
plants

Article

Genetic Diversity of Wheat Stripe Rust Fungus Puccinia
striiformis f. sp. tritici in Yunnan, China

Md. Ashraful Alam 1,2, Haoxing Li 1,3, Akbar Hossain 2,* and Mingju Li 1,*

����������
�������

Citation: Alam, M.A.; Li, H.;

Hossain, A.; Li, M. Genetic Diversity

of Wheat Stripe Rust Fungus Puccinia

striiformis f. sp. tritici in Yunnan,

China. Plants 2021, 10, 1735. https://

doi.org/10.3390/plants10081735

Academic Editors: Irina N. Leonova

and Yuri Shavrukov

Received: 3 July 2021

Accepted: 10 August 2021

Published: 23 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural
Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences,
Kunming 650205, China; ashrafulw@yahoo.com (M.A.A.); haoxing.li@qq.com (H.L.)

2 Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
3 College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
* Correspondence: akbarhossainwrc@gmail.com (A.H.); lily69618@163.com (M.L.)

Abstract: The stripe rust of wheat is one of the devastating diseases in China, which is caused
by fungus Puccinia striiformis f. sp. tritici (Pst). The Yunnan Province of China is located in the
south-western part, and holds distinctive geographical and climate features, while wheat growth and
epidemics of stripe rust fungus are fully dissimilar to the major wheat-growing regions of China. It is
important to discover its origin and migration to control the disease. In this study, 352 isolates were
sampled from 11 spots of the Yunnan Province during the wheat growing season from 2004 to 2015
and analyzed with SNPs markers of housekeeping genes. Results revealed that 220 haplotypes were
inferred from the concatenating sequences; among them, 5 haplotypes (viz., ‘H86′, ‘H18′, ‘H8′, ‘H15′

and ‘H23′) comprised over 24.5% of the population. The haplotype diversity, nucleotide diversity,
mutation rate and recombination events were 0.992, 6.04 × 10−3, 4.46 × 10−3 and 18.0 respectively,
which revealed the genetic diversity of Pst populations among all locations. Four grouping methods,
such as UPGMA-tree, PCA, PLS-DA and STRUCTURE, were employed for the categorization of
the Pst populations conferring to their races and topographical localities. All methods were found
significant and mostly had co-linear relations with each other. The analysis of molecular variance
(AMOVA) conferred total variation was 9.09%, and 86.20% of variation was within the populations.
The current study also exposed a comparatively high genetic multiplicity within the population,
while low genetic inconsistency among the populations. Furthermore, the molecular records on the
gene pole (Nm = 18.45) established that the migration of the stripe rust pathogen occurred among all
locations in Yunnan province. The ancestral haplotype was detected in Yuxi. Based on the trajectories
of upper airflow and genetic diversity of Pst populations in different locations, it is suggested that
the locations Dehong, Dali, Lincang and Baoshan are probably a major source of Pst in Yunnan.

Keywords: genetic diversity; population structure; wheat; Puccinia striiformis f. sp. tritici;
Yunnan Province; China

1. Introduction

Around the globe, the stripe rust disease of wheat is considered the most devastating
disease, and it is caused by the fungus Puccinia striiformis f. sp. tritici (Pst) [1,2]. In terms of
the area that can be affected by the disease, China is the largest epidemic region for stripe
rust disease of wheat in the world [3]. During 1950, 1964, 1990 and 2002, yield losses of
wheat due to the disease were
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Abstract: The stripe rust of wheat is one of the devastating diseases in China, which is caused by 
fungus Puccinia striiformis f. sp. tritici (Pst). The Yunnan Province of China is located in the south-
western part, and holds distinctive geographical and climate features, while wheat growth and ep-
idemics of stripe rust fungus are fully dissimilar to the major wheat-growing regions of China. It is 
important to discover its origin and migration to control the disease. In this study, 352 isolates were 
sampled from 11 spots of the Yunnan Province during the wheat growing season from 2004 to 2015 
and analyzed with SNPs markers of housekeeping genes. Results revealed that 220 haplotypes were 
inferred from the concatenating sequences; among them, 5 haplotypes (viz., ‘H86′, ‘H18′, ‘H8′, ‘H15′ 
and ‘H23′) comprised over 24.5% of the population. The haplotype diversity, nucleotide diversity, 
mutation rate and recombination events were 0.992, 6.04 × 10−3, 4.46 × 10−3 and 18.0 respectively, 
which revealed the genetic diversity of Pst populations among all locations. Four grouping meth-
ods, such as UPGMA-tree, PCA, PLS-DA and STRUCTURE, were employed for the categorization 
of the Pst populations conferring to their races and topographical localities. All methods were found 
significant and mostly had co-linear relations with each other. The analysis of molecular variance 
(AMOVA) conferred total variation was 9.09%, and 86.20% of variation was within the populations. 
The current study also exposed a comparatively high genetic multiplicity within the population, 
while low genetic inconsistency among the populations. Furthermore, the molecular records on the 
gene pole (Nm = 18.45) established that the migration of the stripe rust pathogen occurred among 
all locations in Yunnan province. The ancestral haplotype was detected in Yuxi. Based on the tra-
jectories of upper airflow and genetic diversity of Pst populations in different locations, it is sug-
gested that the locations Dehong, Dali, Lincang and Baoshan are probably a major source of Pst in 
Yunnan. 
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1. Introduction 
Around the globe, the stripe rust disease of wheat is considered the most devastating 

disease, and it is caused by the fungus Puccinia striiformis f. sp. tritici (Pst) [1,2]. In terms 
of the area that can be affected by the disease, China is the largest epidemic region for 
stripe rust disease of wheat in the world [3]. During 1950, 1964, 1990 and 2002, yield losses 
of wheat due to the disease were ˃ 6.0, 3.0, 1.8 and 1.3 million metric tons, respectively 
[3,4]. Generally, stripe rust disease of wheat in China is the most devastating, due to dis-
tinctive inter-regional features that help to migrate the disease to a long distance over 
similar geographic regions [5]. It is noted that most of these races of Pst were first detected 
in the Gansu Province of China [6]. The genetic diversity of stripe rust pathogens was high 
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6.0, 3.0, 1.8 and 1.3 million metric tons, respectively [3,4].
Generally, stripe rust disease of wheat in China is the most devastating, due to distinctive
inter-regional features that help to migrate the disease to a long distance over similar
geographic regions [5]. It is noted that most of these races of Pst were first detected in the
Gansu Province of China [6]. The genetic diversity of stripe rust pathogens was high in
Gansu [6–8], where the Pst population can easily complete their lifecycle due to different
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elevations of mountains on wheat [9–11] and/or alternative hosts (Berberis spp.) for sexual
reproduction [12,13].

The Yunnan Province is one of the wheat-producing Provinces in China, which is
situated in the south-western part of the country [14]. From west to east, the Yunnan–
Guizhou Plateau of China crosses this Province. This area shows an enormous dissimilarity
of agro-climate, vegetation, agricultural systems as well as cultivation of wheat compared
to other provinces in China. Wheat is generally cultivated in Yunnan province from the
valleys’ lowland to highland, with overlapping growth stages of wheat along with the
elevation, which delivers a year-round host for stripe rust pathogens [5,12]. A survey
estimated that the incidence of numerous races of stripe rust fungus in Yunnan Province
was dissimilar to that in original epidemic regions such as Gansu Province [5–7]. In
addition, the earliest epidemic of stripe rust was recorded in Yunnan province of China in
the 1930s [15]. Furthermore, Yunnan possesses this disease year-round, like Gansu [5].

Recently, in Europe, Australia and New Zealand, population structures of various
pathogens have been recognized by using various molecular markers [15–18]. However, a
recombination signature in Pst has been documented in Gansu Province [9,10]. In Europe,
the genetic diversity of Pst fungus was exceptionally studied by Justesen et al. [19] by
using the amplified fragment length polymorphism (AFLP) markers; similarly, in North
America, Markell and Milus [20] also used the same markers for the identification of
the genetic diversity of Pst populations. Single nucleotide polymorphisms (SNPs) are
relatively different types of molecular markers and AFLP, RAPD (Random Amplification
of Polymorphic DNA) and SSR (Simple Sequence Repeats) are replaced by SNPs with the
development of sequencing technology. Polymorphisms can be detected in coding and
non-coding regions by the SNP marker of an organism that can cover a large part of the
genome [21]. A SNP is the mutation of a single base pair at a specific locus position, and
SNPs can conserve during evolution [22]. In recent years, SNP markers have been used to
study population structure in plant pathogens. Li et al. [5] exposed three SNP primers of
housekeeping genes to study the origin, evolution and movement of Pst in China. Similarly,
in the USA, Parks et al. [23] used SNP markers and found 25 haplotypes during the
investigation of the population structure of Blumeria graminis f. sp. tritici. The current study
aimed to investigate the genomic assortment and population structure of Pst in Yunnan
Province from the year 2004 to 2015 by using SNPs markers of housekeeping genes.

2. Materials and Methods
2.1. Sampling and Multiplication

Wheat stripe rust samples were collected in the year of 2004 to 2015 (main wheat
growing season from February to May) from eleven locations of Yunnan province in China.
Naturally infected green leaves were taken randomly from different wheat nurseries and
farmers’ fields (Table S1). The sampling distance between the two places was more than
1000 m. The sampling sites covered altitudes from 906 to 2480 m and the main profitable
wheat cultivars to increase the multiplicity of the Pst pathogens. During sampling, a leaf of
the wheat plant was collected as a sample and wrapped in a piece of clean paper. A total of
352 isolates were used in this study (Table 1).

Then, the dried sample leaf was placed on a wet filter paper in a Petri-dish, Φ100 mm,
for 6 to 12 h in a dark place at a temperature of around 20 ◦C. The pustules were scraped
with a dissecting needle and urediniospores spread to seedlings of ‘Mingxian 169′, grown
in pots, Φ100 mm, when the first leaf was fully expanded. The inoculated seedlings were
sprayed with water and kept in humid condition in a dark place for 24 h at a temperature
of 10 ± 1 ◦C. The pots were then moved to a greenhouse covered with glass shade with an
open-top to insulate each isolate. The temperature was kept at 14 ± 3 ◦C in the greenhouse
with a lighting time of 10 to 14 h each day. Then, the fresh urediospores were collected
with a test tube by tapping the tube when the symptoms were fully appeared and each pot
was harvested 3 to 4 times to obtain about 10 mg of urediniospores. For DNA extraction,



Plants 2021, 10, 1735 3 of 16

the spores of stripe rust pathogens were then shifted to a centrifugal tube, then desiccated
and deposited/stored at 4 ◦C.

Table 1. The numbers of Puccinia striiformis f. sp. tritici isolates were obtained from 11 different
locations of Yunnan from 2004 to 2015 (main wheat growing season: February to May).

Location
Year

Total
2004 2008 2011 2012 2014 2015

Lijiang (LJ) 16 - 12 4 - - 32
Dehong (DH) - 3 19 - 2 5 29
Baoshan (BS) - 16 7 - - - 23

Dali (DL) - 13 13 - 10 - 36
Qujing (QJ) - 22 - - 5 5 32

Zhaotong (ZT) 5 13 4 - - 12 34
Yuxi (YX) - - 14 - 21 4 39

Lincang (LC) - - 12 - 9 7 28
Wenshan (WS) - - 9 - 2 14 25
Chuxiong (CX) 6 - 4 - 6 10 26
Kunming (KM) - - 20 - 28 - 48

Total 27 67 114 4 83 57 352

2.2. Primer Design

The sequences of Pst housekeeping genes were searched in Gen-Bank. Three protein-
coding housekeeping genes were identified for developing SNP primers, namely heat shock
protein 90 kDa (HSP), ubiquitin-activating enzyme E1 (UBA) and ubiquitin-conjugating
enzyme E2 (UBC). The SNP primers were designed using Premier 5.0 software [https:
//en.freedownloadmanager.org/users-choice/Primer_Premier_5_64.html] (Accessed on
12 August 2021). Designed primer pairs were synthesized by Tsingke Biological Technology
Co. Kunming, China. The other three primers were designed by Li et al. [22], namely,
Elongation factor (EF-1), Map kinase 1 (MAPK) and Cyclin-dependent kinase 2 (CDC2).
Details of all primers’ information are available in Table 2.

Table 2. Primers and corresponding sequences used in this study.

Gene Gene Name Organism Gene Bank acc.
No. Primer Sequence (5’–3’) Product Size

(bp) Temperature

Ef-1 Elongation factor Pgt X73529.1 Ef137S: AAGCCGCATCCTTCGTTG
Ef531A: TTGCCATCCGTCTTCTCG 395 51

Mapk1 Map kinase 1 Pst HM535614.1

Map1351S:
GTCGGTCGGGTGTATCCT

Map1683A:
GGTTCATCTTCGGGGTCA

332 53

Cdc2 Cyclin dependent
kinase 2 Pst GQ911579.1

Cdc28S:
AAATCATCCACATCTGCTCCAC

Cdc352A:
TCCTACAAACCCCTCCAAAGGA

325 55

HSP heat sock protein
90 kDa (hsp90) Pst AJIL01000023.1

Hsp2396S:
TGCTCGTCACTGGTCAGTTC

Hsp2680A:
CGAAGAGGAGGACACTCAGG

285 52

UBA
ubiquitin-
activating

enzyme E1 (UBA)
Pst AJIL01000094.1

Uba1715S:
ACCCAAACCACGGAACCC

Uba2088A:
TCGCTCCAGCACCAACTA

374 59

UBC
ubiquitin-

conjugating
enzyme E2

Pst AJIL01000007.1

Ubc279S:
TTTGCGAATGGAGTATGG

Ubc581A:
GAGGGACTGACCTTTGAC

303 52

Puccinia graminis f. sp. tritici (Pgt), Puccinia striiformis f. sp. tritici (Pst), Elongation factor (EF-1), Map kinase 1 (MAPK), Cyclin-dependent
kinase 2 (CDC2), heat shock protein 90 kDa (HSP), ubiquitin-activating enzyme E1 (UBA) and ubiquitin-conjugating enzyme E2 (UBC).

https://en.freedownloadmanager.org/users-choice/Primer_Premier_5_64.html
https://en.freedownloadmanager.org/users-choice/Primer_Premier_5_64.html
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2.3. Procedures of DNA Extraction

The DNA was extracted directly from urediniospores by using a reformed cetyltrimethy-
lammonium bromide (CTAB) technique, which was previously characterized by Chen et al. [24]
with some modifications. For each segregate, 10 mg of urediniospores were taken into a 2.0 mL
Eppendorf tube with 5–7 sterile glass balls (3–4 mm). Then, 500 µL of preheating abstraction
buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl and 100 mM EDTA) and 5 mL of protease
(10 mg·mL−1) were added and shaken by vortex for 2 min, and the tube was then hatched at
65 ◦C for 60 min. The tube was cooled at room temperature, and 500 µL of chloroform was
added, mixed gently and then centrifuged at 12,000 rpm for 10 min. Then, the supernatant
was transferred into a 1.5 mL tube and 500 mL of pre-cooling isopropyl alcohol was added,
mixed gently and kept for 30 min at −20 ◦C. After centrifuging for 10 min at 12,000 rpm,
the discarded supernatant pellet was washed two times, then separately cold-washed with
70% ethanol and 100% ethanol, and then desiccated and melted in 40 µL of TE buffer. The
DNA-solution was treated with RNase (final concentration 20 µg mL−1) and reserved for
60 min at 37 ◦C to entirely digest RNA. The DNA was re-hastened, rinsed with ethanol, dried
and dissolved in 40 µL of TE buffer. The DNA concentrations were diluted to 20 ng µL−1 with
TE buffer before storing at−20 ◦C in small aliquots.

2.4. PCR (Polymerase Chain Reaction) and Sequencing

The PCR was performed in a 20 µL volume, and all primers were amplified under
similar warm air cycling circumstances and chemical reagent concentrations, except the
annealing temperatures. Every reaction occupied 10 µL of TIANGEN 2 × Taq PCR Master-
Mix (0.1 units of Taq Polymerase µL−1, 500 µM dNTPs each, 20 mM Tris-HCl (pH8.3),
100 mM KCl, 3 mM MgCl2 and other steadying and strengthening agents) 1 µL of each
10 µM primer, 1 µL of 20 ng of genomic DNA and 7 µL of ddH2O. The cycling situations
were one cycle of 94 ◦C for 5 min, then 34 cycles of 94 ◦C for 25 s, strengthening (51–59 ◦C)
for 25 s and 72 ◦C for 45 s, monitored by an ultimate extension phase of 72 ◦C for 5 min.
Before sequencing, agarose gel electrophoresis used an output of 1 × TAE buffer for 40 min
at 110 volts to perceive if the band is the distinctive directed band. Sequencing was carried
out at Tsingke Biological Technology Co., Kunming, China. The sequencing instrument
was a 3730 × l DNA Analyzer. The sequencing substance was Big-Dye Terminator v3.1.

2.5. Analysis of the Recorded Data

Recorded data were analyzed by the multi-evolutionary analysis software. The ar-
rangements were aligned and split for a single gene and all of the samples by using MEGA
4.0 [25]. The sequences were concatenated conferring to the instruction of Cdc2-(Ef-1α)-
Hsp-Mapk1-Uba-Ubc. The haplotypes, counting the records of SNP loci and the category,
collapse sequence, ancestral and isolate number of haplotypes, were examined by Map
tariff options for collapsing sequences and removing indels into haplotypes and eliminating
infinite-sites’ desecrations, using SNAP Workbench 2.0 [26], and execution of numerous
evolutionary analysis under a distinct interface [27]. It was assumed that all data were
in accordance with the unrestricted model, and there was only a sole modification at an
individually mutated locus. The diversity of haplotype (Hd) and nucleotide (Pi), neutrality
tests (Tajima’s D and Fu’s Fs values), re-amalgamation incident (Rm) and coefficient of
genetic differentiation (Gst) based on haplotypes and gene flow (Nm) was calculated in
DnaSP v.5.10 [28]. Negative and significant D and Fs values were taken as one source of
the indications of population expansion. The mutation rate of the populations (Θ) was
computed in MEGA 4.0. Analysis of molecular variance (AMOVA) was carried out using
Arlequin 3.1 [29]. AMOVA is a technique of segregating genetic assortment into within-
population and between populations for distinguishing population dissimilarities [30].
To assess the degree of isolates’ concentration changes (heat maps), PCA and PLS-DA
clustering were performed using the Metabo-Analyst 2.0 software [31]. Heatmaps were
created based on the Pearson distance. The UPGMA-tree was constructed using MEGA
5.0 software [25] and illustrated by FigTree v1.4.2. The STRUCTURE 2.3.4 was used for



Plants 2021, 10, 1735 5 of 16

inferring population structure [32]. For the Evanno plot, the Structure Harvester was
followed for imagining the structure outputs [33].

Bayesian-based clustering was performed using STRUCTURE v.2.3.4 [32], testing
three independent runs with K from 1 to 14, with each run having a burn-in period
of 50,000 iterations and 500,000 Monte Carlo Markov iterations, assuming an admixture
model. The most likely K value was processed with STRUCTURE HARVESTER v.0.9.94 [33]
and was detected using the Evanno transformation method [34]. To assign samples to
clusters, a membership coefficient of q > 0.8 was used, while coefficients ≤ 0.8 were
considered “genetically admixed”.

3. Results
3.1. Genetic Diversity in the Yunnan Pst Isolates

From 11 counties of Yunnan province in the years of 2004 to 2015, 220 haplotypes were
detected from 352 samples using 6 SNP primers collected. There were 42 SNP loci samples
collected from all locations, where 33 were phylogenetically informative (Table S2). No
supplements or removals were identified, and all recorded data were constant with an
infinite-sites model, where each variable locus has only a distinct metamorphosis. By using
6 primers, a total of 1354 polymorphic alleles were found across all populations (Table S2).
Among them, 161 polymorphic alleles were detected across SNP primer CDC2, 88 were
detected across EF-1, 379 were detected across HSP, 218 were detected across MAPK-1, 147
were detected across UBA and 359 were detected across UBS (Supplementary Table S2).
There were 25, 24, 19, 30, 23, 30, 31, 22, 22, 22 and 37 haplotypes found in Lijiang (LJ),
Dehong (DH), Baoshan (BS), Dali (DL), Qujing (QJ), Zhaotong (ZT), Yuxi (YX), Lincang
(LC), Wenshan (WS), Chuxiong (CX) and Kunming (KM), respectively (Table 3).

Table 3. SNP information of different locations in Yunnan.

Location LJ DH BS DL QJ ZT YX LC WS CX KM Total

SNP locus 26 34 18 27 24 26 26 23 33 26 25 42
Haplotype 25 24 19 30 23 30 31 22 22 22 37 220

Private. hap 13 18 10 20 16 17 21 12 13 15 26 181

Total 32 29 23 36 32 34 39 28 25 26 48 352

The private haplotypes were 13 in Lijiang (LJ), 18 in Dehong (DH), 10 in Baoshan
(BS), 20 in Dali (DL), 16 in Qujing (QJ), 17 in Zhaotong (ZT), 21 in Yuxi (YX), 12 in Lincang
(LC), 13 in Wenshan (WS), 15 in Chuxiong (CX) and 26 in Kunming (KM), respectively.
Private haplotypes are those haplotypes that are found in one particular population sample
but are absent in the samples from other populations. Haplotypes H86, H18, H8, H15
and H23 had the maximum incidence among the haplotypes, which added up to 24.5%,
and were shared in the populations of Dehong, Yuxi, Lincang, Qujing and other counties
(Figure 1; details in Table S3). Among them, H18 and H86 were comparatively widespread
haplotypes and shared in six counties. The haplotypes were distributed at altitudes of
906 to 2480 m and were composed of local and introduced varieties and near-isogenic
lines (Table S1). We constructed a dendrogram using Metabo-Analyst analysis to infer
phylogenetic relationships among the Pst populations within the locations. The locations
were assembled into six groups. Group 1: Qujing and Wenshan, Group 2: Zhaotong,
Group 3: Yuxi and Lincang, Group 4: Chuxion, Lijiang and Baoshan, Group 5: Dali and
Group 6: Dehong and Kunming (Figure 1 and Figure S1).

The outcomes of the diversity of haplotypes designated that the maximum Hd value
was in Zhaotong, 0.993, and the lowest was in Qujing, 0.946 (Table 4). The diversity of
nucleotides (Pi) fluctuated from 3.91 × 10−3 to 5.98 × 10−3 in the diversified populations.
The maximum was in Wenshan and the lowest in Lijiang. The mutation rate was the highest
in the Wenshan population (5.98 × 10−3) and lowest in the Baoshan (3.34 × 10−3) popu-
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lation. The recombination tests revealed that Zhaotong and Kunming had the maximum
recombination, with Rm = 11, and it was lowest in Lijiang, Rm = 6 (Table 4).

Figure 1. Heat-map visualization and hierarchical clustering analysis with Metabo-Analyst’s data annotation tools were
constructed based on the different haplotypes for 11 locations. Rows: locations; Columns: haplotypes. Color key indicates
haplotypes value, red: lowest, white: highest.

Table 4. Indices of molecular diversity in Pst population.

Regions Haplotype
Diversity (Hd)

Nucleotide
Diversity (Pi)

Population
Mutation Rate

(θ)

Recombination
Event (Rm)

Tajima’s
D/p-Value Fu’s Fs/p-Value

Lijiang (LJ) 0.98 3.91 × 10−3 4.42 × 10−3 6 −0.40263/0.4410 −16.332/0.000 **
Dehong (DH) 0.98 4.22 × 10−3 4.18 × 10−3 8 −0.15861/0.4530 −12.02127/0.000 **
Baoshan (BS) 0.980 3.92 × 10−3 3.34 × 10−3 7 0.63788/0.7890 −10.793/0.000 **

Dali (DL) 0.989 5.47 × 10−3 4.45 × 10−3 7 0.79275/0.8100 −19.035/0.000 **
Qujing (QJ) 0.946 5.95 × 10−3 4.08 × 10−3 8 1.61410/0.1095 −7.865/0.000 **

Zhaotong (ZT) 0.993 5.94 × 10−3 4.35 × 10−3 11 1.280431/0.9120 −19.836/0.000 **
Yuxi (YX) 0.972 5.05 × 10−3 4.21 × 10−3 9 0.680891/0.7940 −19.998/0.000 **

Lincang (LC) 0.968 5.49 × 10−3 4.04 × 10−3 7 1.278558/0.9210 −9.420/0.000 **
Wenshan (WS) 0.990 6.48 × 10−3 5.98 × 10−3 9 0.31318/0.6420 −10.373/0.000 **
Chuxiong (CX) 0.985 5.93 × 10−3 4.66 × 10−3 7 1.002346/0.8780 −10.233/0.000 **
Kunming (KM) 0.987 5.40 × 10−3 3.85 × 10−3 11 1.323307/0.9230 −24.891/0.000 **

Total 0.992 6.04 × 10−3 4.46 × 10−3 18 0.8238/0.77364 −369.901/0.000 **

** indicates statistically highly significant.

The overall Tajima’s D was positive and not significant (D = 0.8238, p = 0.77364),
indicating low levels with low-frequency polymorphisms within locations. The Fu’s Fs was
highly significant and negative (Fs = −369.901, p = 0.0000), indicating an excess number of
alleles, as would be expected from a recent population expansion or genetic hitchhiking.
The individual Tajima’s D values for populations of different counties in Yunnan were
positive and not significant, except Lijiang and Dehong. Lijiang and Dehong were negative
and not significant (Table 4). Fu’s Fs, which was considered extra subtle to population
demographic expansion [35], displayed different results. Fu’s Fs was undesirable and
extremely substantial for all counties’ populations. The ancestral haplotype (H148) was
detected in Yuxi, but all other results indicated frequent pathogen exchange within the
locations (Table 4). The sequence of H148 is listed in Supplementary Table S2. The
phylogeny tree (UPGMA) of haplotypes indicated that some haplotypes collected from the
different locations were grouped, such as H4 from Wenshan, H6 from Lijiang and H161
from Kunming. Some haplotypes were from the same locations but grouped to different
clusters, such as H1 and H2 from Qujing and H6 and H8 from Lijang. This indicates that
the clustering of haplotypes was not related to geographical sources.

The coefficient of genetic differentiation (Gst) among all populations of Yunnan was
0.01337, while it was 0.0123, 0.00875, 0.01199, 0.00819, 0.02104, 0.00634, 0.00495, 0.00307,
0.0046 and 0.01126 between Yuxi and Lijiang (LJ), Dehong (DH), Baoshan (BS), Dali (DL),
Qujing (QJ), Zhaotong (ZT), Kunming (KM), Lincang (LC), Wenshan (WS) and Chuxiong
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(CX), indicating a low differentiation among the ten counties, except Qujing (Table 5). The
Gst was low among all populations, indicating lower heterogeneity.

Table 5. Gst and Nm between Yuxi and other populations.

Parameter Lijiang
(LJ)

Dehong
(DH)

Baoshan
(BS)

Dali
(DL)

Qujing
(QJ)

Zhaotong
(ZT)

Kunming
(KM)

Lincang
(LC)

Wenshan
(WS)

Chuxiong
(CX)

Among All
Populations

Gst 0.0123 0.00875 0.01199 0.00819 0.02104 0.00634 0.00495 0.00307 0.0046 0.01126 0.01337
Nm 20.08 28.33 20.61 30.28 11.63 39.19 50.30 81.17 54.09 21.96 18.45

Among all populations in Yunnan, the gene flow strength, Nm, was 18.45, indicating
a recurrent pathogen interchange among the provinces (Table 5). While computing the
tradeoff of Pst between Yuxi (YX) and Lijiang (LJ), Dehong (DH), Baoshan (BS), Dali (DL),
Qujing (QJ), Zhaotong (ZT), Kunming, Lincang (LC), Wenshan (WS) and Chuxiong (CX)
Provinces, the Nm was 20.08, 28.33, 20.61, 30.28, 11.63, 39.19, 50.30, 81.17, 54.09 and 21.96,
respectively. Gst was the lowest, 0.00307, and Nm the highest, 81.17, between Yuxi and
Lincang. These results indicated that Pst was extremely consistent in Yuxi and Lincang as
compared to other provinces, and there was a huge scale of pathogen substitution between
the two provinces. The results of AMOVA signposted that modification largely originated
from within populations, accounting for 86.20% (Table 6), while it accounted for 9.09%
among populations within assemblies and accounted for 4.71% among clusters.

Table 6. AMOVA of Pst pathogens during the years from 2004 to 2015.

Source of Variation df Sum of Square Variance Components Percentage of Variation
(%) p-Value

Among groups 5 151.381 0.21516 4.71 0.11926
Among populations within

groups 5 82.068 0.41509 9.09 0.00

Within populations 341 1342.014 3.93552 86.20 0.00
Total 351 1575.463 4.56578

The dendrogram (Figure 2) was prepared from the genetic variation matrix derivatives
from 42 SNP loci for 220 haplotypes. In the UPGMA (unweighted pair-group method
using arithmetic averages) dendrogram, the haplotypes were assembled into seven groups;
however, three of them contained less than five haplotypes. An additional 4 groups were
characterized as key groups comprising more than 15 haplotypes. Group 1 contained
79 haplotypes with 92 isolates, where 85.7% of isolates were from Yuxi (17), Kunming
(14), Lincang (14), Wenshan (13), Chuxiong (12) and Qujing (8). Group 2 contained
18 haplotypes with 38 isolates, where 89% of isolates were from Qujing (16), Wenshan
(6), Zhaotong (6) and Dali (4). Group 4 contained 35 haplotypes with 81 isolates, where
68% of isolates were from Dehong (22), Kunming (20) and Lijiang (12). Group 6 contained
82 haplotypes with 135 haplotypes, where 79% of isolates were from Dali (24), Baoshan
(17), Yuxi (17), Zhaotong (13), Kunming (12) and Qujing (8).

Principal component analysis (PCA) was used as a way to deliver a three-dimensional
graphical image of the proportional genetic detachments between the populations. It also
measures the strength of the diversity between the groups categorized by a dendrogram.
The haplotypes grouped by PCA and PLS-DA were carefully arranged with a UPGMA-
based tree. In PCA scatterplots, the first two principal components explained 20.8% and
20.2% (Figure 3A), and in PLS-DA, the first three principal components explained 15.7%,
11.7% and 5.8% (Figure 3B) of the entire dissimilarity, respectively. In agreement with the
UPGMA-tree, haplotypes were obviously detached by PC1 and 4 distinct groups were
found; however, group 1 and group 4 were very close. In PLS-DA, the haplotypes were
also found in 4 distinct groups, and group 2 and group 3 were close.
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Figure 2. UPGMA dendrogram based on dissimilarity index of 42 SNP loci for 220 haplotypes.

3.2. Population Structure of the Yunnan Pst Isolates

For population genetic structure analysis, Bayesian clustering modeling was per-
formed in the STRUCTURE software using 220 haplotypes, where data were generated by
SNP markers. As the clustering model assumes the fundamental reality of K clusters, an
Evano test was carried out and generated K = 3 as the maximum log-likelihood (Figure S2;
Figure 4).

This means that three was the optimal number of sub-populations, representing that
all populations characterize three dissimilar clusters. The analysis of structure according to
the geographical origin was performed by setting the range of a possible number of sub-
populations (K) from 2 to 10. In STRUCTURE software analysis, concurrences were further
characterized as unadulterated or admixture, where concurrences with a score > 0.80 were
measured as pure and < 0.80 as an admixture. The population I comprised 17.7% of
haplotypes (39 haplotypes), where 24 haplotypes were pure and 15 were admixed. There
was a total of 90 isolates in population I, with 20 isolates from Qujing, 10 from Zhaotong,
9 from Lincang, 9 from Kunming, 8 from Dali and 9 from Wenshan, which covered 72%
of the population I isolates. Population II comprised of a total of 93 haplotypes with
115 isolates, of which, 12 haplotypes were found admixed. Out of 113 isolates, 25 isolates
from Yuxi, 20 isolates from Kunming, 13 isolates from Chuxiong, 12 isolates from Wenshan,
15 isolates from Lincang, 10 isolates from Zhaotong and 9 isolates from Qujing covered
92% of population II isolates. In population III, there was a total of 88 haplotypes with
149 isolates, where 19 were admixed. Out of 149 isolates, 5 locations, Dehong (25), Dali
(25), Lijiang (19), Baoshan (19) and Kunming (19), covered 71.8% of the population III
isolates (Figure 4). The incidental descent particulars with SNP markers for the strength of
character of population structure of the 220 haplotypes are specified in Table S2.
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Figure 3. (A). Principal component analysis of 220 haplotypes based on SNP markers’ data; (B) Partial least squares-
discriminant analysis of 220 haplotypes based on SNP markers’ data.
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Figure 4. Model-based population structure plot for each isolate with K = 3, using structure with SNP markers’ data. Note:
Color codes are as follows: Population I: red, Population II: green, Population III: blue. (A) The color code of each haplotype
corresponds to the description in (B).

4. Discussion
4.1. Genetic Diversity and Population Structure

The results from our study demonstrated that the genetic diversity, as well as the
mutation rate of the Pst population, is very high in different locations of Yunnan. The
strong ultraviolet rays due to the high altitude may be the drivers of mutation. Mutation
is the important process for virulence variation [5]. The climate and the agricultural prac-
tices provide the year-round growth of wheat or volunteer wheat plants to ensure the
emergence of new mutants in Yunnan. Previously, several population structure studies
of Pst were conducted in China. Zeng and Luo [7] classified 15 stripe rust epidemiolog-
ical regions in China. Wan et al. [3] and Chen et al. [35] recognized that the southern
part of Gansu Province was the main source of Pst in China. Hu et al. [36] revealed
13 natural populations in Gansu, Shaanxi, Sichuan and Tibet, and the genetic diversity
was highest in Gansu and Sichuan populations. Recently, Ali et al. [37] mentioned that
the Himalayas region, such as China, seems more likely the center of origin for stripe
rust pathogens worldwide, recognized based on the presence of the maximum levels of
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multiplicity, secluded alleles, the structure of the recombinant population, the capability to
produce sex-related structures and the self-governing preservation of Pst pathogens’ center.
Li et al. [5] conducted a study in Yunnan, Guizhou, Sichuan and Shaanxi, analyzing their
data combined with the trajectory analysis of upper airflow, and presented to the overall
story of the pathogen migration and revised that Yunnan is the main source of Pst in China.
Wang et al. [38] documented that the genetic diversity was reliably high in Gansu and
Shaanxi, but low in Sichuan, and there was a closer relationship between Gansu and
Sichuan. A total of 1454 multi-locus genotypes (MLGs) were detected in the USA from
2010 to 2017 and observed that populations in the western part were more MLGs and
higher divergence than in the eastern part of country [39].

Recombination of Pst was first reported in Yunnan by Li et al. [5]. Our study has inten-
sively investigated different counties of Yunnan province. To explore the molecular genetic
variation of the wheat stripe rust population, we adopted SNP neutral markers to carry out
multi-locus sequence typing analysis on the Pst population. The phylogenetic investigation
of Pst exhibited a structure in which long-distance dispersion and self-regulating progres-
sion harmonize. The haplotype diversity of the pathogen population was high (Hd = 0.992),
and the pathogen diversity was rich in different counties in Yunnan. This is probably due
to the diverse geographic environment and complex climate, and the natural conditions
differ extremely between regions. It is, therefore, likely that the gene-flow is close to an
island model between Yuxi and Lincang, and it is also more like a neighborhood model
between Yuxi and Lincang (Table 5 and Figure 1).

Of these 220 detected haplotypes, H18 and H86 had a high frequency, occurred in
the 6 areas and represented a stable genotype that was the best adapted to the current
environment in the history of pathogen evolution. Other haplotypes that had lower
frequencies probably occurred more recently in history or had lower adaptation. The high
gene-flow of the pathogen population (Nm = 18.45) suggested a frequent exchange between
the sub-populations. Considering all locations, the gene-flow was positive and significant,
suggesting a higher exchange of Pst isolates within locations. The evolution analysis
(D = 0.8238, p = 0.77364 and Fs = −369.901, p = 0.0000) of population structures suggested
that there was a leftover digit of alleles, as would be anticipated from a current population
extension or from genomic hitching in the Yunnan population. This is in accordance with
the relatively low divergence among populations (9.09% variation). This provides the DNA
proof for the long-distance dispersal of stripe rust pathogens [5,32,34] and the possible
explanation as to why wheat stripe rust affects Yunnan Province year-round. The high
level of genetic diversity also indicated a rapid population growth after a bottleneck [38,40].
This agrees with the results of surveys carried out in the past years [5]. In previous studies,
the ancestral haplotype was detected in Yunnan, indicating that the pathogen of Pst in
Yunnan was older [5]. It was also suggested that Yunnan is the center of origin of Pst in
China. Using AFLP, the population of P. striiformis in Yunnan Province has been detected
as a clonal population [41].

There was no significant difference in the diversity of haplotypes and nucleotides
within all populations of Yunnan (Table 4). All regions likely play a significant role in sup-
plying new emergences. The mutation rate of the pathogen was the highest (θ = 4.46 × 10−3)
considering all tested populations (locations) in Yunnan. In accordance with the mutation
rate, the recombination events were high (Rm = 18), suggesting that the new pathotype
emerged in Yunnan due to mutation. The virulence metamorphosis is a significant process
of virulence variation [38]. Li et al. [5] also observed the high mutation rate (θ = 3.81 × 10−3)
and recombination event (Rm = 5) in Yunnan in 2008 and 2011, indicating that the new
pathotype emerged earlier in Yunnan. As mentioned above, the strong ultraviolet rays due
to the high altitude may be the drivers of mutation. The topography, the elevation between
77 and 6749 m, the climate and the farming practices provide the year-round growth of
wheat or volunteer wheat plants and ensure the emergence of new mutations and varia-
tions in Yunnan [5]. The element factors related to the formation of such dynamic genetic
structure may include mutation, recombination, host selection, the size and composition
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of an incurred population, the distance the wind can reach, the hitch-hiking, if there are
alternate hosts or not, etc.

The expansion of the Pst population was measured by Tajima’s D tests in different
locations in Yunnan, suggesting that the Pst population acts as a source of dispersal. Among
all populations in Yunnan, the gene-flow strength, Nm, was 18.45, indicating a recurrent
pathogen interchange among the provinces (Table 5). Li et al. [5] documented that the
Nm was extensively higher in different locations of Yunnan: 142.60 and 9.47 for the two
years studied (2008 and 2011). Chen [40] studied 20 natural populations of Pst in the main
epidemiological region and found that the Nm values of Shaanxi and Gansu ranged from
1.1 to 9.0, and the highest Nm values between Gansu and Sichuan varied from 1.1 to 2.5.
Hu et al. [36] stated that the populations of Gansu, Shaanxi and Sichuan of China had
extensive gene exchange (Nm > 4) compared to Tibet. Gst was the lowest, 0.00307, and
Nm the highest, 81.17, between Yuxi and Lincang. These results indicated that Pst was
extremely consistent in Yuxi and Lincang as compared to other provinces and there was a
huge scale of pathogen substitution between the two provinces.

The UPGMA-trees formed by SNP markers were similar to the outcomes of structure.
Most of the isolates from groups 2 and 5 were allocated to population I of the structure.
Groups 1, 3 and 7 were allocated to population II, and most of the isolates from group 4
were allocated to population III. The isolates from group 6 were distributed among three
population groups. Population structure analysis showed that 8% of haplotypes were
highly admixed. Using the SNP dataset, most of the genomic diversity has been clarified
by the first axis of the PCA investigation. Nevertheless, SNP indicators were established as
insignificant for the group of the existing set of segregates to some magnitude, rendering to
their topographical positions. All four methods (UPGMA-tree, PCA, PLS-DA and STRUC-
TURE) were applied in the present study to categorize the Pst populations conferring to
their races and physical sites, which were recognized as significant, and the furthermost of
clutches were co-linear in all methods [6].

The present study also aimed to estimate the genetic relationship among populations
of stripe rust pathogens in different locations of Yunnan province. AMOVA based on multi-
locus sequences revealed a lower genetic differentiation among populations (9.09%), and
most of the diversity was due to individuals within the populations (86.20%), indicating
that the genetic divergence of the pathogen mainly came from inside the population. All
these results indicate that the Pst population changes quickly. A lower level of genomic
assortment between populations and a higher level within the population in Yunnan
Province [5,38]. It is reported that there was geographic divergence for both wheat and
stripe rust [5]. Bai et al. [39] also stated that the genetic variation was higher among years
in the USA using AMOVA.

4.2. Route of Pst Dispersal in Yunnan

China is constantly under the westerly winds, the Himalayas are located at the border
between China and countries west of China, and the wind that may carry urediniospores
blows, along the south face of the Himalayas, into southwestern China, e.g., Yunnan, from
the countries such as Pakistan, Nepal, etc. [37]. Then, Pst evolves locally and independently
and disperses further to the northeast and the northern part of China. Yunnan, having all
the characteristics of being a center of origin, provides new incursions and new emergences
to the northern regions of Yunnan, including Gansu. Li et al. [5] suggested that Yunnan
is the primary source of Pst in china. Our results also suggested that the high genetic
diversity of Pst isolates is present in different counties of Yunnan. The exchange rate
was also high within the populations. The trajectory of upper airflow is the main indica-
tor for the detection of Pst urediniospores’ dispersal. The earlier studies performed by
Li et al. [5], looking at the trajectories of upper airflow between Yunnan and Gansu during
wheat growing seasons from 2005 to 2012, showed that the direction of airflow was from
southwest Yunnan to north and northeast Yunnan. In our study, we intensively analyzed
the population structure in different locations of Yunnan. Based on the trajectories of
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upper airflow and genetic diversity (Figure 1) of Pst populations in different locations,
we suggested that Dehong, Dali, Lincang and Baoshan are probably the sources of Pst in
Yunnan (Figure S3; Figure 5).

Figure 5. Route of stripe rust pathogen dispersal in Yunnan.

5. Conclusions

In this study, results from SNPs of 352 segregates showed that 6 housekeeping genes
were established to comprise a total of 42 SNP positions. From the concatenated sequences,
220 haplotypes were found, with 5 haplotypes (viz., ‘H86′, ‘H18′, ‘H8′, ‘H15′ and ‘H23′)
comprising over 24.5% of the population. The haplotype diversity, nucleotide diversity,
mutation rate and recombination events were 0.992, 6.04 × 10−3, 4.46 × 10−3 and 18.0
respectively, which revealed the genetic diversity of Pst populations among all locations.
Four grouping methods, UPGMA-tree, PCA, PLS-DA and STRUCTURE, were applied in
the present study to categorize the Pst populations, conferring to their races and physical
localities, and the majority of the groups were co-linked in all methods for grouping. By
using AMOVA, the study recognized about 9.09% of total dissimilarity, and 86.20% within
populations. The findings of the study also showed that comparatively, the maximum
hereditary assortment resulted from inside the population, but lower genetic discrepancy
was found among populations. Furthermore, the genomic data on gene-flow (Nm = 18.45)
established that the movement of pathogens occurred among all locations in Yunnan
Province. Based on the trajectories of upper airflow and genetic diversity of Pst populations
in different locations, it is suggested that Dehong, Dali, Lincang and Baoshan are probably
the sources of Pst in Yunnan.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10081735/s1, Figure S1: The best number of groups among locations estimated by Evano
test methods; Figure S2: The determination of the best number of clusters among 220 haplotypes by
Evano test methods, Figure S3: Distinct groups among 11 locations; Table S1: Isolates collected from
different counties of Yunnan and Sichuan Provinces; Table S2: Haplotypes and their SNP loci of Pst
population; Table S3: Number of haplotypes and their distribution among the different locations.
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Abbreviations

AFLP Amplified fragment length polymorphism
AMOVA Analysis of molecular variance
CDC2 Cyclin-dependent kinase 2
CTAB cetyltrimethylammonium bromide
EDTA Ethylenediamine tetra-acetic acid
EF-1 Elongation factor
HSP heat shock protein 90 kDa
MAPK Map kinase 1

MCMC
Markov chain Monte Carlo (MCMC) methods comprise a class of algorithms for
sampling from a probability distribution

MEGA Molecular Evolutionary Genetics Analysis
PCA Principal component analysis
PLS-DA Partial Least-Squares Discriminant Analysis
Pst Puccinia striiformis f. sp. tritici
RAPD Random Amplification of Polymorphic DNA
SNPs Single nucleotide polymorphisms
SSR Simple Sequence Repeats
UBA ubiquitin-activating enzyme E1
UBC ubiquitin-conjugating enzyme E2
UPGMA Unweighted Pair Group Method with Arithmetic Mean
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