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ABSTRACT

Chemokines are key factors that influence the migration and maintenance of relevant 
immune cells into an infected tissue or a tumor microenvironment. Therefore, it is believed 
that the controlled administration of chemokines in the tumor microenvironment may be 
an effective immunotherapy against cancer. Previous studies have shown that CCL3, also 
known as macrophage inflammatory protein 1-alpha, facilitates the recruitment of dendritic 
cells (DCs) for the presentation of tumor Ags and promotes T cell activation. Here, we 
investigated the role of CCL3 in regulating the tumor microenvironment using a syngeneic 
mouse tumor model. We observed that MC38 tumors overexpressing CCL3 (CCL3-OE) 
showed rapid regression compared with the wild type MC38 tumors. Additionally, these 
CCL3-OE tumors showed an increase in the proliferative and functional tumor-infiltrating 
T cells. Furthermore, PD-1 immune checkpoint blockade accelerated tumor regression in 
the CCL3-OE tumor microenvironment. Next, we generated a modified CCL3 protein for 
pre-clinical use by fusing recombinant CCL3 (rCCL3) with a non-cytolytic hybrid Fc (HyFc). 
Administering a controlled dose of rCCL3-HyFc via subcutaneous injections near tumors 
was effective in tumor regression and improved survival along with activated myeloid cells 
and augmented T cell responses. Furthermore, combination therapy of rCCL3-HyFc with 
PD-1 blockade exhibited prominent effect to tumor regression. Collectively, our findings 
demonstrate that appropriate concentrations of CCL3 in the tumor microenvironment 
would be an effective adjuvant to promote anti-tumor immune responses, and suggest that 
administering a long-lasting form of CCL3 in combination with PD-1 blockers can have 
clinical applications in cancer immunotherapy.
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INTRODUCTION

Development of immune checkpoint blockades (ICBs) has revolutionized the field of cancer 
immunotherapy. Tumor cells escape immunosurveillance and evade the host immune 
system by employing diverse mechanisms, such as up-regulating inhibitory molecules that 
suppress anti-tumor immune responses (1). ICBs have exhibited significant clinical potential 
in the treatment of solid tumors, and have extend patient life-span (2). Although these 
immunotherapies induce anti-tumor immunity in some patients, most cancer patients do not 
respond to the ICB immunotherapy (3).

A number of studies investigated the factors responsible for the ineffectiveness of ICB 
immunotherapy, and suggested that the magnitude and composition of the immune cells 
that infiltrate into the tumor microenvironment is an important factor influencing the 
efficacy of the ICB immunotherapy (4). Consequently, this has led to the categorization of 
tumors into hot (inflamed) or cold (non-inflamed) tumors (5). Hot tumors have abundant 
numbers of CD8+ T cells and Ag-presenting cells (APCs), such as DCs that infiltrate the tumor 
microenvironment. These tumors display significantly increased responsiveness to ICBs 
due to the enrichment of immune cells (6). In contrast, cold tumors harbor high numbers of 
immunologically suppressive cells, such as regulatory T cells and myeloid-derived suppressor 
cells (MDSCs), instead of CD8+ T cells and APCs, and exhibit poor responsiveness to ICB 
therapy (7). Therefore, enrichment of tumor-infiltrating CD8+ T cells or DCs could be a 
promising strategy to elevate responsiveness to immunotherapy.

Chemokines, defined as chemotactic cytokines are small secretory proteins that bind 7 G 
protein-coupled receptors, which induce intracellular signaling pathways (8,9). Chemokines 
are required when immune cells migrate for homeostasis, development, and protecting 
the host from infections or tumors (10,11). A diverse set of chemokines are expressed 
by tumor cells as well as immune cells, endothelial cells, and stromal cells in the tumor 
microenvironment. Depending on the level of chemokine expression, the composition of 
tumor-infiltrating immune cells may change and eventually affect the immune response 
to tumor regression (12,13). There have been multiple pre-clinical attempts to modulate 
chemokines and the corresponding receptors to increase responsiveness of anti-tumor 
effector immune cells to ICB therapy, such as CD8+ T cells. For instance, the CXCL9 and 
CXCL10 expression in the tumor microenvironment, chemokines that are well known 
for their ability to recruit T cells and NK cells to target sites via the CXCR3 chemokine 
receptor, was reported to correlate negatively with cancer metastasis (14-16). Additionally, 
epigenetic silencing of the CXCL9 and CXCL10 genes has been associated with reduced T cell 
infiltration. Treating mice with 3-deazaneplanocin A (DZNep), an epigenetic reprogramming 
drug and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitor, led 
to a CXCL9 and CXCL10 dependent increase in tumor infiltration of T cells and a subsequent 
increase in the efficacy of PD-L1 blockade (17). Another study showed that decitabine (DAC), 
which is a DNA methyltransferase inhibitor, enhanced CXCL10 expression, and subsequently 
recruited NK cells and CD8+ T cells into the tumor microenvironment of a murine ovarian 
cancer model. Furthermore, CTLA-4 blockade therapy was potentiated in combination with 
DAC (18). In contrast, CXCL12 that binds CXCR4 and is expressed by tumor cells as well 
as the stromal cells in the tumor microenvironment has been reported to promote tumor 
angiogenesis together with VEGF (19) and sustain cancer cell proliferation and survival 
(20). These studies indicated that blockade of CXCR4 using neutralizing Abs repressed 
tumor growth and metastasis in lymphoma and brain tumor models (21,22). Furthermore, 
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combination therapy with LY2510924, a CXCR4 peptide antagonist, and durvalumab, a PD-L1 
blocking Ab, has been clinically tested for solid tumors (23).

CCL3, also known as macrophage inflammatory protein 1-alpha, is a cytokine belonging to 
the CC chemokine family. CCL3 is released when CD4+ T cells interact with DCs and recruit 
CCR5-expressing CD8+ T cells into specific sites for in vivo activation and proliferation 
(24,25). Moreover, CCL3 was demonstrated to play a dominant role in the activation, 
maturation, and migration of CD11c+CD11b+ cells to cervical draining lymph nodes in a 
murine hepatitis virus infected mice, an infection model of the central nervous system. 
The migration of DCs into the LN was inhibited in the absence of CCL3, and resulted in 
diminished IFN-γ expression by Ag-specific T cells and increased the levels of in vivo IL-
10 (26). Additionally, CCL3 has been shown to be a potential adjuvant for DNA vaccines. 
Transfecting the HIV Gag DNA vaccine with CCL3 led to markedly enhanced infiltration of 
CD11c+ DCs, and injecting a CCL3-encoding plasmid protected against viral infection with a 
nearly 200-fold reduction in virus titers (27). The production of CCL3 by B cells in the tumor 
microenvironments of patients with human melanoma promoted immune responses, while 
depletion of CCL3-secreting B cells by anti-CD20 decreased tumor-associated inflammation 
and CD8+ T cell numbers. This indicated that the CCL3 secreted by B cells was important 
for augmenting immune responses in patients with melanoma (28). Additionally, in the 
HCmel12 murine tumor model, basophils expressed large amounts of CCL3 and CCL4, and 
depletion of basophils or blockade of these chemokines inhibited CD8+ T cell infiltration in 
the tumor microenvironment (29).

Taking into account the protective function of CCL3, we investigated the consequences of 
administering CCL3 in the tumor microenvironment in combination with PD-1 immune 
checkpoint blockers. We engineered MC38, a murine colon adenocarcinoma cell line, to 
overexpress CCL3, and then analyzed tumor growth and changes in the characteristics of 
immune cells. The CCL3-overexpressed MC38 exhibited delayed tumor growth. Additionally, 
CD8+ T cells proliferated vigorously in the CCL3-enriched tumor microenvironment, tumor-
specific CD8+ T cells displayed the ability to produce IFN-γ, and there was an increase in the 
DC population. Furthermore, CCL3-mediated tumor regression was accelerated when mice 
were treated with Abs that block PD-1. For pre-clinical use, we generated a long-lasting form 
of CCL3, composed of recombinant CCL3 (rCCL3) and a non-cytolytic hybrid Fc (HyFc). Mice 
who were subcutaneously administered an appropriate dose of rCCL3-HyFc near tumors 
exhibited delayed tumor growth and enhanced survival compared to those that had been 
administered the control HyFc. Also, mice treated with appropriated dose of rCCL3-HyFc had 
more mature myeloid cells and functionally enhanced T cells than other groups. Surprisingly, 
mice were combined treated with rCCL3-HyFc and αPD-1 significantly delayed tumor 
growth compared to each agent alone treatment. Therefore, our results indicate that CCL3 
enrichment augments tumor regression and positively reshapes immune cell populations 
in the tumor microenvironment, suggesting that rCCL3-HyFc might have potential as an 
adjuvant for enhancing the effect of presently used αPD-1 immunotherapeutic agents.

MATERIALS AND METHODS

Mice
A 6–8 wk old specific-pathogen-free female C57BL/6 (B6) mice were purchased from Orient 
Bio. Animals. Experiments were performed with the approval of the International Animal 
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Care and Use Committee at Yonsei University, and in accordance with the Laboratory Animal 
Act of the Korean Ministry of Food and Drug Safety that improves the ethics and reliability of 
animal testing through appropriate administration of laboratory animals and animal testing 
(permit No. IACUC-A-201907-921-03 and IACUC-A-202007-1097-01).

Tumor cell transfection
The MC38 cells were a gift from Seung-woo Lee's laboratory (POSTECH, Pohang, Korea). 
They were cultured in DMEM (Corning, New York, NY, USA) supplemented with 10% FBS 
(Thermo Fisher Scientific, Waltham, MA, USA) and 1% penicillin/streptomycin (Thermo 
Fisher Scientific). To overexpress CCL3, MC38 cells were transfected with the pCDNA3.1 
vector (Addgene, Watertown, MA, USA) that encodes the mouse CCL3 gene under the 
cytomegalovirus promoter and were selected with hygromycin (200 μg/ml). Selected MC38 
clones that overexpressed CCL3 were seeded into 6 well plates at a concentration of 106 cells/4 
ml media, and the culture supernatants were collected after 48 h. CCL3 expression in the 
supernatants was analyzed using ELISA (Thermo Fisher Scientific).

Mouse tumor model
Wild type (WT), CCL3 overexpressing (CCL3-OE), and control MC38 cells (5×105 cells) in 
PBS were injected subcutaneously into age-matched (6–8 wk) B6 mice. Tumor sizes were 
measured at the indicated time points with a caliper and the following formula was used for all 
calculations: 1/2×(length×width2). Tumors larger than 2,000 mm3 in size were considered dead.

Tumor harvest and flow cytometry
Tumors were harvested at the indicated time points and homogenized into small pieces before 
digestion with 1 mg/ml collagenase type VI (Worthington Biochemical Corporation, Lakewood, 
NJ, USA) for 20 min at 37°C to obtain single-cell suspensions. For flow cytometric analysis of 
immune cells, single-cell suspensions were stained with the following Abs that were purchased 
from BD Biosciences (San Jose, CA, USA): PerCP-Cy5.5-CD4 (clone RM4-5), APC-NK1.1 (clone 
PK136), PE-cy7-CD11b (clone M1/70), PerCP-Cy5.5-Ly6G (clone 1A8), BV605-Ly6C (clone AL-
21), and APC-IFN-γ (clone XMG1.2). Alexa Fluor700-CD8 (clone 53-6.7), BV421-PD-1 (clone 
29F.1A12), BV501-CD44 (clone IM7), Alexa Fluor700-CD45.2 (clone 104), BV510-CD11c (clone 
N418), and BV605-TNF-α (clone MP6-XT22) Abs were purchased from BioLegend. APC-
Foxp3 (clone FJK-16s) and PE-TR-F4/80 (clone BM8) Abs were purchased from Thermo Fisher 
Scientific. The dead cell populations were removed using a Live/Dead fixable Stain Kit (Thermo 
Fisher Scientific). The intracellular cytokines in the tumor derived T cells were detected by 
incubating the cells ex vivo, with or without the MC38 epitope peptide (p15E, KSPWFTTL, 5 μg/
ml) for 6 h in the presence of Golgi plug/Golgi stop (BD Biosciences). Intracellular staining was 
performed after the surface staining using the BD Cytofix/Cytoperm fixation/permeabilization 
kit (BD Biosciences) according to the manufacturer’s instructions. For Foxp3 staining, the cells 
were stained with Foxp3/transcription factor staining buffer set (Thermo Fisher Scientific) 
according to the manufacturer's instructions. Flow cytometric data were collected using 
CytoFLEX (Beckman Coulter, Brea, CA, USA) and analyzed using FlowJo software (Tree Star 
Inc., Ashland, OR, USA).

In vivo treatments
Mice were randomly divided into different treatment groups before the tumor size reached 
30–50 mm3. To ensure that the tumor sizes between the different groups were approximately 
equivalent before the therapy, mice were stratified based on the size of the implanted tumor. 
Each mouse was treated intraperitoneally with 200 μg of isotype control or anti-PD-1 (RMP1-
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14, Bio X cell) Abs, every 3 days. For rCCL3-HyFc treatment, recombinant mouse CCL3-HyFc 
and its control HyFc was supplied by Genexine, Inc. (Seongnam, Korea). Each mouse was 
injected subcutaneously with 350 ng HyFc or rCCL3-HyFc at the indicated dose.

Statistical analysis
Statistical analysis was performed using Prism software version 7.0 (GraphPad, San Diego, 
CA, USA). A 2-tailed unpaired Student's t-test was performed to determine differences 
between 2 groups. Comparisons between multiple groups were performed using 1-way 
ANOVA with post hoc Tukey's test or 2-way ANOVA with post hoc Tukey's test. Kaplan-Meier 
survival curves were analyzed using the Mantel-Cox log-rank test with a 95% confidence 
interval. Details about the statistical test, exact value of number, precision measure, and 
statistical significance for each experiment have been reported in the figure legends.

RESULTS

Expression of CCL3 in the tumors delays tumor growth and improves survival
Since we aimed to investigate the effect of CCL3 on immune cells and not tumor cells, we first 
determined the in vitro expression of CCL3 receptors CCR1 and CCR5 in 6 murine tumor cell 
lines. To elaborate, the expression of CCR1 and CCR5 was measured in the C57BL6 derived 
MC38, LLC1, TC1, B16F10, and EG7 cell lines, and in the CT26 cell line from the BALB/c strain. 
We confirmed that MC38, TC1, and B16F10 rarely expressed CCR1 and CCR5 via flow cytometric 
analysis (Fig. 1A). In contrast, the LLC1 and CT26 cells did not express CCR5 but showed low 
levels of CCR1 surface expression. Interestingly, EG7 expressed high levels of CCR1 and low 
levels of CCR5. Additionally, we concluded that none of the tested tumor cells produced CCL3 
because no CCL3 was detected (ELISA analysis) in the culture supernatants (Fig. 1B).

Among the 3 tumor cell lines that did not express CCR1 and CCR5, the MC38 tumor cell line 
was selected and engineered for CCL3 overexpression because MC38 tumors have often been 
used to determine the efficacy of PD-1 blockers because of abundant expression of PD-L1 in 
MC38 (30). We transfected MC38 cells with either the plasmid designed to overexpress CCL3 
or an empty plasmid, and selected MC38 clones expressing high levels of CCL3 (CCL3-OE) 
or a mock plasmid (mock) in vitro (Fig. 1C). The tumor size and survival time of C57BL/6 mice 
were measured after inoculation with CCL3-OE, mock, or WT MC38 cells (Fig. 1D). Mice 
injected with CCL3-OE MC38 cells exhibited significantly delayed tumor growth compared to 
mice that had been inoculated with WT- or mock-MC38 cells (Fig. 1E and F). Consistent with 
the reduction in tumor volume, mice inoculated with CCL3-OE displayed enhanced survival 
rates (Fig. 1G). We analyzed the CCL3 levels in blood from CCL3-OE MC38 bearing mice. 
Although serum CCL3 level seemed to be higher in CCL3-OE MC38-inoculated mice than in 
WT or Mock MC38-inoculated mice at 8 and 16 days post tumor inoculation, the CCL3 level 
was below the detectable level in the blood (Supplementary Fig. 1). Since CCL3 was produced 
locally from the tumors, it appears to be difficult to detect enough CCL3 in the blood of 
CCL3-OE MC38-inoculated mice. Together, these data suggest that CCL3 up-regulation may 
reshape the tumor microenvironment and enhance anti-tumor immune responses, leading to 
the efficient control of the in vivo tumor growth.
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Increasing CCL3 expression reshapes the T cell and DC populations in the 
tumor microenvironment
To investigate the influence of CCL3 on immune cell populations, we sacrificed tumor-bearing 
mice 20 days after inoculation with MC38 cells. We defined CD11b+ cells, T cells, and NK cells 
after serial sub-gating different immune cell populations (Supplementary Fig. 2). While there 
was no difference in the frequency of CD11b+Ly6C+, CD11b+Ly6G+, and CD11b+F4/80+ cells 
between mock and CCL3-OE groups, the frequency of CD4+ and CD8+ T cells had decreased 
in CCL3-OE mice (Fig. 2A). The regulatory T cells and NK cells displayed similar frequencies 
between mock and CCL3-OE groups (Fig. 2A). Interestingly, there was tendency to up-
regulation of frequency of Ki67+ cells among tumor-infiltrating T cells in the CCL3-OE group 
compared to the mock group. (Fig. 2B). Additionally, when the tumor-infiltrating CD8+ T cells 
were re-stimulated ex vivo with the P15E peptide, an H-2Kb-restricted CD8+ T cell Ag epitope 
expressed in H-2b haplotype tumors, we observed that the MC38 and CD8+ T cells from the 
CCL3-OE group exhibited a significantly enhanced capacity to produce IFN-γ compared to 
those from the mock group (Fig. 2C). Furthermore, the frequency of DCs co-expressing CD11c 
and MHC class II was also significantly elevated in the CCL3-OE group (Fig. 2D). Given the 
previous report showing the role of CCL3 in activating CD8+ T cells, our data suggest that CCL3 
enrichment facilitates DC recruitment to the tumor microenvironment, and enables tumor-
specific CD8+ T cells to proliferate and function. Collectively, we hypothesized that CCL3-
mediated rewiring of immune cells, such as T cells and DCs in the tumor microenvironment, 
might contribute to delayed tumor growth and enhanced survival in vivo.
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Figure 1. Regression of MC38 tumor growth with high expression of autologous CCL3. (A) The expression levels of CCR1 and CCR5 on indicated murine tumor 
cell lines were analyzed by flow cytometry. (B) Supernatants of tumor cells were collected and the CCL3 protein content was quantified by ELISA. (C) CCL3-OE 
MC38 tumor cells were engineered from WT MC38 and expression of CCL3 in supernatants of culture media was analyzed by ELISA. (D) C57BL/6 mice were s.c. 
inoculated with 5×105 WT MC38 or CCL3-OE MC38 cells. (E) The overall tumor growth and (F) individual tumor growth of mouse were represented. (G) Survival 
of tumor-bearing mice have been represented. Graph shows mean±SEM. Data were analyzed by (E) 2-way ANOVA with Tukey's multiple comparisons test or (G) 
Mantel-Cox log-rank test. Data are representative of at least 2 experiments (n=6–8 mice/group in each experiment). 
ND, not detected; s.c., subcutaneously. 
**p<0.01; ***p<0.001; ****p<0.0001.



PD-1 blockade immunotherapy enhanced the effect of CCL3-induced tumor 
regression
Since CCL3 rewired the immune cells in the tumor microenvironment, we expected that PD-1 
blockade in CCL3-enriched microenvironments would further accelerate anti-tumor T cell 
responses and tumor regression. To test this hypothesis, mice were intraperitoneally treated 
with monoclonal PD-1 blocking (αPD-1) or isotype control Abs, starting 5 days post tumor 
inoculation, and after every 3 days (Fig. 3A). In the CCL3-enriched tumor microenvironment, 
tumor growth was significantly delayed by PD-1 blockade compared to the isotype Ab 
treatment (Fig. 3B and C). Similarly, mice injected with PD-1 blockade Ab lived longer than 
the mice that belonged to the isotype-injected control group (Fig. 3D). Therefore, our data 
demonstrate that a tumor microenvironment where CCL3 is stably maintained can support 
the PD-1 blockade mediated control of the tumor growth. This suggests that CCL3 could be 
used clinically in combination with PD-1 blockers.

Subcutaneous administration of long-lasting CCL3 near the tumors was 
therapeutically beneficial at a specific dose
Since our previous data demonstrate that continuous expression and enrichment of CCL3 
in the tumor microenvironment supported the inhibition of tumor growth, we attempted 
to generate an in vivo long-lasting form of rCCL3 and investigated the in vivo efficacy of the 
protein when administered exogenously near tumors. We first designed a plasmid to express 
mouse rCCL3 linked to HyFc (rCCL3-HyFc) and purified the recombinant fusion protein from 
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cell supernatants after the transient transfection of MC38 cells with the plasmid. Purified 
rCCL3-HyFc was injected subcutaneously near the tumors every 3 days to maintain CCL3 
concentration in the tumor microenvironment. Additionally, to test the dose-dependency of 
rCCL3-HyFc, tumor-bearing mice were injected with 2 different doses of rCCL3-HyFc or HyFc 
as a control (Fig. 4A). In previous reports, mice were subcutaneously injected with rCCL3 
with 100 ng dose and they exhibited the slowed tumor growth in established tumors (31). 
So, we injected higher doses of rCCL3-HyFc in order to better effect than previous reports. 
Interestingly, treatment with 500 ng of rCCL3-HyFc led to a significant decrease in tumor 
growth, whereas treatment with 5,000 ng of rCCL3-HyFc did not have any beneficial effect 
on tumor growth inhibition compared to HyFc control treatment (Fig. 4B and C). In addition 
to tumor growth, mice treated with 500 ng of rCCL3-HyFc also showed improved survival 
compared to those treated with HyFc or 5,000 ng of rCCL3-HyFc (Fig. 4D). Furthermore, to 
optimize the appropriate concentration of rCCL3-HyFc, we injected 150 ng and 1,500 ng of 
rCCL3-HyFc to mice with the same experimental scheme and conditions. When mice were 
injected with 150 ng and 1,500 ng of rCCL3-HyFc, they exhibited similar tumor growth and 
survival rated with control HyFc injected group. But, in this repeated experiment, mice treated 
with 500 ng of rCCL3-HyFc displayed delayed tumor growth in vivo (Supplementary Fig. 3). In 
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summary, these data demonstrate that a continuous exogenous supply of CCL3 near tumors 
may have therapeutically beneficial anti-tumor response at a controlled and appropriate 
dosage, suggesting that rCCL3-HyFc may be used clinically as a therapeutic agent.

Therapeutically injection of rCCL3-HyFc augmented maturation of myeloid 
cells and function of T cells in vivo
In previous results, administration of specific dose of rCCL3-HyFc only exhibited the 
delayed tumor growth. To address the immunological differences, which triggered disparate 
tumor growth, between 500 ng and 5,000 ng of rCCL3-HyFc injected mice, we analyzed 
the tumor-infiltrating immune cell populations and their characteristics. In myeloid cell 
populations, they exhibited similar number of CD11b+Ly6C+, CD11b+Ly6G+, and CD11b+F4/80+ 
cells among 3 groups (Fig. 5A). In HyFc and 500 ng of rCCL3-HyFc injected group, myeloid 
cells dominantly consisted of CD11b+Ly6C+ and CD11b+F4/80+ cells (Fig. 5B). In addition, 
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these dominant CD11b+Ly6C+ and CD11b+F4/80+ cells in 500 ng of rCCL3-HyFc injected 
group displayed more activated and matured phenotype, such as up-regulation of MHCII 
and CD86, than these cells in other control group (Fig. 5C). Next, we further analyzed the 
tumor-infiltrating T cell responses. Although the total numbers of CD4+ and CD8+ T cells 
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were similar among 3 groups (Fig. 5D), the function of IFN-γ production in CD8+ T cells was 
elevated in 500 ng of rCCL3-HyFc injected group when they were re-stimulated with p15E 
peptide ex vivo (Fig. 5E). Also, when CD4+ and CD8+ T cells were re-stimulated with PMA/
Ionomycin ex vivo, the T cells in 500 ng of rCCL3-HyFc injected group exhibited augmented 
function and this tendency was down-regulated in 5,000 ng of rCCL3-HyFc injected group 
(Fig. 5F). In summary, when mice were administrated with specific dose of 500 ng of rCCL3-
HyFc, they had myeloid cells with increased MHCII and CD86, and functionally enhanced T 
cells. The immunological improvement might help to delay tumor progression. In contrast, 
in vivo treatment with high amount of rCCL3-HyFc did not result in the maturation of myeloid 
cells and the functional enhancement of tumor-infiltrating T cells. It would be still required 
to investigate how different doses of rCCL3-HyFc can control anti-tumor immune response 
and tumor progression differently in vivo.

Combination therapy of rCCL3-HyFc with PD-1 blockade exhibited substantial 
delayed tumor growth in vivo
In CCL3-enriched tumor microenvironment, we confirmed that tumor growth was delayed 
when mice were additionally injected with PD-1 monoclonal Ab (Fig. 3). Since rCCL3-HyFc 
also therapeutically reduced tumor growth, we expected that combination therapy of rCCL3-
HyFc with PD-1 blockade would further delayed tumor growth. To validate this hypothesis, 
mice were intraperitoneally injected with αPD-1 or subcutaneously treated with rCCL3-HyFc 
or combination of both agents in vivo (Fig. 6A). When mice were treated with rCCL3-HyFc 
or αPD-1 alone, they exhibited a delayed tumor growth to a similar extent (Fig. 6B and C). 
Interestingly, combination of rCCL3-HyFc and αPD-1 led to more dramatic control of tumor 
growth and better survival than rCCL3-HyFc or αPD-1 alone, which seemed to be synergistic 
(Fig. 6B-D). This data indicates that the anti-tumor effect caused by rCCL3-HyFc or αPD-1 is 
mechanistically distinct, suggesting the clinical use of rCCL3-HyFc combined with αPD-1 to 
improve the efficacy of current αPD-1 therapy.

DISCUSSION

Chemokines are important for the in vivo migration and homeostasis of immune cells. 
Because of their ability to alter the profile of immune cells, they are involved in the protection 
of the host from infections or tumors. Here, we focused on the role of CCL3 in reshaping 
immune cell populations and in improving the anti-tumor immune response. We observed 
that a CCL3-enriched tumor microenvironment not only reduced tumor growth but also 
improved the survival rate compared to the parental tumor microenvironment, suggesting 
CCL3-mediated modulation of immune cell populations. Indeed, CD8+ T cells from tumor 
microenvironments where CCL3 was overexpressed showed enhanced proliferation and 
function. Additionally, these tumor microenvironments exhibited an increase in the DC 
numbers. Furthermore, we observed that PD-1 blockade had a synergistic effect on tumor 
growth inhibition in CCL3-enriched niches. To reproduce the in vivo CCL3-enriched tumor 
microenvironment, we generated long-lasting rCCL3-HyFc proteins and injected them near 
the tumors. Therefore, an appropriate dose of rCCL3-HyFc could augment tumor regression 
and survival rate along with matured myeloid cells and functionally enhanced T cells, 
and suggests that an optimized dosage of rCCL3-HyFc may have clinical applications as a 
potential adjuvant for boosting present immunotherapies.
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In our present study, we observed that treating mice with 5,000 ng of rCCL3-HyFc did not 
attenuate tumor growth or improve survival. However, simply increasing the dosage may 
not be an effective alternative for treating patients with tumor, because these chemokines 
may exert adverse effects on immune cells during infection or tumor metastasis. The 
CCL2 and CCR2 axis promoted migration of CCR2 expressing inflammatory monocytes 
and macrophages into the tumor niche. Moreover, CCL2 expression correlated with the 
infiltration of tumor-associated macrophages (TAMs), which was associated with poor 
prognosis in breast cancer patients (32,33). Additionally, CCL2 may also activate TAMs to 
secrete CCL3, which in turn may lead to the recruitment of additional TAMs and promote 
tumor metastasis (34). During simian immunodeficiency virus and HIV infections, CCL3 
was reported to play a dominant role in the chemotactic recruitment of MDSCs (31). 
Furthermore, CCL2 and CCL3 can induce the production of matrix metalloproteinase 9 in 
monocytes. Matrix metalloproteinase 9 induces degradation of the matrix and facilitates 
tumor cell extravasation (35,36). Therefore, treating mice with a high dose of rCCL3-HyFc 
(5,000 ng) in us in vivo experiments might have induced pro-tumorigenic effects, such as 
recruitment of MDSCs to suppress immune cells involved in tumor regression and promote 
tumor extravasation. Therefore, for clinical applications of chemokine therapy, administering 
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an appropriate dose that has clear anti-tumorigenic effects on immune cells may be an 
important factor for successful therapy.

As mentioned above, the injection dosage may have important implications on treatment 
when chemokine therapy is used alone. Therefore, administering chemokines at low doses 
as adjuvants to induce immune activation, in combination with other therapeutic agents, 
might be a suitable alternative. Intravenous injection of CCL3 in mice increased the in vivo 
frequency of DCs (37). Another study revealed that among the different DC populations, 
CD103+ DCs were most effective in transporting tumor Ags to the draining lymph nodes 
and in activating tumor-specific CD8+ T cells in the murine melanoma environment. 
Furthermore, administering FLT3 ligand (FLT3L) and Poly I:C in combination with the BRAF 
and PD-L1 immunotherapy expanded CD103+ DC populations elevated the in vivo efficacy 
of BRAF and PD-L1 immunotherapy (38). Additionally, tumor cell-derived VEGF potently 
inhibits FLT3L activity and negatively affects the differentiation of conventional DCs (39). 
Therefore, blocking VEGF signaling might augment DC differentiation and FLT3L activity 
in the tumor microenvironment. The improved activity of PD-1 blockers in a CCL3-enriched 
microenvironment may be further elevated by administering FLT3L, Poly I:C, and VEGF 
blockers, which are strong activators of CD103+ DCs that are recruited into tumors by CCL3. 
However, a detailed analysis of the immunological factors that are altered would be required 
for such an investigation.

In summary, our study focused on the positive role of CCL3 in controlling tumor growth, 
and examined the possibility of using rCCL3-HyFc as a clinical therapeutic for cancer. We 
conclude that rCCL3-HyFc can be a promising therapeutic agent if the appropriate dosage 
and effectiveness of the combination therapy are verified in clinical phase. In addition to 
validating effectiveness, a detailed immunological analysis of the patient being treated with 
rCCL3-HyFc proteins would be helpful in developing a more effective immunotherapy for 
cancer patients.
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SUPPLEMENTARY MATERIALS

Supplementary Figure 1
The CCL3 levels in blood from CCL3-OE bearing mice. At indicated time points after tumor 
inoculation, the serum was collected from CCL3-OE bearing mice. Then, the protein level of 
CCL3 was analyzed by ELISA. The dashed line indicated the detectable level of CCL3 by ELISA 
(15.6 pg/ml).

Click here to view
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Supplementary Figure 2
Flow cytometry-gating strategy for elucidation of DC and myeloid cell populations in the tumor 
microenvironment. The tumor was harvested and cells were stained for expression of the 
indicated cell surface markers. To define immune cells in tumors, total immune cells were pre-
gated on a single-cell, FSC-Ahigh SSC-Ahigh (leukocytoke), a live cell, and then on Ly5.2+ cells.

Click here to view

Supplementary Figure 3
Effect of diverse doses of rCCL3-HyFc injection to tumor growth. C57BL/6 mice were 
subcutaneously inoculated with 5×105 WT MC38 cells. Five days after tumor inoculation, 
some mice were subcutaneously injected with an indicated dose of HyFc or rCCL3-HyFc. (A) 
The overall tumor growth and (B) individual tumor growth of mouse are represented. (C) 
Survival of each of the tumor-bearing mice have been represented. Graph shows mean±SEM. 
Data were analyzed by (A) 2-way ANOVA with Tukey's multiple comparison test or (C) 
Mantel-Cox log-rank test. Data are representative of single experiment (n=9–11 mice/group in 
each experiment).

Click here to view
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