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Abstract Deep learning in in vitro fertilization is currently being evaluated in the development of

assistive tools for the determination of transfer order and implantation potential using time-lapse

data collected through expensive imaging hardware. Assistive tools and algorithms that can work

with static images, however, can help in improving the access to care by enabling their use with

images acquired from traditional microscopes that are available to virtually all fertility centers.

Here, we evaluated the use of a deep convolutional neural network (CNN), trained using single

timepoint images of embryos collected at 113 hr post-insemination, in embryo selection amongst

97 clinical patient cohorts (742 embryos) and observed an accuracy of 90% in choosing the highest

quality embryo available. Furthermore, a CNN trained to assess an embryo’s implantation potential

directly using a set of 97 euploid embryos capable of implantation outperformed 15 trained

embryologists (75.26% vs. 67.35%, p<0.0001) from five different fertility centers.

Introduction
Assisted reproductive technologies (ART) such as in vitro fertilization (IVF), while a solution to many

infertile couples have been inefficient with an average success rate of approximately 30% reported

in 2015 in the US (CDC, 2015). IVF is also an expensive solution costing patients well over $10,000

out-of-pocket for each ART cycle in the US with many patients requiring multiple cycles to achieve

successful pregnancy (CDC, 2015; Birenbaum-Carmeli, 2004; Toner, 2002). Although multiple fac-

tors such as maternal age, medical diagnosis, gamete and embryo quality, and endometrium recep-

tivity determine the success of ART cycles, the challenge of non-invasive selection of the highest

available quality from a patient’s cohort of embryos (top-quality embryo) for transfer remains as one

of the most important factors in achieving successful ART outcomes (Vaegter et al., 2017;

Barash et al., 2017; Conaghan et al., 2013; Wong et al., 2013; Racowsky et al., 2015;

Filho et al., 2010; Machtinger and Racowsky, 2013; Demko et al., 2016; Einarsson et al., 2017;

Hill et al., 1989; Erenus et al., 1991; Paulson et al., 1990; Osman et al., 2015).
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Traditional methods of embryo selection rely on visual embryo morphological assessment and are

highly practice-dependent and subjective (Storr et al., 2017; Baxter Bendus et al., 2006;

Paternot et al., 2009). Fully automated assessments of embryos are challenging owing to the com-

plexity of embryo morphologies. Emulating the skill of highly trained embryologists in efficient

embryo assessment in a fully automated system is a major challenge in all of the previous work done

in computer-aided assessments of embryos due to focus on measuring specific expert-defined

parameters such as zona pellucida thickness variation, number of blastomeres, degree of cell sym-

metry and cytoplasmic fragmentation, etc. (Rocha et al., 2017a; Rocha et al., 2017b).

Machine learning is loosely defined as a computer program that learns a given task over time

through experience and improves itself to achieve the best possible task performance. In the past

decade, advances in hardware compute performance and machine learning techniques have signifi-

cantly improved their applicability in real-world medical and non-medical problems. Recently,

machine learning has been proposed as a solution for automated analysis of embryo morphologies

(Rocha et al., 2017b; Bormann et al., 2020; Dimitriadis et al., 2019; Thirumalaraju et al., 2019;

Khosravi et al., 2019; Kanakasabapathy et al., 2019a). This work makes use of a deep convolu-

tional neural network (CNN), a representation learning technique, that has been proven to be effec-

tive in image classification tasks. Unlike most prior computer-aided algorithms, including some

techniques of machine learning used for embryo assessment, the reported CNN architecture allows

automated embryo feature selection and analysis at the pixel level without any interference by an

embryologist (Rocha et al., 2017a; Rocha et al., 2017b). Such networks do not depend on human-

specified features and can develop an ability to evaluate embryos categorically through iterative

learning from thousands of examples. The use of deep-learning in IVF has also been explored; how-

ever, these recent neural network-based approaches have focused on either classifying embryos

based on morphological quality and were not evaluated for transfer outcomes, or were developed

with the use of time-lapse series of images toward the evaluation of implantation (Khosravi et al.,

2019; Tran et al., 2019). It is important to emphasize here that most fertility centers do not possess

eLife digest Around one in seven couples have trouble conceiving, which means there is a high

demand for solutions such as in vitro fertilization, also known as IVF. This process involves fertilizing

and developing embryos in the laboratory and then selecting a few to implant into the womb of the

patient. IVF, however, only has a 30% success rate, is expensive and can be both mentally and

physically taxing for patients. Selecting the right embryos to implant is therefore extremely

important, as this increases the chance of success, minimizes complications and ensures the baby

will be healthy.

Currently the tools available for making this decision are limited, highly subjective, time-

consuming, and often extremely expensive. As a result, embryologists often rely on their experience

and observational skills when choosing which embryos to implant, which can lead to a lot of

variability. An automated system based on artificial intelligence (AI) could therefore improve IVF

success rates by assisting embryologists with this decision and ensuring more consistent results. The

AI system could learn how embryos develop over time and then uses this information to select the

best embryos to implant from just a single image. This would offer a cheaper alternative to current

analysis tools that are only available at the most expensive IVF clinics.

Now, Bormann, Kanakasabapathy, Thirumalaraj et al. have developed an AI system for IVF based

on thousands of images of embryos. Using individual images, the system selected embryos of a

comparable quality to those selected by a human specialist. It also showed a greater ability to

identify embryos that will lead to successful implantation. Indeed, the software outperformed 15

embryologists from five different centers across the United States in detecting which embryos were

most likely to implant out of a group of high-quality embryos with few visible differences.

Artificial intelligence has many potential applications to support expert clinical decision-making.

Systems like these could improve success, reduce errors and lead to faster, cheaper and more

accessible results. Beyond immediate IVF applications, this system could also be used in research

and industry to help understand differences in embryo quality.
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time-lapse imaging hardware even in the United States of America (Dolinko et al., 2017). The lack

of availability of such hardware limits an otherwise promising technology mostly to resource-rich set-

tings and fail to improve quality of and access to care in resource-constrained settings where such

advances are sorely needed (Wahl et al., 2018; Hosny and Aerts, 2019). Furthermore, in current

clinical practice, embryos with the highest morphological grades (top-quality) are the first to be

transferred, however, clinically these decisions are performed manually, even with time-lapse imag-

ing systems. The development of networks that can measure an embryo’s potential for implantation

and help in rank ordering embryos in a patient embryo cohort for transfer have utility in virtually all

fertility centers.

Conventionally, embryo transfers are performed at the cleavage or the blastocyst stage of devel-

opment. Embryos are at the cleavage stage 2–3 days after fertilization and develop further in suit-

able culture conditions to reach the blastocyst stage 5–7 days after fertilization. Blastocyst embryo

transfers, in particular, have been associated with better implantation rates and have helped lower

the number of embryos transferred at a time (De Croo et al., 2019). Therefore, in this study, we

have investigated the use of a CNN pre-trained with 1.4 million ImageNet images and transfer-

learned using 2440 static human embryo images recorded at a single time-point of 113 hr post

insemination (hpi) for the development of neural networks that can help identify embryos capable of

implantation and for identifying the top quality embryos (Figure 1). The top-quality embryos were

identified by combining a previously developed network (Xception architecture) trained to classify

embryos based on its blastocyst quality with a genetic algorithm scheme (Figure 1;

Thirumalaraju et al., 2020). The original neural network was trained on a hierarchical system of cate-

gorization, derived from a clinical Gardener-based grading system, to minimize data sparsity and

improve overall network learning (Kanakasabapathy et al., 2019a; Thirumalaraju et al., 2020;

Kanakasabapathy et al., 2019b; Esteva et al., 2017). The two major categories of non-blastocysts

and blastocysts made up the inference classes, which included the training classes 1, 2, and 3, 4, 5,

respectively (Figure 1). Pre-training with a large dataset of images from ImageNet honed the ability

of the developed CNN to identify the shape, structure, and texture variations between morphologi-

cally complex embryos with minimal data requirements while the genetic algorithm helped in rank

ordering embryos by generating unified scores (Figure 1). The developed network was evaluated

using an independent test set comprising of 97 patient-embryo cohorts. Embryos of the highest

quality that were selected from the patient cohorts were evaluated using known implantation

outcomes.

Additionally, we also investigated if the neural network can be trained to directly differentiate

between embryos based on their potential for implantation (Figure 1). Our tests with patient cohorts

using the algorithm does not account for the ploidy status of the embryos. Since pre-implantation

genetic screened (PGS) euploid embryos are associated with higher implantation chance, we also

designed a neural network to evaluate the network performance in refining the screened embryos

based on their implantation potential. The evaluations using the patient cohorts tend to yield

embryo selections with unknown outcomes or ploidy status, therefore, for this section of the study,

we utilized a test set of 97 euploid embryos with known implantation outcomes. The CNN was

trained and evaluated in identifying euploid embryos capable of implantation and the performance

was compared against those of 15 embryologists from five different fertility centers across the

United States of America.

Results

Evaluation of embryo selection based on embryo quality
In our evaluations of the CNN in categorizing embryos imaged at 113 hpi based on their morphol-

ogy, the network performed with an accuracy of 90.97% (area under the curve: 0.96) in differentiat-

ing between blastocysts and non-blastocysts (n = 742) (Kanakasabapathy et al., 2019a;

Thirumalaraju et al., 2020; Figure 2—figure supplement 1). The high accuracy indicated that the

trained network was concordant with embryologists in categorizing embryos. These categorization

scores (five values per embryo) need to be used by taking into account the scores of other embryos

in the cohort to establish a rank order. In order to use the five probability values effectively for calcu-

lating the embryo score, we utilized a genetic algorithm, which is well-suited for optimization
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problems with multiple existing solutions. Here, the genetic algorithm empowered the developed

CNN to make selections of the top-quality embryos within a patient’s embryo cohort at 113 hpi.

Therefore, once we established that the network was capable of categorizing embryos based on

their morphologies with high accuracy, we used a genetic algorithm and the network defined proba-

bility values of the embryos, belonging to each of the five training classes, to rank order the embryos

for transfer. The 5 � 1 vector weights generated by the genetic algorithm during its training phase

were used in evaluating retrospectively collected embryo cohorts from 97 patients. The final weights

utilized in this study were �10.01226347, –3.63697951, �3.32090987, 2.15367795, and 2.8715555

for classes 1 through 5, respectively. Embryos were ranked by the algorithm from highest to the

lowest.

According to the American Society for Reproductive Medicine guidelines on the limits to the

number of embryos per transfer, one embryo is transferred for high prognosis patients with <37

years of age and two or more embryos are transferred for patients with >37 years of age as well as

younger patients with low prognosis (Practice Committee of the American Society for Reproduc-

tive Medicine. Electronic address: ASRM@asrm.org and Practice Committee of the Society for

Assisted Reproductive Technology, 2017). Therefore, in this study, the selection accuracy was

Figure 1. Classification and selection of embryos at 113 hpi. The schematic shows neural networks that classify, and rank order embryos based on their

morphological quality (network A) and classify embryos based on the implantation potential (network B). The two networks share a common Xception

architecture but the classification layers are specific to each task. Network A also uses a genetic algorithm that helps in generating embryo scores by

using the softmax output of the network with weights generated by the algorithm during training. Embryo(s) with the highest scores are evaluated for

single embryo and double embryo transfer scenarios using the retrospective test set. The implantation potential is given by the softmax output of the

neural network.
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assessed for scenarios of single embryo transfers (SET) and double embryo transfers (DET). Using

embryo cohort images (n = 732) from the 97 patients, the accuracy of 5 well-trained embryologists’

selections were evaluated in comparison to selections made by the CNN + genetic algorithm

(CNNg). The rank-ordering performed by the algorithm may not utilize the same features used by

embryologists in identifying the top embryos for transfer. Therefore, we initially evaluated the ability

of both groups to effectively select (i) blastocyst(s) for transfer and (ii) the highest quality of blasto-

cyst(s) (HQB) available for transfer. High-quality blastocysts are defined as embryos that met the

freezing criteria (>3 CC blastocyst grade; see Materials and methods) of the Massachusetts General

Hospital (MGH) fertility clinic.

For blastocyst selections at 113 hpi, the CNNg algorithm performed with an accuracy of 98.96%

for SET, which was similar (p>0.05) to the average accuracy of the embryologists (96.91%, CI:

94.69% to 99.12%) (n = 5) (Figure 2A). However, when two embryo selections for DET were allowed

based on blastocyst and non-blastocyst classification, the CNNg algorithm performed with an accu-

racy of 100.00%, which was better (p<0.05) than embryologists (n = 5) who performed with an aver-

age accuracy of 98.76% (CI: 97.69% to 99.83%) (Figure 2B).

Toward the selection of HQB at 113 hpi, the accuracy of the CNNg algorithm for SET was 89.69%

similar (p>0.05) to the embryologists (n = 5) who performed with an average accuracy of 90.31% (CI:

87.50% to 93.11%) (Figure 2C). When two embryo selections for DET at 113 hpi were allowed, the

system performed with a better (p<0.05) accuracy of 97.94% in comparison to the embryologists

who performed with an average accuracy of 96.91% (CI: 96.00% to 97.81%) (Figure 2D). The evalua-

tions indicated that the two groups made selections that were of similar quality or marginally differ-

ent quality. Since the network was trained on the MGH classification criteria, the comparable

performance of the CNNg algorithm and embryologists indicated that the neural network has

trained itself sufficiently and made selections that were of clinically acceptable quality. In our evalua-

tions, the selections made by each group, while were of similar quality, were observed to not neces-

sarily be the same embryos from each cohort, and thus their transfer outcomes may be different.

Evaluation of selections using implantation outcomes
It is critical to evaluate the system performance in selecting the patient embryos based on pregnancy

(implantation) outcome. Typically, in a clinical IVF cycle, the top-quality embryo is selected from the

cohort of available embryos and is transferred to the patient. Embryos, which are similarly of a high-

quality, are often frozen based on the freezing criteria used by the fertility center, for transfers in

subsequent procedures for the same patient if needed. Frozen cycle transfers are not performed for

all patients. Hence, the CNNg algorithm was evaluated in embryo selection for SET at 113 hpi using

patient embryo cohorts based on actual implantation outcomes of the selected embryos and

Figure 2. Classification and selection of embryos at 113 hpi. (A) The performance in single embryo selections by embryologists and the algorithm in

selecting blastocysts using embryo morphologies obtained at 113 hpi from 97 patient cohorts. (B) The performance in double embryo selections by the

two groups in selecting blastocysts (n = 97 patient cohorts). (C) The performance in single embryo selections by the two groups in selecting the highest

quality blastocysts (n = 97 patient cohorts). (D) The performance of the two groups in selecting the highest quality blastocysts when two selections were

provided (n = 97 patient cohorts).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Confusion matrix of the network in classifying embryos based on their morphological quality.
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associated cycle characteristics (n = 97) are provided in Supplementary file 1-table 1. The test data-

set was retrospectively collected based on pre-defined selection criteria and evaluations of transfer

outcomes were performed using fresh embryo transfer cycles. The system selected 97 embryos in 97

patient embryo cohorts (742 embryos in total), out of which 44 embryos had known implantation

outcomes. The accuracy of the system in SET through embryo selection at 113 hpi based on its

implantation outcome was 59.1% while the implantation success rate for the 102 transferred

embryos at the MGH fertility center was 44.1% for blastocyst transfers (Supplementary file 1-table

2). Furthermore, prior reports suggest that in general practice, the average implantation rates for

manual-based embryo selection and transfers at blastocyst stages can be as low as 34%

(Martins et al., 2017).

A limitation of a retrospective study is that not all embryos are transferred. Implantation out-

comes of all embryos selected by the CNNg algorithm cannot be evaluated. Therefore, although the

dataset was prepared not taking into consideration the availability of subsequent frozen cycle trans-

fers, we investigated with the fertility center if the patients of the test set had any subsequent

embryo transfers using the frozen embryos from the test set. When we consider subsequent frozen

embryo transfers, five embryos originally selected by the CNNg algorithm at 113 hpi had known

implantation outcomes of which four led to successful implantations (Supplementary file 1-table 2).

The accuracy of the CNNg algorithm in SET, when both fresh and frozen embryo transfers were con-

sidered, was 61.2%. In such a scenario, for this specific dataset, the implantation success rate at

MGH fertility center was 48.5% for blastocyst transfers when including both frozen and fresh trans-

fers. The results suggest that the CNNg algorithm has the potential to improve clinical transfer out-

comes. It should, however, be emphasized that in this particular analysis the performance of the

system was evaluated by only using the embryos selected by the network and the embryologists.

Furthermore, to evaluate if a CNN can potentially measure implantation potential through mor-

phology alone, a pooled set of 29 embryo images with known transfer outcomes in a pilot study was

used by the network to evaluate embryos based on their potential for implantation. The network

was trained as a binary classifier and the SoftMax probability values outputted by the network was

used as the embryo’s implantation potential. The CNN was retrained using 281 embryo images with

known implantation outcomes that did not overlap with the test set and the final classification layer

was replaced with the two classes- negative implantation and positive for implantation. The ability to

differentiate embryo was measured through a receiver operating characteristic curve (ROC) analysis,

establishing area under the curve (AUC) of 0.771 (CI: 0.579 to 0.906) (p<0.05) and the CNN per-

formed with an accuracy of 82.76% (CI: 64.23% to 94.15%) (Figure 3A). Ten out of 11 embryos had

implanted with an implantation potential of over 0.47 and similarly, for embryos that scored less

than 0.47, 12 out of 18 embryos did not implant according to the patient cycle history.

Evaluation of euploid embryos based on their implantation potential
After we observed high performance in the artificial intelligence (AI)-based implantation potential

prediction when compared with historical clinical data, we further conducted a multi-center AI sys-

tem evaluation by comparing the implantation potential prediction accuracies obtained from the AI

system and the embryo selections of 15 embryologists from five different fertility clinics. Here, we

used 97 genetically screened euploid embryos transferred at 113 hpi to remove the effect of chro-

mosomal abnormalities as a confounder, which existed in the pilot study (29 patient embryo). The

IVF cycle characteristics in which these embryos were used are provided in Supplementary file 1-

table 3. The system performed with an accuracy of 75.25% while the embryologists performed with

an average accuracy of 67.35% (CI: 64.52% to 70.19%) in differentiating euploid embryos based on

their implantation outcome (Figure 3B). A one-sample t-test revealed that the CNN significantly out-

performed (p<0.05) the embryologists in predicting embryo implantation by measuring the implan-

tation potential of euploid embryos using a static image obtained at a single time-point of 113 hpi.

The average implantation score of euploid embryos misclassified based on their implantation out-

come using the CNN was 0.57. 95% of the misclassified euploid embryos possessed scores ranging

between 0.51 and 0.63. Implantation scores closer to 0.5 indicate lower confidence in system predic-

tions while implantation scores closer to 0 or 1 indicate higher confidence in system predictions (Fig-

ure 3—figure supplement 1). These results indicate that the majority of system errors in

misclassifying the euploids occur among the embryos with the lowest confidence. Approximately

91% of euploid embryos with implantation potential scores of 0.80 or higher, and nearly 81% of
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embryos with implantation potential scores above 0.66 successfully implanted when transferred (Fig-

ure 3—figure supplement 1). Similarly, around 78% of euploid embryos with an implantation poten-

tial <0.33, failed to successfully implant when transferred (Figure 3—figure supplement 1). These

results suggest that the network’s implantation scores agree well with transfer outcomes even in

high-quality euploid embryos.

Discussion
Deep neural networks hold value in aiding clinical decision making and have received significant

attention from the IVF community. The deep-neural network-based approach showcased here is an

objective approach to one of the more subjective but important parts of a clinical IVF process-

embryo selections for transfer (Bormann et al., 2020). Since over 80% of fertility clinics rely on non-

time lapse imaging systems as part of their clinical processes, such neural network-based algorithms

that rely purely on static single timepoint images can effectively assist in decision making

(Dolinko et al., 2017). In our study, we have evaluated two neural network-based approaches for

improving embryo selection.

Firstly, we have demonstrated that a deep-neural network in combination with a genetic algo-

rithm (CNNg) can yield a continuous score that represents the quality of the embryo and that objec-

tive orders of transfer can be determined for a given set of embryos using such scores. The ranking

algorithm studied here was able to consistently select embryos of the highest available morphologi-

cal quality. Although the network was trained to classify embryos based on their quality, it per-

formed well even in differentiating between embryos of the same class when combined with a

genetic algorithm. The benefit of such systems is particularly evident in cases where selections made

by the clinic/embryologist, although of similar grade, resulted in lower overall transfer success rates.

Our networks only focused on the morphological features for embryo quality assessments due to

data scarcity. The network’s learning can be compounded with data from additional timepoints,

morphokinetics, and patient and cycle-specific information for more personalized IVF predictions

and outcomes. Recently, Tran et al. studied the use of a deep-learning model (IVY) that can analyze

Figure 3. Performance in identifying embryos based on implantation outcomes. (A) The performance of the neural

network system in identifying embryos that implanted compared to the baseline historical implantation for the

image set (n = 29). The error-bar represents the Clopper-Pearson exact binomial 95% confidence interval. (B) The

performance of the neural network system in identifying euploid embryos that implanted compared to the

performance of 15 embryologists in identifying implanting embryos (n = 97). The error-bar represents the 95%

confidence interval of the embryologists’ performance in identifying implanting embryos.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Implantation potential and the relative implantation rates using the euploid embryo test

set.
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whole time-lapse videos instead of specific time points for fetal heartbeat prediction (Tran et al.,

2019). However, the study was flawed since embryos with unknown outcomes (non-transferred

embryos) were considered as negative outcome cases, which made up most of their dataset (~90%).

The heavy class bias in their dataset and improper study design severely limits any conclusions that

can be drawn from the work. A major hurdle for the development of networks capable of analyzing

multi-timepoint images and with additional patient-specific information is the limited availability of

diversified data with known clinical outcomes. During training, the lack of availability of such data

prevents the networks from effectively learning relevant outcome-associated patterns in data. The

need for data scales with the complexity of the task and the number of variables introduced. While

this work focuses primarily on the utility of deep-learning algorithm for embryo evaluations at 113

hpi, it is also possible to develop similar networks for embryo evaluations at different timepoints,

provided that sufficient data with matched outcomes/annotations are available. We have evaluated

a similar network for use with cleavage-stage embryos (70 hpi) and showed that deep-learning

approaches can outperform trained embryologists in certain tasks such as embryo selection

(Thirumalaraju et al., 2019; Kanakasabapathy et al., 2020).

A major concern in any clinical practice, however, is the loss of viable embryos due to system

errors. Therefore, the AI-based embryo selection algorithm reported here does not make any sug-

gestion on discarding embryos. All embryos assessed by the CNNg in the selection process may be

cryopreserved as per clinical practice. Thereby, our approach will not negatively affect the cumula-

tive pregnancy rate since viable embryos will not be lost. However, it may improve the pregnancy

rate as the system may be able to improve the chance of achieving a pregnancy faster with fewer

embryos transferred. Furthermore, it is important to note that in its current stage this system is

intended to act only as an assistive tool for embryologists. The embryologists can include the sys-

tem’s prediction to make better judgments during embryo selection. The scores provided by the

algorithm are continuous, but it can also be easily modified to present its scoring results in both

binary and a more categorical format.

Clinically, besides morphological features, various other important metrics and parameters are

considered by embryologists at the time of decision making such as taking into account the ploidy

status of the transferable embryos. PGS verified euploid embryos have been shown to possess a

higher probability of successful outcome but cost a hefty premium on top of the cycle costs at most

fertility centers in the United States (Drazba et al., 2014). Furthermore, for patients with two or

more euploid embryos, additional assessments of embryo morphology are required to select the

best embryo based on their morphology for transfer, since euploids do not inherently guarantee

implantation. Thus far, to the best of our knowledge, no system, deep-learning-based or otherwise,

has been shown to be capable of differentiating between euploid blastocysts based on their capacity

for implantation. Euploid embryos are usually of the highest available quality and differentiating

between them objectively and reliably through manual analysis can be extremely challenging. The

CNN-based approach, through direct estimations of implantation potential from 113 hpi embryo

morphology, outperformed trained embryologists in identifying implanting embryos from a set of

PGS euploid embryos. This accomplishment exhibits the potential of artificial intelligence-based

approaches to improve success rates in the IVF lab. Our observations indicated that the system per-

formed with a significantly better agreement with the actual implantation outcome for embryos with

implantation scores closer to 1 or 0 (Higher confidence). Furthermore, the comparison between the

decisions made by 15 embryologists from different fertility centers in the US and the deep-neural

network showcased that neural networks can outperform embryologists in identifying embryos capa-

ble of implantation. Hence, by applying the suggestions of a CNN, a trained embryologist can

improve their selection of the embryo with the highest implantation potential.

Advances in artificial intelligence have fostered numerous applications that have the potential to

improve standard-of-care in the different fields of medicine. While other groups have also evaluated

different use cases for machine learning in assisted reproductive medicine, this approach is novel in

how it used a CNN trained on a large dataset to make predictions based on static images. The

approach has shown the potential of CNNs to be used in aiding embryologists to select the embryo

with the highest implantation potential, especially amongst high-quality euploid embryos. Although

the current retrospective study shows that these systems can perform better than highly-trained

embryologists, randomized control trials are required before routine use in clinical practice is

adopted.
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Materials and methods

Data collection and preparation
Data were collected at the Massachusetts General Hospital (MGH) fertility center in Boston, Massa-

chusetts. We used 3469 recorded videos of embryos collected from 543 patients with informed con-

sent for research and publication, under an institutional review board approval for secondary

research use. Videos were collected for research after institutional review board approval by the

Massachusetts General Hospital Institutional Review Board (IRB#2017P001339 and

IRB#2019P002392). All the experiments were performed in compliance with the relevant laws and

institutional guidelines of the Massachusetts General Hospital, Brigham and Women’s Hospital, and

Partners Healthcare. The videos were collected using a commercial time-lapse imaging system (Vitro-

life Embryoscope). The imaging system used a Leica 20x objective that collected images at 10-min

intervals under illumination from a single 635 nm LED. Each patient’s set of embryos were exported

as videos (.avi) using the imaging system software. The videos of individual embryos were broken

down into their respective frames to extract images from all timepoints post insemination. The

images were identified by their timestamps and only images collected at 113 ± 0.05 hr post insemi-

nation were processed and used in this study. The extracted images were 250 � 250 pixels and they

were cropped to 210 � 210 pixels. The cropping removed both the timestamps and identifiers pres-

ent in the frame. All embryos used in the study were annotated using images from the fixed time-

points (113 hpi) by senior-level embryologists with a minimum of 5 years of human IVF training.

Annotations for embryo implantation were assigned based on clinical outcomes. Out-of-focus

images were included in the datasets and used for both testing and training. Only images of

embryos that were completely non-discernable were removed from the study as part of the data

cleaning procedure.

Hierarchical categorization
The two networks in this study used two categorization systems. The network focused on the rank

ordering of embryos used a hierarchical categorization system. The embryo images at 113 hpi time

point were categorized between training classes 1 through five as described in detail elsewhere

(Thirumalaraju et al., 2020). Briefly, degenerated embryos, which did not begin compaction formed

Class 1 while Class 2 embryos were those that reached the morula stage by 113 hpi. Classes 1 and 2

together formed ‘non-blastocysts’ inference class. Class three embryos exhibit features of an early

blastocyst which is highlighted by the presence of blastocoel cavity and thick zona pellucida but lack

expansion. Class four embryos were blastocysts with blastocoel cavities occupying over half of the

embryo volume but either their inner cell mass (ICM) or trophectoderm (TE) was of poor quality.

They are non-freezable quality embryos (<3 CC), where three represents the degree of expansion

(range 1–6) and C represents the quality of ICM and TE (range A-D), respectively. Class 5 embryos,

however, met cryopreservation criteria (>3 CC) and included full blastocysts to hatched blastocysts.

Classes 3, 4, and 5 together formed ‘blastocysts’ inference class. The two inference classes are used

since the differentiation of blastocysts and non-blastocysts is a universally accepted categorization

that is relevant to embryologists, while the five class categorization is specific to the neural network

training, performance and evaluation (Thirumalaraju et al., 2020). Networks that were focused on

estimating an embryo’s implantation potential used a two-class training and inference system- posi-

tive for implantation and negative for implantation.

Neural network training for 113 hpi
The 113 hpi evaluation dataset included images of 2440 embryos categorized across five classes

post-cleaning based on their clinical annotations made at 113 hpi. Our training set for this classifica-

tion task used 1188 images with a validation dataset of 510 images obtained at 113 hpi. With the

availability of unskewed validation sets prior to augmentation, we used a data generator during

training, which performed random rotations and flips across all classes on the fly. The system per-

forming with an accuracy of 90.97% was used in this study in combination with our genetic algo-

rithm. The genetic algorithm was trained and tested with the training data prior to testing it with our

independent test data. No human interaction was required/performed once the images were pro-

vided to the system during testing, as the entire process was fully automated. The independent non-
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overlapping test set consisted of 742 images of embryos originating from 97 patients. The selections

were compared with embryologist selections. The network was also trained to classify embryos with

successful and unsuccessful implantation. 281 embryo images with known implantation outcomes

were used for training. Implantation signifies the attachment of a blastocyst into the endometrium.

The status of implantation was clinically verified by ultrasound ~6 weeks after embryo transfer.

Ninety-seven euploid embryos were evaluated by 15 embryologists, including director level embryol-

ogists from five different fertility centers.

Embryo selection algorithm development
A genetic algorithm was designed to perform selections in combination with the neural network.

The genetic algorithm component utilizes the probability scores of every embryo belonging to each

of the five different classes to generate a transfer score that can be used to effectively identify the

best embryo available in a cohort. For system evaluations, we used an independent set of embryos

(100 patients; 2–12 embryos per patient), with no overlap with the training data set used for any

prior exercise. The patient cohorts were chosen under the following criteria: (i) each patient embryo

cohort had to possess at least two 2PN embryos, and (ii) at least one embryo of the patient embryo

cohort developed to blastocyst stage by 113 hpi.

Genetic algorithm
We trained a genetic algorithm to select the morphologically highest quality embryo from a given

cohort. There are four phases namely initialization, selection, crossover, and mutation. The classified

embryos for each patient were sorted according to their identifier numbers allotted by the deep

neural network. A population of weights was generated at random during initialization. A population

size of 100 was generated with a 5 � 1 matrix representing each weight. Each weight defined a pos-

sible solution for the rank-ordering of embryos based on their quality using the five training classes.

The dot product of the weights with the output logits provided by the CNN was used in the calcula-

tion of the fitness. The algorithm runs multiple cycles to select the optimal set of weight towards

achieving the appropriately suitable rank order of embryos based on their qualities. At each cycle,

all the weight sets obtained using the given population were used rank-ordering embryos within the

training set. The best 20 wt sets were selected in each cycle.

These selected weights (specimens) were then bred with each other with a probability set to

20%. It randomly selected two specimens from the selected top pool and created a random binary

5 � 1 matrix, where one represents that the given element should be switched in cohort and 0 rep-

resents that given element should not be switched within the cohort. The fitness function checks if

the selected embryo belongs to the highest class available within the tested cohort. It checks if the

selected solution (specimen) picked the embryo belonging to the top class in a given cohort of

patient embryos. If the selected embryo belonged to the top class, the score was increased and if it

did not, the score was not modified. After iterating for all patients’ cohorts, the total scores were

used to select the best 20 weights of the given population and were taken for crossover and muta-

tion to repeat the process. The new specimens replaced their parents in the top selected group of

embryos. Otherwise, the matrix remained the same. After breeding, each specimen from the top

selected group was mutated to give five mutations by adding a random float 5 � 1 matrix with a

probability of 20%. These mutations were then added to the new population and the selection step

was repeated with the new population of 100. The genetic algorithm ran until the entire population

converged to the same score after which a random weight was selected from the population as the

final weight. Thus, final generated weights were used to further test the embryo cohorts within our

test set.
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