimer’s disease (OMIM identifier 104310) 
with the 4 haplotype increasing risk about 3.7-fold per 
copy, whereas the 2 allele is neuroprotective with an odds 
ratio (OR) of 0.5 per copy (21, 22).

Although these and other studies have provided impor-
tant data on the prevalence of selected APO variants with 
clinical importance and their interethnic differences, fre-
quencies of the majority of variants were mostly assessed in 
few heterogeneous populations with relatively small sam-
ple sizes. Furthermore, the genetic variability in APO genes 
beyond the interrogated selected subset of SNPs has not 
been systematically addressed. Importantly, the rapidly in-
creasing extent of available next-generation sequencing 
(NGS) data provided by a multitude of population-scale 
sequencing projects allows us for the first time to compre-
hensively analyze and portray the landscape of genetic di-
versity and interethnic variability in APO genes across major 
worldwide populations.

In this study, we integrated whole-exome sequencing 
and whole-genome sequencing data from 138,632 individ-
uals across seven major human populations to comprehen-
sively profile the genetic diversity of 11 APO genes with the 
highest relevance for human lipid and cholesterol metabo-
lism and transport. Based on these data, we provide a con-
solidated overview of population-specific frequencies of 
clinically important APO variants on an unprecedented 
scale. In addition, we analyzed the overall pattern of APO 
genetic diversity and identified 6,875 genetic variants, 
2,270 of which were novel. We predict the functional im-
pact of this genetic variability using computational predic-
tions and by mapping variants to the domain structures of 
APOB and APOE and provide estimates for the functional 
importance of rare genetic variants and their contribution 
to the unexplained heritability in lipidemic phenotypes. By 
leveraging genome-wide association study (GWAS) data 
provided by the CARDIoGRAM (Coronary Artery Disease 
Genomewide Replication and Meta-analysis) and Global 
Lipids Genetics consortia, we confirm the overall accuracy 
of our computational variant assessments for predicting ge-
netic associations with blood lipid traits and coronary ar-
tery disease (CAD) risk. The presented data constitute, to 
our knowledge, the most comprehensive overview of genetic 
variability in apolipoproteins published to date and pro-
vide important information to refine population-specific 

genotyping strategies for dyslipidemias, as well as CVD and 
neurological disease risk.

METHODS

Data sources
APO variants and their frequencies were derived from human 

sequencing data (123,136 whole-exome sequences and 15,496 
whole-genome sequences) of 138,632 individuals (63,369 non-
Finnish Europeans, 12,897 Finnish, 12,020 Africans, 9,435 East 
Asians, 15,391 South Asians, 17,210 Latinos, 5,076 Ashkenazi Jews, 
and 3,234 from other populations) provided by the Genome Ag-
gregation Database (GnomAD) (23). Apolipoprotein copy num-
ber variant (CNV) data from 56,945 individuals were obtained 
from the Exome Aggregation Consortium repository. APOE and 
APOB protein domain structures were derived from Uniprot 
(http://www.uniprot.org) and the published literature (24, 25). 
The provided numbering of amino acid positions includes the 
signal peptide sequence. The suitability of short-read sequencing 
technologies for genomic profiling of human APO loci was deter-
mined on the basis of GC content and paralogue similarities, 
which were identified using Ensembl BioMart, and the fraction of 
inaccessible genome for each gene using the data provided by the 
1000 Genomes Project (“strict mask”) in Python (supplemental 
Table S1) (26).

In silico predictions
We assessed the functionality of all missense variants using five 

current computational functionality prediction algorithms (SIFT, 
Polyphen2, MutationAssessor, PROVEAN, and DANN) through 
ANNOVAR (27). In addition, variants were considered deleteri-
ous when they resulted in frameshifts, premature stop codons, 
loss of the start codons, or disruption of splice donor or acceptor 
sites. Predictive performance, utilized thresholds, and descrip-
tions of the underlying assessment parameters, as well as the as-
sociated references, are provided in supplemental Table S2. We 
classified a variant as putatively functional if at least two methods 
predicted a deleterious effect. Signal peptides were analyzed us-
ing SignalP (Version 4.1) (28) and Signal-3L (Version 2.0) (29). 
Variants whose functionality could not be predicted by any algo-
rithm were excluded.

Variant and haplotype frequency analyses
Novel variants were defined relative to SNP database (dbSNP) 

release 135. Total numbers and aggregated frequencies of func-
tional variants were calculated by averaging the values generated 
by five predictive algorithms. Representative haplotype frequen-
cies were calculated by integrating variant frequencies with popu-
lation-specific linkage information from the 1000 Genomes 
Project using LDLink (30). Rare and common variants were de-
fined as variants with minor allele frequency (MAF) 0.01 and 
MAF > 0.01, respectively. The fraction of functional variability al-
lotted to rare variants was computed as the aggregated frequency 
of rare functional variants divided by the total frequency of all 
functional variants for each gene.

Associations with GWAS data
Genetic association data for lipid traits were obtained from the 

Global Lipids Genetics Consortium for 114,229 individuals; fast-
ing lipid profiles were available for 97,248 (85.1%) of these (31). 
GWAS data for CVD risk was obtained from the CARDIoGRAM 
consortium [22,233 individuals with CAD and 64,762 controls, 
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respectively (32). The functionality of genetic variants identified 
in GnomAD for which GWAS data were available was predicted as 
above, and effect sizes were compared between putatively deleteri-
ous and neutral variants.

RESULTS

Overview of the genetic variability profile in human  
APO genes

In this study, we analyzed the genetic variability in 11 hu-
man APO loci with documented clinical relevance using 
exome and whole-genome sequencing data from 138,632 
unrelated individuals from seven major human popula-
tions. In total, we identified 8,886 variants, of which 6,875 

variants are located in exons (Fig. 1A). The majority of  
exonic variants are missense variants (n = 3,956; correspond-
ing to 57% of all exonic variants), synonymous variants  
(n = 1,626; 24%), and variants in the untranslated region 
(UTR) of the mRNA (n = 823; 12%). Notably, 2,270 of 
these 6,875 variants are identified as novel as compared 
with dbSNP release 135 (Fig. 1A).

Most variants were found in the APOB gene (n = 3,839), 
followed by APOA4 (n = 524), APOE (n = 408), and APOA5 
(n = 363; Fig. 1B). Yet, when analyzing the overall muta-
tional constraints in each gene by normalizing the number 
of single nucleotide variants (SNVs) to the length of the 
corresponding transcript, we found that the gene encod-
ing the essential apolipoprotein APOB was overall most 

Fig.  1.  Landscape of genetic variability in human APO genes. A: Stacked column and pie chart showing the variant composition of the 11 
analyzed APO genes. In total, 8,886 variants were identified in 138,632 individuals, of which 6,875 are located in exons. The majority of ex-
onic variants are missense mutations (57%), followed by synonymous variants (24%). B: Scatter plot in which the number of variants identi-
fied in each gene is plotted against the respective gene length. Linear regression line is shown. APOB is by far the largest APO gene and 
harbors the most variants. C: However, when the number of variants is normalized by gene length, APOB was the most conserved, harboring 
approximately three times less variants per kilobase compared with the least conserved gene, APOC1.
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highly conserved (280 SNVs per kilobase of transcript), 
whereas the exchangeable apolipoproteins APOC1 (908 
SNVs per kilobase), APOA2 (717 SNVs per kilobase), and 
APOC2 (706 SNVs per kilobase) showed the highest muta-
tional burdens (Fig. 1C). Of note, however, compared with 
all genes in the human genome, evolutionary constraints 
on apolipoproteins was overall rather low (supplemental 
Table S3).

Worldwide frequencies of clinically important variants in 
the human APO gene family

Genetic variants in apolipoprotein have been reproducibly 
linked to alterations in serum lipid profiles, progression of 
atherosclerosis, risk of coronary heart disease, and nonal-
coholic fatty liver disease (NAFLD) (33–37). Here, we ana-
lyzed the prevalence of 38 human APO alleles with the 
highest clinical relevance in major human populations. In 
APOB, we analyzed nine SNVs (Table 1). The missense vari-
ant rs1042031 that was strongly associated with reduced 
risks of ischemic cerebrovascular disease (hazard ratio = 
0.5) and stroke (hazard ratio = 0.2) in the 23-year prospec-
tive Copenhagen City Heart Study (38) differed across 
populations with MAFs between 4.8% in East Asians and 
18.3% in Europeans. Similarly, the allele with the lead SNP 
rs1042034, which correlated with reduced triglyceride lev-
els in a metaanalysis of >100,000 individuals of European 
ancestry (P < 1045) (39), differed drastically in population 
frequencies between 27.3% in East Asians and 85.2% in 
African populations. In contrast, SNV rs1367117, which  
reproducibly correlated with increased LDL cholesterol in 
large metaanalyses of >180,000 individuals (P < 10196) 
(40), was most and least prevalent in Europeans (MAF = 
31.9%) and Africans (MAF = 11.2%), respectively. One ad-
ditional APOB variant with strong associations with isch-
emic heart disease (rs5742904; OR = 7) was rare in every 
population analyzed (17).

Genetic variability in the APOE gene has been repro-
ducibly associated with differences in LDL cholesterol 
(19). Furthermore, APOE polymorphisms are the strongest 
risk factor for Alzheimer’s disease across genders and 
ethnicities with ORs for homozygous carriers of the 4  
allele between 2.2 in Latinos and 33.1 in East Asian popula-
tions (41, 42). In agreement with previous reports (43), we 
found the highest frequencies of the 2 and 4 alleles in 
African populations, with a frequency of 10.8% and 21.7%, 
respectively (Table 1). In contrast, the 2 allele was least 
prevalent in Latino populations (frequency = 3.2%), 
whereas the frequency of the 4 allele was lowest in East 
Asians (frequency = 8.9%).

In addition, we analyzed the frequencies of 10 variant 
alleles in APOA1, APOA2, APOA4, and APOA5 that have 
been consistently linked to hypertriglyceridemia and ele-
vated risks of CAD (Table 1). APOA5*2 and APOA5*3 are 
both independently associated with high plasma triglycer-
ide levels (18, 44). Importantly, whereas APOA5*2 was 
highly prevalent in East and South Asians (allele frequency 
= 23.8% and 17.7%, respectively), the allele was absent in 
Africans. In contrast, APOA5*3 was common in Europeans, 
Africans, Latinos, Ashkenazim, and South Asians with allele  

frequencies between 3.8% and 15.3%, but the variant was 
very rare in East Asian populations. The missense variant 
rs2075291 that strongly increases the likelihood of develop-
ing hypertriglyceridemia (OR = 11.7) (45) was only com-
mon in East Asians (MAF = 6.9%), whereas it was rare or 
absent in all other populations studied.

The loss-of-function mutations rs147210663, rs76353203, 
and rs138326449 in APOC3 have been robustly linked to 
favorable lipid profiles and reduced risks of CVD (46, 47). 
rs147210663 has been reported to have particularly strong 
effects on serum triglyceride levels in Pima Indians, lower-
ing triglyceride levels by 42% (48). In our data set, the fre-
quency of this variant was highest in Ashkenazi Jews (MAF = 
1.1%) and rare in all other populations, including Latinos 
(MAF < 0.1%). Similarly, the stop-gain variant rs76353203 
and the splice mutation rs138326449 were rare or very rare 
across all populations (Table 1).

Missense and promoter SNVs in the genes encoding the 
atypical apolipoproteins APOH and APOM showed drastic 
interpopulation differences (Table 1). Prevalence of the 
APOH variant rs1801689, which was strongly associated 
with increased serum LDL (31), was highest in Ashkenazi 
Jews (MAF = 5.8%) but rare in both African (MAF = 0.5%) 
and East Asian (MAF < 0.1%) populations. Conversely, 
rs805296 located in the APOM promoter was most abun-
dant in Africans (MAF = 11.5%) and East Asians (MAF = 
11.6%), but less prevalent in Europeans (MAF = 1.3%) and 
Ashkenazim (MAF = 1%). Combined, the presented data 
reveal the extent of interpopulation differences in apolipo-
protein alleles with demonstrated clinical relevance and 
provide a powerful resource for researchers and clinicians 
to design population-specific genotyping strategies for bio-
marker identification and disease-risk analyses.

Rare genetic variants are predicted to contribute 
substantially to the functional variability in human 
apolipoproteins

Importantly, the vast majority of identified exonic variants 
were rare (98.7%) or very rare (96.9%) with MAFs 1% 
or 0.1%, respectively, highlighting the genetic complex-
ity of human APO genes (Fig. 2A). To estimate the contri-
bution of rare genetic variants to the lipid trait variability, 
we predicted the overall genetically encoded functional 
variation in human apolipoproteins using population-scale 
NGS data and compared the impacts of common and rare 
APO variants. To this end, we used five functionality predic-
tion algorithms and ensemble scores (SIFT, Polyphen2, 
MutationAssessor, PROVEAN, and DANN) that predict 
the functional impact of a variant based on a diverse set 
of features, including amino acid properties, secondary 
structure, and evolutionary conservation (supplemental 
Table 2).

Based on these algorithms, we detected overall 1,829 dif-
ferent putatively functional SNVs across human APO genes 
(27% of all exonic variants), and rare variants were signifi-
cantly enriched in mutations with deleterious effects (30% of 
all exonic rare variants were predicted to be deleterious com-
pared with 12.2% of common variants; Fig. 2B and supple-
mental Table S4). Additionally, we found novel rare CNVs in 
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encoded functional variability differed by more than 4,000-
fold between APO genes. Of all analyzed APO genes, APOB 
harbored the most variants, with predicted functional im-
pacts (1.8 functional variants per individual), whereas 
APOA2 was highly invariant (5.4 × 104 functional variants 
per individual; Fig. 2D). In addition to these drastic differ-
ences in functional variability between genes, we observed 
large variability across populations. For APOC2, the genetically 

Fig.  2.  Rare genetic variants are important contributors to the functional variability of apolipoproteins. A: The vast majority of the identi-
fied apolipoprotein variants were rare (98.7%) or very rare (96.7%) with MAF < 1% or < 0.1%, respectively. B: The fraction of common and 
rare APO variants with putatively functional effects, as predicted by five computational algorithms. Note that all algorithms indicate that rare 
variants are enriched in mutations with functional effects. *** P < 0.0001 in paired heteroscedastic t-test. Error bars indicate SD. C: The 
number of CNVs per individual in APO genes is shown for six major human populations. AFR, Africans; AMR, Latinos; EAS, East Asians; 
EUR, Europeans; SAS, South Asians. Deletions and duplications are indicated in light and dark shades, respectively. Note that APOA1, 
APOA4, and APOC3 are in the same locus. D: The number of variants with putatively functional consequences per individual is shown for 
each analyzed APO gene across six populations. The inset indicates the fractions of putatively functional variants that are explained by rare 
variants (see also supplemental Fig. S1). Average value is indicated by red dashed line. Genes with an aggregated functional variant frequency 
is <1% are by definition explained exclusively by rare variants and are not shown.

all APO genes studied, many of which were population-spe-
cific (Fig. 2C and supplemental Table S4). Deletions of the 
APOA1/APOA4/APOC3 locus in Africans (frequency = 
0.11%) and CNVs of the APOB gene in Europeans (0.09%) 
were overall most common. In contrast, very few CNVs were 
observed in APOA2, APOM, APOE, and APOC2.

When combining information of putatively functional 
SNVs and CNVs, we observed that the frequency of genetically 



1994 Journal of Lipid Research  Volume 59, 2018

encoded functional variability differed 280-fold between 
1.8 × 104 variants per individual in South Asians and 0.051 
in Africans. In contrast, functional variability in APOA5 
(0.071–0.19 per individual), APOB (1.2–3 per individual), 
and APOH (0.065–0.18 per individual) differed less than 
3-fold across populations (Fig. 2D).

Based on our predictions, we estimate that rare genetic 
variability accounts for 8% and 10% of the genetically en-
coded functional variability in APOE and APOB, respec-
tively (supplemental Fig. S1). In contrast, the functional 
variability of APOA4, APOM, APOA1, APOA2, and members 
of the APOC gene family was fully allotted to rare variants. 
On average, across APO genes and populations, we predict 
that an average of 64% of the functional variability in cod-
ing sequences was due to rare genetic variants (Fig. 2D,  
inset). Combined, these results suggest that a substantial 
fraction of the genetically encoded functional variability in 
apolipoproteins is missed when only considering common 
genetic variants, thus incentivizing the consideration of 
rare SNVs in apolipoprotein-encoding genes for the guid-
ance of personalized disease-risk predictions.

Structural variability profiles of APOB and APOE
Next, we mapped the genetic variability in APOB and 

APOE onto the respective protein domain structures (Fig. 3). 
With the exception of the N-terminal sequence encoding 
the signal peptide, genetic variability in APOB fluctuates 

between 11 and 34 variants per 100 bp, whereas the num-
bers of putatively deleterious variants range from 3.4 to 
21.4 variants per 100 bp (Fig. 3A). The functionally most 
conserved regions are located in the amphipathic lipid- 
associating -helix 2 and in the proline-rich domains of 
the 2 -sheet that assumes a confirmation parallel to the 
phospholipid monolayer of LDL (49), with 3.4 and 3.6 vari-
ants per 100 bp, respectively. Notably, whereas the proline-
rich domains in 2 are highly conserved (3.6 variants per 
100 bp), substantially more variants were found in the adja-
cent LDL receptor (LDLR) binding site (9.4–13.6 variants 
per 100 bp). Regions of overall highest putatively func-
tional variability are located in -sheets 1 and 2 (17.4 and 
21.4 variants per 100 bp, respectively).

To pinpoint novel variants with putative functional con-
sequences and clinical relevance, we filtered variants that 
were classified as deleterious with high confidence by all al-
gorithms employed and that were common with MAF > 1% 
in at least one population studied (Table 2). The popula-
tion-specific variants rs6752026, rs13306198, and rs13306194 
are located in the N-terminal 1 domain that forms a lipid 
pocket that is necessary for VLDL as well as chylomicron 
particle assembly (50). Variant rs676210, which has been 
previously implicated in differential lipid-lowering response 
to fenofibrate in Europeans (51), mapped to the proline-
rich domain at the interface between the 2 and 2 regions 
and was the most prevalent of the putatively functional 

Fig.  3.  Structural variability of APOB and APOE. A: Domain map of APOB containing signal peptide (amino acids 1–27), proline-rich do-
mains (amino acids 2,578–2,767; 3,243–3,318; and 3,714–3,892) (see Ref. 99), and the LDLR binding region (amino acids 3,386–3,396) (see 
Ref. 25). Additionally, the C terminus of the truncated APOB48 isoform is indicated. B: The domain map of APOE is shown with signal pep-
tide (amino acids 1–18), LDLR binding region (amino acids 152–168), and lipid-binding region (amino acids 262–290) highlighted (see Ref. 
100). Aligned line plots indicate the total number of variants (black line) and number of functional variants (red line) per 100 bp. Function-
ality is predicted by five orthogonal computational algorithms, and the average ± SD is shown. Variants that were common (MAF > 1%) in at 
least one population and deemed functional by all employed algorithms are highlighted. Pie charts indicate their relative abundance in the 
six major populations analyzed. AFR, Africans; AJ, Ashkenazi Jews; AMR, Latinos; EAS, East Asians; EUR, Europeans; SAS, South Asians.
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s. APOB variants with population frequencies ranging be-

tween 14.7% in Africans and 72.5% in East Asians.
Familial hypobetalipoproteinemia type 1 (FHBL1; OMIM 

identifier 615558) is caused by genetic variants that result in 
truncated forms of APOB protein. Heterozygous carriers of 
such variants (1:500 to 1:1,000 in Western populations) are 
often clinically asymptomatic, whereas individuals homozy-
gous for APOB truncating mutations often exhibit very low 
LDL levels, fat malabsorption in the intestine, hepatic steatosis  
due to impaired VLDL secretion by the liver, and high 
prevalence of severe fibrosis (52–54). Additionally, if 
the truncating variant occurs within the APOB48 isoform, 
chylomicron secretion from the enterocytes is affected. In 
the 138,632 individuals analyzed here, we found only very few 
carriers of APOB truncating variants (supplemental Table S5).  
However, four APOB missense variants recently associated 
with FHBL1 were identified with frequencies between 0.8% 
and 2.5% in Africans (55) (supplemental Table S5).

In contrast to APOB, variability in APOE was distributed 
uniformly across the open-reading frame sequence with a 
local minimum at the LDLR binding region (Fig. 3B). In-
depth computational analysis of the APOE variant inven-
tory revealed multiple rare SNVs with high-confidence 
functional consequences. Variants rs533904656 (A18T), 
rs140808909 (E262K), and rs190853081 (E263K) were spe-
cific to East Asian populations with MAFs between 0.2% and 
0.3%. The A18T alters the signal peptide sequence and ob-
scures cleavage-site recognition (28, 29), potentially modu-
lating APOE secretory efficiency. E262 and E263 are located 
in the CT domain, and the latter forms salt bridges with 
R121 and R165 in the LDLR-binding region, which shields 
the LDLR-binding domain in the absence of bound lipids 
(24). Thus, we hypothesize that SNVs altering the charge of 
this residue entail destabilization and favor premature bind-
ing of the lipid-free APOE to its receptor. A similar weaken-
ing of domain interactions can be expected for the R163C 
mutation that is found in 2% of African alleles and which 
abolishes interactions with Q59 in the NT domain (24).

Validation of predicted associations using GWAS data
We aimed to estimate the accuracy of these predictions by 

leveraging preexisting genotyping data from 114,229 indi-
viduals provided by the Global Lipids Genetics consortium 
(31). Of the 6,875 exonic apolipoprotein variants identified 
in this study, only 51 overlapped with GWAS data (0.7%; sup-
plemental Table S6). This demonstrates the vast extent of 
genetic complexity not interrogated by genome-wide and 
custom genotyping arrays and emphasizes the added value of 
sequencing-based profiling techniques. Importantly, we 
found that apolipoprotein variants that were predicted to af-
fect the functionality of the corresponding gene product 
showed significantly higher effect sizes for cholesterol traits, 
including total, LDL, and HDL cholesterol (P < 0.05 for each 
correlation; Fig. 4A–C). Of variants with putatively deleteri-
ous effects, 69% (9/13), 77% (10/13), and 46% (6/13) sig-
nificantly correlated with changes in total, LDL, and HDL 
cholesterol levels, respectively, whereas only 31%, 19%,  
and 6% of neutral variants correlated with the respective 
lipid traits. Although putatively deleterious APO variants 
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significantly correlated with cholesterol levels, no significant 
correlations were observed for serum triglyceride levels (P = 
0.48; Fig. 4D). Notably, variants with the largest effect sizes on 
cholesterol traits were observed in APOE and APOB, whereas 
variants in APOA4 and APOA5 had the highest effects on  
triglyceride levels.

Because of the intimate link between lipid traits and 
CVD, we utilized the CARDIoGRAM GWAS data of 22,233 
individuals with CAD and 64,762 controls (32) to further 
assess whether identified APO variants directly associated 
with disease risk. Sixteen missense apolipoprotein variants 
were covered by the CARDIoGRAM data, of which eight 
each were predicted to be deleterious or neutral (supple-
mental Table S6). Notably, whereas three of the puta-
tively deleterious variants nominally correlated with CAD 
risk (P < 0.05; 38%), none of the correlations were found to 
be significant for the putatively neutral variants (0%). Com-
bined, these data provide proof of concept that computa-
tional functionality predictions of apolipoprotein variants 
can highlight variants with putative effects on blood lipid 
traits and associated disease risk. We therefore conclude 
that the integration of NGS-based sequencing methods 
and in silico variant assessment provides a useful approach 
for the interpretation of the vast extent of rare or novel 
variants identified by large-scale sequencing projects for 
which clinical validations or GWAS data are not available.

DISCUSSION

Serum lipid levels and risk of CVD are highly heritable 
with estimates ranging from 30% to 60% (56–58), and genetic 

polymorphisms in apolipoprotein-encoding genes consti-
tute important modulators of serum lipid profiles and CVD 
susceptibility. Here, we analyzed the worldwide frequencies 
of 38 human APO alleles that have been consistently impli-
cated in lipid traits and disease risk (Table 1). Most alleles 
exhibited large interethnic differences in frequencies, in-
dicating that accurate genetic prediction of dyslipidemia 
and CVD risk requires population-specific genotyping 
strategies.

Importantly, common variants identified in large-scale 
GWASs only explain around 10–20% of the heritability of 
lipid traits (31, 39, 59). Rare SNVs are enriched in variants 
with functional effects and large effect sizes (60, 61) and 
have been suggested as an important source of this unex-
plained heritability (62, 63). However, the extent to which 
rare variants contribute to the overall functional variability 
in apolipoproteins had not been assessed. Thus, we lever-
aged population-scale NGS data to directly estimate the 
relative importance of rare genetic variability for the miss-
ing heritability of apolipoprotein-associated disease traits. 
By integrating the results of five partly orthogonal meth-
ods, we predict that for APOE, APOB, APOH, and APOA5, 
common variants explain 50–90% of the genetically en-
coded functional variability in coding sequences. In con-
trast, no common deleterious variant was detected in 
APOC2 and APOC3. Thus, rare variants and CNVs are ex-
pected to explain the entire functional variability of APOC3, 
a gene for which loss-of-function mutations have been 
strongly linked with favorable lipid profiles (64), and of 
APOC2, which has been consistently associated with hyper-
triglyceridemia (65). These findings align with the causal 
implication of a multitude of rare variants in these genes 

Fig.  4.  Putatively deleterious variants are enriched in mutations with effects on blood lipid traits. Identified APO variants were overlaid with 
GWAS data provided by the Global Lipids Genetics Consortium for total cholesterol (A), LDL cholesterol (B), HDL cholesterol (C), and 
serum triglycerides (D). Sizes of dots indicate P values of the associations between variant and the respective clinical parameter. P < 104 in-
dicates significance of association after Bonferroni correction. Importantly, variants predicted to be deleterious (indicated in red) were sig-
nificantly enriched in mutations affecting lipid traits (P < 0.001; chi-squared test) compared with variants predicted to be functionally neutral 
(indicated in green). When individual lipid parameters were compared, variant associations were significant for cholesterol traits (total, 
LDL, and HDL cholesterol; P < 0.05) but not serum triglyceride levels (P = 0.48; heteroscedastic two-tailed t-test). * P < 0.05; n.s., not 
significant.
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with lipid traits, whereas no common deleterious variants 
in the coding sequences have been described.

Although the presented analyses provide the most com-
prehensive overview of genetic variability in APO genes de-
scribed to date, it is important to note that variant and 
allele frequencies can differ drastically between ethnic 
groups within these aggregated superpopulations (66). 
Furthermore, genetic profiles of populations not repre-
sented in this data set might yield exciting additional infor-
mation about apolipoprotein diversity. Examples for such 
insights based on population isolates or founder popula-
tions are effects of the triglyceride-lowering APOC3 variants 
rs147210663 in Pima Indians (MAF = 2.6%) (48) and 
rs138326449 in Hutterites (MAF = 2.2%) (67), as well as 
the LDL risk variant rs5742904 in APOB in Old Order 
Amish (MAF = 12%) (68). With decreasing sequencing 
costs, we anticipate that the sequencing of founder popula-
tions will continue to represent a powerful tool for genetic 
research of apolipoproteins.

We used in silico prediction algorithms that can distin-
guish deleterious from functionally neutral missense vari-
ants with relatively high confidence as judged by areas 
under the receiver operating characteristic curve between 
0.8 and 0.95 for genome-wide analyses (supplemental  
Table S2). However, for families of genes with low evolution-
ary pressure, the quality of predictions can be substantially 
lower (69). Importantly, we show that functionality scores 
for apolipoprotein variants were overall predictive for their 
effects on serum cholesterol levels despite complex linkage 
disequilibria, which might obscure functional effects (sup-
plemental Fig. S2). For instance, rs1367177 and rs679899 
were both predicted to affect APOB functionality and as-
sociate clearly with LDL (pLD = 9 × 10183 and 4 × 1039, re-
spectively) and total cholesterol levels (pTC = 2 × 10139 and 
4 × 1022, respectively). However, these variants are in link-
age with the putatively neutral variant rs1801701 (R2 in Eu-
ropeans = 0.18), which also correlated with LDL and 
cholesterol levels, albeit less strongly (pLDL = 8 × 1015 and 
pTC = 2 × 1021).

Although this predictive power is sufficient to provide 
faithful estimates of the overall functional mutational bur-
den in the coding sequence of loci of interest on a popula-
tion scale, these functional analyses are currently limited to 
individuals of European descent, as functional GWAS data 
for other populations of similar extent are currently lack-
ing. Moreover, extensions of computational algorithms are 
needed to further improve the prediction of personalized 
dyslipidemia risks. Potential refinements include the con-
sideration of population-specific linkage information, as 
well as adjustments that allow the functional interpretation 
of regulatory variants in promoters, enhancers, or UTRs 
that cannot currently be accurately evaluated using most 
computational methods. Finally, the evaluation of expres-
sion quantitative trait loci in relevant tissues, such as liver 
and small intestine, as provided by the Genotype-Tissue 
Expression Consortium, might allow further mechanistic 
interpretations of genetic apolipoprotein variation (70).

In summary, our analyses reveal that the genetic land-
scape in human apolipoproteins is highly complex, and 

every individual was found to harbor on average 19 APO 
variants, of which 2 had putative functional effects. The 
vast majority of variants were rare, and these rare variants 
contributed substantially to the genetically encoded apoli-
poprotein variability. Furthermore, by leveraging GWAS 
data from the CARDIoGRAM and Global Lipids Genetics 
consortia, we found that computational methods pro-
vide overall useful predictions for the functional effects of 
apolipoprotein variants on lipid traits and apolipoprotein-
associated disease risk.

The authors thank the CARDIoGRAM, Global Lipids Genetics, 
and Exome Aggregation consortia and all contributing groups 
for sharing their data, which were instrumental for this work.
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