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Abstract

Background: Cah3 is the only carbonic anhydrase (CA) isoform located in the thylakoid lumen of Chlamydomonas
reinhardtii. Previous studies demonstrated its association with the donor side of the photosystem II (PSII) where it is required
for the optimal function of the water oxidizing complex. However this enzyme has also been frequently proposed to
perform a critical function in inorganic carbon acquisition and CO2 fixation and all mutants lacking Cah3 exhibit very poor
growth after transfer to low CO2 conditions.

Results/Conclusions: In the present work we demonstrate that after transfer to low CO2, Cah3 is phosphorylated and that
phosphorylation is correlated to changes in its localization and its increase in activity. When C. reinhardtii wild-type cells
were acclimated to limiting CO2 conditions, the Cah3 activity increased about 5–6 fold. Under these conditions, there were
no detectable changes in the level of the Cah3 polypeptide. The increase in activity was specifically inhibited in the
presence of Staurosporine, a protein kinase inhibitor, suggesting that the Cah3 protein was post-translationally regulated
via phosphorylation. Immunoprecipitation and in vitro dephosphorylation experiments confirm this hypothesis. In vivo
phosphorylation analysis of thylakoid polypeptides indicates that there was a 3-fold increase in the phosphorylation signal
of the Cah3 polypeptide within the first two hours after transfer to low CO2 conditions. The increase in the phosphorylation
signal was correlated with changes in the intracellular localization of the Cah3 protein. Under high CO2 conditions, the Cah3
protein was only associated with the donor side of PSII in the stroma thylakoids. In contrast, in cells grown at limiting CO2

the protein was partly concentrated in the thylakoids crossing the pyrenoid, which did not contain PSII and were
surrounded by Rubisco molecules.

Significance: This is the first report of a CA being post-translationally regulated and describing phosphorylation events in
the thylakoid lumen.
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Introduction

Carbonic anhydrases (CAs) serve different functions in the

metabolism of algae and plants. Their role in carboxylation/

decarboxylation reactions made them essential in algal carbon-

concentrating mechanisms, ion transport, pH homeostasis and in

the production of carbon skeletons by mitochondria (for reviews,

see [1], [2], [3]). In C. reinhardtii, there are at least 12 genes that

encode CA isoforms, including three alpha, six beta, and three

gamma or gamma-like CAs [1].

Cah3, identified in C. reinhardtii, was the first intracellular alpha-

CA described in algae and found to be localized in the thylakoid

lumen [4],[5]. According to the thorough revision of carbonic

anhydrase isoforms of C. reinhardtii recently made by Moroney et al.

[1], this Cah3 is the unique isoform located on the lumenal side of

thylakoid membranes. Two different models to explain its function

have been proposed. Villarejo et al. [6] clearly stated that the Cah3

protein was functionally associated with the electron donor side of

photosystem II (PSII), which is the site of proton release and O2

production. Intact cells, thylakoids and PSII-enriched membrane

fragments of a mutant lacking Cah3 (cia3) showed impaired water-

splitting ability [6]. Shutova et al. [7] further proposed that Cah3

enhances O2 evolution by locally providing HCO3
2 as proton

carrier to remove protons from the Mn complex.

However, it has also been suggested that Cah3 is functioning in

the CO2-concentrating mechanism (CCM). In fact, all the mutants

lacking Cah3 grow photo-autotrophically on high-CO2 levels but

exhibit extremely poor growth under low-CO2 conditions [1]. All

of them over-accumulate inorganic carbon, but they fail to
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assimilate it [8], [9]. At least one of those mutants, cia3, can be

complemented by the wild type Cah3 gene [5].

According to Raven [10], the un-catalyzed conversion of

bicarbonate to CO2, even at the low pH of the lumen, is at least

300 times too slow to support the observed high rates of

photosynthesis. He postulated that the lumenal CA could be

involved in accelerating the conversion of HCO3
2 to CO2 in the

lumen and thus stimulating the carboxylase activity of Rubisco

[11]. In an attempt to explain the role of Cah3 and to distinguish

between the two proposed models i.e. PSII function or CO2 supply

for Rubisco, Hanson et al. [12] concluded that CO2 supply for

Rubisco was the primary role of Cah3. Their results demonstrated

that, after a short-term exposure to low CO2 conditions in the cia3

mutant, CO2 fixation was already compromised whereas the same

short exposure to low CO2 did not directly affect PSII activity

[12].

On the other hand, the essential role of phosphorylation of

proteins within the photosynthetic membranes for balancing the

light distribution between PSII and PSI in plants and algae is now

well established [13], [14], [15], [16], [17]. Two thylakoid-

associated kinases, Stt7 and Stl1, have distinct roles in short and

long-term photosynthetic acclimation to changes in light quality

and quantity (state transitions), with Stl1 being in turn a

phosphoprotein whose in vivo phosphorylation depends on Stt7

[16]. However, Stt7-independent protein phosphorylations have

also been identified under different conditions [16].

Turkina et al.[18] reported the phosphorylation of two thylakoid

proteins which occurred strictly at limiting CO2; their phosphor-

ylation required reduction of electron carriers in the thylakoid

membrane, but was not induced by light and both proteins were

phosphorylated in the low-CO2-exposed stt7 deficient mutant.

The latter was suggested as an early adaptive and signaling

response of Chlamydomonas to the limited environmental inorganic

carbon.

In this study we have characterized the biochemical processes

involved in the CO2-responsive regulation of Cah3. We show here

that this lumenal CA is phosphorylated during acclimation of C.

reinhardtii cells to low CO2 conditions. We also provide strong

evidence that phosphorylation of Cah3 causes activation of the

enzyme and its redistribution to the PSII-devoid thylakoid

membranes in the pyrenoid. This is the first report of a CA being

post-translationally regulated via phosphorylation and describing

phosphorylation events in the thylakoid lumen. We conclude that

this mechanism allows algal cells to regulate the photosynthetic

reactions by controlling the availability of HCO32, not only at the

early steps taking place in the water oxidizing complex [6], [7] but

also at the end of the electron transport chain.

Results

The external CO2 concentration regulates the activity of
the lumenal carbonic anhydrase Cah3

To obtain detailed information about how the CO2 concentra-

tion is regulating the lumen located Cah3 during growth of C.

reinhardtii cells, we followed the changes in both activity of Cah3

and expression of the cah3 gene after transferring cells from 5%

(high CO2) to atmospheric CO2 levels (low-CO2; i.e. 0.035%).

When high-CO2-grown cells of C. reinhardtii were transferred to

low CO2 conditions, the lumenal CA activity increased (Figure 1A).

The CA activity in thylakoid membranes from high-CO2-grown

cells was 9.7 WA units/mg Chl (Figure 1A), while a 5- to 6-fold

higher activity was observed with thylakoid membranes from low-

CO2-grown cells. A similar increase in thylakoid CA activity has

been previously reported in Chlamydomonas by using photoaffinity

labelling and mass-spectrometric techniques [19], [20]. Our data

clearly show that the activity increased to its maximum value

within the first 4 h of acclimation to low CO2 conditions

(Figure 1A), while longer exposure of the cells to low CO2 caused

no further increase in the thylakoid CA activity (Figure 1A).

In order to analyze if the increase in CA activity was due to

changes in gene expression, the levels of the Cah3 transcript were

investigated by semi-quantitative RT-PCR (Figure 1B). These

experiments revealed that the amount of the Cah3 transcript did

not significantly change during the acclimation to low CO2

conditions (Figure 1B). In the same set of experiments, changes in

the amount of Cah3 protein were not observed either (Figure 1C).

Our results therefore suggest that the activation of Cah3 during

the acclimation to low CO2 conditions may be caused by a post-

translational regulation.

Cah3 is phosphorylated during the acclimation to low
CO2 conditions

Phosphorylation/de-phosphorylation modifications of PSII

polypeptides in the thylakoid membranes are now well established

[13], [14], [15], [16], [17]. These modifications appear to be

responsible for modulating the balance between PSII and PSI

[21], [14]. To test if a protein kinase is involved in the activation of

Cah3 during the acclimation to low CO2, C. reinhardtii cells

growing under high-CO2 conditions were transferred to low CO2

in the presence of Staurosporine, a well-known inhibitor of

Figure 1. Analysis of thylakoid carbonic anhydrase (Cah3)
activity and expression during the acclimation of high-CO2-
grown C. reinhardtii cells to low CO2 conditions. (A) CA activity
(WA units (mg Chl)21) was measured in thylakoid membranes isolated
from high-CO2-grown cells or acclimated to low CO2 for 2, 4 and 8 h.
Values are means 6 SE (n = 5). (B) Semiquantitative RT-PCR analysis of
Cah3 gene expression. Total RNA to be used for RT was isolated by
using TrizolTM reagent according to the manufacturers protocol (Life
Technologies, US). Aliquots of the reaction mix were loaded and
ethidium bromide stained in 1% agarose gels. (C) Immunoblot analysis
of total cell extracts from cells of C. reinhardtii with antibodies raised
against over-expressed Cah3 polypeptide. The lanes were loaded with
10 mg protein.
doi:10.1371/journal.pone.0049063.g001
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eukaryotic Ser/Thr protein kinases [22]. In cells acclimated for

2 h to low CO2 in the presence of 0.1 mM Staurosporine the

activation of the lumenal CA was inhibited by ,40% when

compared to that of control cells (19.760.3 and 30.560.8 WA

units/mg Chl, respectively) (Figure 2). Neither the induction of a

well-known low-CO2-inducible CA isoenzyme, like the periplas-

mic Cah1 (Figure 2), only expressed and active upon acclimation

to low-CO2 [1], nor the expression of other low-CO2-inducible

polypeptides (data not shown) was affected by the addition of the

inhibitor. These results indicate that the activation of the lumenal

located CA is, at least partly, under the control of phosphoryla-

tion/dephosphorylation mechanisms.

In a first approach we analyzed the changes in the phosphor-

ylation pattern of thylakoid membranes upon acclimation to low

CO2 conditions by using phosphothreonine (Thr(P)) antibodies.

This immunological approach has been introduced in the late 90s

as an alternative tool to study in vivo phosphorylation processes

which allows overcoming the limitations to detect changes in the

level of endogenous phosphorylation of other currently used

methods [23]. Our analysis revealed a rather complex pattern of

major phosphoproteins which fit with the many thylakoid

phosphopeptides that have been previously reported in C.

reinhardtii [18], [24], [16], (Figure 3A). Therefore, to avoid the

Cah3 protein being hidden by other major thylakoid phospho-

proteins we carried out a similar analysis on fractions containing

only extrinsic thylakoid proteins, based on the fact that, in

Chlamydomonas, Cah3 is peripherally associated with the lumen side

of the thylakoid membranes and can be released from the

thylakoids using treatments that will not cause the release of the

integral thylakoid phosphoproteins [5].

Extrinsic fractions were obtained from thylakoid membranes of

Chlamydomonas cells either grown under high-CO2 conditions or

acclimated to low CO2 for 1 and 2 h. Immunoblot analysis shows

that Cah3 was recovered in all of the supernatants (Figure 3B).

One major phosphoprotein at 30 kDa was present in these

samples (Figure 3C, inset). A sharp increase (up to 3-fold) in the

immunological cross-reactivity of this protein with the Thr(P)

antibodies was taking place within the first hour of acclimation to

low CO2 conditions (Figure 3C). Longer exposure of the cells to

low CO2 caused no further increase of the phosphosignal.

The phosphorylated 30-kDa, protein was immunoprecipitated

using affinity-purified antibodies against the Cah3 polypeptide

(Figure 4A). In addition, aminoacid sequence analysis shows that

the N-terminal sequence of this phosphoprotein coincided with

that of the Cah3 polypeptide. Furthermore, this phosphorylated

protein was absent in thylakoid membranes from the cia3 mutant,

which lacks the Cah3 polypeptide (data not shown).

To obtain evidence that the cross-reaction of the Cah3

polypeptide with the Thr(P) antibodies was due to a true

phosphorylation of this protein rather than to a possible unspecific

cross-reactivity, we studied the reversion of the phosphorylation

signal following treatment with alkaline phosphatase (AP).

Figure 4B shows the results of such experiments. The AP

treatment of the fraction containing the extrinsic thylakoid

polypeptides was fully effective in dephosphorylating the 30-kDa,

Figure 2. Staurosporine, a protein kinase inhibitor, partially
inhibits the activation of Cah3 activity. High-CO2-grown C.
reinhardtii cells were acclimated to low CO2 conditions for 2 h in the
absence or in the presence of 0.1 mM Staurosporine. CA activity was
measured in thylakoid membranes isolated from control and treated
cells. As a control, periplasmic CA activity was measured using intact
cells of the same cultures. Values are means 6 SE (n = 5).
doi:10.1371/journal.pone.0049063.g002

Figure 3. Phosphorylation of LHCIIP and PSII polypeptides
during acclimation to low CO2 conditions. (A) Immunoblot
analysis of thylakoid membrane proteins isolated from high-CO2-grown
cells (H), and cells acclimated to low CO2 for 1 (1 h) and 2 h (2 h)
probed with antibodies against phosphothreonine (Thr(P)). (B) Immu-
noblot analysis of extrinsic thylakoid proteins isolated from thylakoids
of high-CO2-grown cells (H), and cells acclimated to low CO2 for 1 (1 h)
and 2 h (2 h), probed with affinity-purified antibodies against Cah3. (C)
Changes in the immunoresponse of Thr(P) antibody to a 30-kDa
phosphoprotein during the acclimation to low CO2. The inset shows
immunoblot analysis of extrinsic thylakoid proteins isolated from
thylakoids of high-CO2-grown cells (H), and cells acclimated to low
CO2 for 1 (1 h) and 2 h (2 h), probed with Thr(P) antibodies. The lanes
were loaded with 10 mg protein.
doi:10.1371/journal.pone.0049063.g003
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phosphoprotein (Figure 4B). All these observations clearly indicate

that Cah3 is a major extrinsic phosphoprotein of the thylakoid

membranes of Chlamydomonas that is phosphorylated upon

acclimation to low CO2 conditions.

Cah3 is concentrated in the intrapyrenoid thylakoids
upon phosphorylation

It is well established that phosphorylation of the antenna

complex components of PSII is affecting their distribution in the

thylakoid membranes [25]. To elucidate if phosphorylation of

Cah3 is affecting its location in the cell, we carried out

immunogold labeling experiments using affinity-purified antibod-

ies against the Cah3 polypeptide. As shown in Figure 5,

immunogold labeling densities in the pyrenoid and in the stroma

thylakoids depended on the growth conditions. In high-CO2-

grown cells, immunogold particles were localized to the intra-

pyrenoid and stroma thylakoids (Fig. 5A and B). Transferring cells

to low CO2 conditions resulted in a redistribution of the labeling

(Fig. 5C–E). The density of immunogold particles in the stroma

thylakoids drastically decreased within the first 3 h of acclimation

to low CO2 with a concomitant increase in the immunogold

density in the thylakoids crossing the pyrenoid (Fig. 5C and D).

The same distribution of the immunogold particles, with higher

density in the pyrenoid thylakoids, was also observed in cells

acclimated to low CO2 for 5 h (Fig. 5E). Mitra et al. [26] already

reported immunolocalization experiments showing that Cah3 is

located on the lumenal side of thylakoid membranes including

those that penetrate the pyrenoid and showed that immunogold

density was more than two times higher in the pyrenoid thylakoids

when compared to stromal thylakoids .

When the relative volumes of the pyrenoid and the stroma are

taken into account [27], it is clear that the fraction of Cah3 in the

pyrenoid region significantly increased in cells acclimated to low

CO2 for 3 h as compared with high-CO2 cells (Table 1). In the

latter, only 19% of the total Cah3 was associated with the pyrenoid

region, while in low-CO2-grown cells 37% of the Cah3 protein

was associated with the pyrenoid (Table 1). Similar calculations

using data from high-CO2-grown cells show that a significant

fraction (more than 80%) of the Cah3 is localized to the non-

pyrenoid thylakoids in those cells (Table 1). These data imply that

the localization of Cah3 in C. reinhardtii depends in part on the

growth conditions of the organism. In addition, our results indicate

Figure 4. Immunoprecipitation and dephosphorylation exper-
iments of extrinsic thylakoid polypeptides. Extraction of extrinsic
thylakoid proteins was accomplished by washing the thylakoid
membranes with a medium containing low concentrations (0.05%) of
Triton X-100. (A) The 30-kDa extrinsic phosphoprotein immunoprecip-
itates with Cah3. Extrinsic thylakoid proteins released from thylakoid
membranes of C. reinhardtii cells acclimated to low CO2 for 2 h (C) were
immunoprecipitated with affinity-purified antibodies against Cah3 and
protein A-Sepharose CL-4-B beads. The Sepharose beads were washed
and the immunoprecipitate (I) and the supernatant (SN) obtained after
centrifugation were analysed by SDS-PAGE and immunoblot and
probed with antibodies against Cah3 (left) and Thr(P) (right). (B) Effect
of Alkaline phosphatase (AP) treatment on extrinsic proteins released
from thylakoid membranes isolated from both high-CO2-grown cells
(High) or cells acclimated to low CO2 for 2 h (Low). All lanes were
loaded with 10 mg protein.
doi:10.1371/journal.pone.0049063.g004

Figure 5. Immunogold labelling of C. reinhardtii cells grown on
high-CO2 or acclimated to low CO2 conditions for 2 and 5 h. (A)
and (B) High-CO2-grown cells probed with affinity-purified antibodies
against Cah3. (C) and (D) Cells acclimated to low CO2 conditions for 3 h
and (E) pyrenoid of a cell acclimated to low CO2 conditions for 5 h,
probed with affinity-purified antibodies against Cah3. Bars indicated
0.5 mm. C, chloroplast; P, pyrenoid; Ssh, starch sheath; and St, stroma
chloroplast.
doi:10.1371/journal.pone.0049063.g005
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that the redistribution of the protein to the pyrenoid occurred

simultaneously with the phosphorylation of the Cah3 polypeptide.

It has been recently shown using confocal microscopy of

thylakoid auto-fluorescence, that intrapyrenoid thylakoids lack

putative PSII fluorescence [28]. Immunoblot analysis of isolated

pyrenoid fractions probed with antibodies against the D1 protein

of PSII show that this polypeptide was absent in pyrenoids isolated

from both high- and low-CO2-grown C. reinhardtii cells (Figure 6).

However immunoblot analysis against Cah3 antibodies clearly

confirms that pyrenoid fractions from low-CO2-grown cells were

enriched in Cah3 when compared to those from high-CO2-grown

cells (Figure 6). These results indicate that Cah3, which is

associated with PSII in high-CO2-grown cells [6], [7], is being

concentrated in the intrapyrenoid thylakoids, which do not

contain PSII, during the acclimation to low CO2 conditions.

The association of Cah3 with PSII also changes during the
acclimation to low CO2 conditions

Immunogold labeling experiments show that Cah3 was

enriched in the PSII-depleted intrapyrenoid thylakoids in low-

CO2-grown C. reinhardtii cells as compared to high-CO2-grown

cells (37% versus 19%). However, a significant portion of the

protein was still associated with stromal thylakoids even under low

CO2 conditions.

Previously, it has been shown that Cah3 is associated with PSII

core complex from high-CO2-grown Chlamydomonas cells [6]. To

test if the Cah3 fraction associated with stromal thylakoid

membranes in low-CO2 cells was also associated with PSII core

complexes, we isolated these complexes from cells growing under

low CO2 conditions for 4 h. Immunoblot analysis shows that Cah3

was still enriched in PSII core complexes when compared to

thylakoids and PSII membrane fragments, as it occurs with D1

protein of PSII core complexes used as control(Figure S1).

The PSII core complexes isolated from low-CO2 cells were

highly active, though their O2 evolution rates were lower than

those supported by core complexes isolated from high-CO2 cells

(Table 2). Table 2 also shows the light-saturated O2 evolution rates

of BBY preparations (PSII membrane fragments, see Materials

and methods) from both high- and low-CO2-grown cells. In the

latter, the O2 evolution rates were lower than in the former.

Interestingly, when 1 mM HCO3
2 was added to both BBY

preparations and PSII core complexes from low-CO2 cells, the

light-saturated O2 evolution was stimulated by ,15% (Table 2).

No stimulation by HCO3
2 was observed in BBY preparations

from high-CO2 cells (Table 2), as was previously reported by

Villarejo et al [6]. The HCO3
2 requirement observed in BBY

preparations from low-CO2-grown Chlamydomonas cells resembled

the situation in the mutant cia3, though in the latter the stimulation

by HCO3
2 was higher [6], [7].

The HCO3
2 requirement was not the only difference between

PSII preparations from high- and low-CO2 C. reinhardtii cells.

When PSII core complexes from high- and low-CO2 cells were

subjected to differential extraction of hydrophobic and hydro-

phylic proteins (Figure 7) we observed that the association of the

Cah3 protein with the reaction centre changed depending on the

growth conditions. In PSII core complexes from high-CO2-grown

cells, Cah3 protein was completely extracted in the peripheral

fraction (Figure 7A right). However, in PSII fractions from low-

CO2-grown cells a significant fraction of Cah3 still remained in the

integral fraction (Figure 7A left). As a control, we analyzed the

distribution of the PsbO polypeptide (Figure 7B). This protein

always fractionated in the peripheral fraction, regardless the

growth conditions (Figure 7B right and left). These data confirm

our previous hypothesis that the association of Cah3 with PSII is

changing upon acclimation to low CO2 conditions.

It is interesting to note that no cross-reactivity of Thr(P) with

any phosphoprotein at 30 kDa was observed in the peripheral

fraction of PSII core complexes from both high- and low-CO2 cells

Table 1. Calculation of Cah3 fraction in both the pyrenoid and the stroma of the chloroplast of both high-CO2 cells and cells
acclimating to low CO2 conditions for 3 and 5 h.

Growth Conditions Immunogold Density (Gold particles/mm2) Cah3 in Pyrenoid (%)

Pyrenoid Stroma

High CO2 31,066,54 9,062,2 18,8

Low CO2 (3 h) 52,3614,49 5,962,0 37,3

Low CO2 (5 h) 59,9616,82 7,062,5 36,7

Immunogold labelling experiments were carried out using antibodies against Cah3. Evaluation of labelling was made using the computer program UTHSCSA Image
Tool version 3.0. The gold particles associated with the pyrenoid and the stroma were counted and the density calculated on the basis of area. To calculate the fraction
of Cah3 in the pyrenoid, the particle density of the pyrenoid or stroma was multiplied by the average volume of the compartment (which is 2.4 mm3 and 35.6 mm3,
respectively, according to [27], giving the total particles for each compartment. The total number of particles in the pyrenoid was divided by the combined number of
particles in the pyrenoid and in the stroma. The data shown are the averages 6 SD of 30 samples. Preimmune sera gave immunogold densities of less than 2 particles/
mm2.
doi:10.1371/journal.pone.0049063.t001

Figure 6. Immunoblot analysis of total cell extracts and
isolated pyrenoid fractions from high- (H) and low-CO2-grown
(L) Chlamydomonas cells probed with antibodies against D1
protein of PSII, Cah3 and Rubisco large subunit. All lanes were
loaded with 10 mg protein.
doi:10.1371/journal.pone.0049063.g006
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(data not shown). These results indicate that the phosphorylated form

of the Cah3 polypeptide was not associated with the PSII core

complex.

Discussion

In this study, we provide strong evidence that Cah3, a lumenal

CA associated with the donor side of PSII, is regulated via

phosphorylation during the acclimation of C. reinhardtii cells to low

CO2 conditions. Phosphorylation of Cah3 causes partial activation

of the enzyme and its redistribution to PSII-depleted thylakoid

membranes. Like other thylakoid phosphoproteins, Cah3 seems to

be phosphorylated at threonine/serine residues [21], [18].

However, Cah3 differs significantly from all previously character-

ized thylakoid phosphoproteins and is, to our knowledge, the first

characterized lumenal phosphoprotein in any photosynthetic

organism, whereas all of the other phosphoproteins are integral

membrane polypeptides or confined to the stromal side [18]. The

occurrence of phosphorylation events in the thylakoid lumen has

been earlier suggested [29], [30] but the relevance of this

indication was never elucidated. Our present knowledge of the

lumen from a compositional and functional point of view has

increased during the last years, mainly due to proteomic analysis

approaches using the plant model Arabidopsis thaliana (see [31],

[32]). Spetea et al. [33] have provided clear experimental evidence

that the thylakoid lumen contains both nucleotides and enzymes

related to nucleotide interconversion processes. And recently Wu et

al. [34] have reported an O-phospho-L-serine phosphatase activity

of AtTLP18.3 in the thylakoid lumen of Arabidopsis thaliana. Our

finding together with these experimental evidences indicate that

the lumen has to be considered as a metabolically active

compartment requiring energy and involved in signal transduction

mechanisms.

Several potential phosphorylation sites are found in the

sequence of the Cah3 protein, including one threonine at position

13 in the N-terminus and two serine residues. In our study only

phosphothreonine antibodies cross-react with the Cah3 polypep-

tide (Figure 3C), indicating that threonine 13 is the phosphorylated

residue. According to a structural model for the human a-CA II,

the N-terminus of the protein is predicted to be flexible and closed

to the active site [35]. In fact, truncations of this domain greatly

affect the CA activity [35]. Based on these observations, it can be

postulated that phosphorylation of the threonine residue at

position 13 in Cah3 may affect activity or binding of the protein

to the thylakoid membranes.

CA has long been known to catalyze the reversible hydration of

CO2, accelerating this reaction by a factor of .106. At present, no

evidence is available for any kind of regulation of this well studied

enzyme. This work is the first report of a CA being post-

translationally regulated via phosphorylation. The question arises

about what are the functional implications of this regulatory

process. It has been previously shown that Cah3 is associated with

the donor side of PSII and is essential for the optimal function of

the water oxidizing complex (WOC) when cells are growing under

high CO2 conditions [6], [7]. However, only after transferring cells

to CO2 limiting conditions, the Cah3 protein is strongly

phosphorylated (Figure 3C). The phosphorylation process corre-

lates with the redistribution of one part of the Cah3 population to

PSII-devoid thylakoid membranes (Figures 5 and 6) and this

process also correlates with a 5- to 6-fold increase in its enzymatic

activity (Figure 1A). A similar increase in thylakoid CA activity has

been previously reported in Chlamydomonas by using mass-

spectrometric and photoaffintiy labeling techniques [19], [20].

As it was mentioned above, acclimation to limiting CO2

conditions not only causes phosphorylation of Cah3 but also

phosphorylation of other thylakoid proteins. Turkina et al, [18]

identified and sequenced four phosphopeptides by nanospray-

quadrupole-time-of-flight MS from the cells that were transferred

to limiting CO2. Three phosphorylated peptides belonged to the

Lci5 protein, encoded by the low CO2 inducible gene 5 (lci5) [36],

[37]. The other phosphopeptide originated from a protein (UEP)

that has not been annotated (this Unknown Expressed Protein is

encoded in the genome of C. reinhardtii). UEP was found

phosphorylated at a serine residue. Multiple phosphorylation of

Lci5 may occur at three threonine and four serine residues.

Phosphorylation of both proteins occurred strictly at limiting CO2

and it required reduction of electron carriers in the thylakoid

Table 2. Light-saturated O2 evolution rates in both BBY
preparations and PSII core complex isolated from high- and
low-CO2 C. reinhardtii cells.

Treatment O2 evolution rates (mmol O2/mg Chl/h)

High-CO2 Low-CO2

BBY preparation, control 217613 18963

BBY preparation, +1 mM
HCO3

2

218612 21266

Core complex, control 866613 805610

Core complex, +1 mM
HCO3

2

87069 900630

The light-saturated O2 evolution rates in isolated BBY preparations was
measured in a buffer containing 20 mM MES-KOH pH 6.5, 300 mM sucrose, and
35 mM NaCl, in the presence of 1 mM DCBQ and 1 mM K3Fe(CN)6. The light-
saturated rates of O2 evolution in PSII core complexes were measured in a
buffer containing 25 mM MES-KOH pH 6.5, 0.3 M sucrose, 10 mM NaCl and
50 mM CaCl2, in the presence of 1 mM DCBQ and 1 mM K3Fe(CN)6.
doi:10.1371/journal.pone.0049063.t002 Figure 7. Differential extraction of Cah3 polypeptide from PSII

core complexes isolated from C. reinhardtii cells grown under
high-CO2 (A) or acclimated to low CO2 conditions for 4 h (B).
PSII hydrophobic and hydrophilic proteins were extracted from PSII core
complexes using a chloroform/methanol (2:1, v/v) mixture (see
Materials and Methods). Immunoblot analysis of integral (I) and
peripheral (P) protein fractions from PSII core complexes were probed
with antibodies against Cah3 (Cah3) and PsbO protein (PsbO). The lanes
were loaded with 10 mg protein.
doi:10.1371/journal.pone.0049063.g007
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membrane, but was not induced by light changes (state

transitions). Moreover, both proteins were phosphorylated under

low-CO2 in the Chlamydomonas stt7 mutant deficient in the light-

activated protein kinase Stt7. The latter was suggested as an early

adaptive and signaling response of Chlamydomonas to the limited

environmental inorganic carbon and correlates with the pattern of

phosphorylation found for Cah3 in this work.

The photosynthetic apparatus is more and more understood as

a flexible molecular machine that can acclimate to metabolic and

light fluctuations in a matter of seconds and minutes [38]. Most of

these changes seem to be related to phosphorylation processes as

can be concluded from the recent work of Lemeille et al. [16].

These authors made the comparison of the thylakoid phospho-

proteome of the wild-type strain and the stt7 mutant of

Chlamydomonas under state 1 and state 2 conditions. From their

analysis it can be concluded that the different thylakoid

phosphoproteins could be classified according to the phosphory-

lation pattern as Stt7-dependent or Stt7-independent, and the

latter in turn as dependent or independent of the light conditions,

as it was the case for Lci5, which has been shown to be specifically

phosphorylated under low-CO2 conditions [18].

The most conspicuous consequence of the phosphorylation of

Cah3 is the change in its subcellular location (Fig. 5 and Table 1).

The present study demonstrates that the distribution of Cah3

protein along the membranes is variable and depends on the

growth conditions to which cells have been acclimated before such

an analysis. Our results indicate that the amount of Cah3 in the

non-pyrenoid thylakoids drastically decreased within the first 2 h

of acclimation to low CO2 (Figure 5), when the phosphorylation of

Cah3 protein reaches its maximum (Figure 3). Simultaneously,

Cah3 is concentrated in the intrapyrenoid thylakoids. About 19%

was in the pyrenoid when cells were grown under elevated CO2

and about 37% in low CO2-grown cells (Table 1) as had been

already reported by Mitra et al. [26].

Very recently, Sinetova et al. [39] have confirmed the close

relationship between the functional role of Cah3 in the CCM and

its localization associated with the pyrenoid thylakoids. These

authors related CCM induction and the right distribution of Cah3

associated to pyrenoid thylakoids with an increase in the content of

polyunsaturated fatty acids in membrane lipids after low-CO2

acclimation. However, in the cia3 mutant cells, where the

immunogold particles against Cah3 appeared evenly distributed

throughout the pyrenoid matrix, the increase in the majority of

polyunsaturated fatty acids were less pronounced or did not

increase at all. The latter could be indicating that the recruitment

of Cah3 for lateral movement from the stromal to pyrenoid

thylakoids could be more dependent on membrane lipids. In fact

we have failed repeatedly in finding the protein partner/s

responsible for these lateral movements of Cah3 on the thylakoid

membrane.

The fact that the phosphorylated form of Cah3 protein is not

associated with PSII complexes leads us to postulate that this is the

form that is moving away from PSII and that is concentrated in

the intrapyrenoid thylakoids. Pyrenoid morphology undergoes

rapid and dramatic changes in response to variations in the CO2

concentration in the environment [40]. These changes are

correlated with redistribution of Rubisco, which is also more

concentrated in the pyrenoid under low CO2 conditions [41] as it

is the case for Cah3 (Figure 6). Nevertheless, our study clearly

shows that the proportion of Cah3 involved in this reorganization

(,20%, Table 1) is, in fact, smaller than that of Rubisco (,60%,

[41]). In Chlamydomonas, the bulk of the pyrenoid structure is

composed of an electron dense, granular matrix, consisting mainly

of Rubisco molecules. Enclosed within this matrix is a system of

tubules radiating from a central nexus to the pyrenoid periphery

where each tubule exhibits continuity with a stroma thylakoid

membrane [42]. This intrapyrenoid system of tubule-like thyla-

koids, where the phosphorylated form of Cah3 is concentrated,

differs from the non-pyrenoid thylakoids and does not contain

PSII complexes (Figure 6). Moreover, it has been shown that these

intrapyrenoid thylakoids lack putative PSII fluorescence [28], thus

supporting the contention that they lack PSII.

It is intriguing why a protein, which is required for the WOC to

function optimally under high CO2 conditions [6], is partially

detached from PSII and concentrated in membranes containing

only PSI complexes during the acclimation to limiting CO2.

Nevertheless, it has been earlier reported, as a consequence of

CCM induction, a partial decrease (<20%) in functional PSII

reaction centers, an increase in the activity of PSI versus PSII and

an increased cyclic electron transport around PSI [43].

The present study provides strong evidence that Cah3 is

involved in this reorganization of the photosynthetic light

reactions. Our results shows that the partial detachment of Cah3

from PSII is correlated with a partial decrease in the O2 evolution

rates of PSII core complexes. It is interesting to note that this

decrease is of the same order as has been previously reported [43].

In addition, PSII core complexes isolated from low-CO2-grown

cells resembles those, isolated from the mutant cia3, which lacks an

active Cah3, and they required bicarbonate for reaching

maximum activity [6]. However, the HCO3
2 requirement in

PSII preparations from low-CO2-grown cells is much smaller than

in preparations from the mutant cia3, where up to half of the

WOCs were non-functional (see [6]). The degree of decrease in

functional PSII reaction centers and the HCO3
2 requirement may

be correlated with the proportion of Cah3 protein that is detached

from PSII.

We postulate that Cah3 is acting as a regulator that allows

adjusting the activity of PSII to the amount of the ultimate electron

acceptor CO2. In high-CO2-grown cells, where the high CO2

concentration is not limiting photosynthesis, Cah3 is associated

with the WOC of PSII and allows the electron donation to be fast

enough for an optimal function of PSII and hence reduction of

CO2 [6]. When cells are acclimating to limiting CO2 conditions, at

the same light intensity, they will experience an initial stress

situation where the low CO2 concentration is limiting photosyn-

thesis. This suggests that the photosynthetic apparatus will be

exposed to a relatively higher excitation pressure compared with

high-CO2-grown cells, and this will cause over-reduction of the

plastoquinone pool. Under this situation, Cah3 is phosphorylated

and partially detached from PSII. The concentration of Cah3 in

the intrapyrenoid thylakoids, which are surrounded by active

Rubisco molecules, together with its activation will provide locally

high CO2 concentrations to the carboxylating enzyme. This

redistribution of Cah3 and the induction of the CCM will help to

overcome the initial CO2 limitation and the survival of the cell.

This model will fit with that predicted by Raven [10] and will

explain the postulated dual role of Cah3 in C. reinhardtii cells.

The driving force for the movement of Cah3 between the non-

pyrenoid and the intrapyrenoid thylakoids is at present unknown.

Another challenge is to understand the observed differences in the

binding properties of Cah3 to PSII between high- and low-CO2-

grown cells (Figure 7). One possible explanation is that changes in

the organization of PSII core complex taking place during the

acclimation to low CO2 conditions could affect the binding

properties of the Cah3 polypeptide to PSII, without changing the

binding of the other OEC proteins. In fact, it has been reported

[44] that the OEC polypeptides, PsbO, PsbP and PsbQ, directly

bind to PSII in C. reinhardtii. In contrast to the situation in higher
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plant PSII, the binding of each OEC subunit is independent of the

other extrinsic proteins [44]. A more detailed structural analysis of

the PSII core complexes from low-CO2-grown cells will be

required to solve this question.

Materials and Methods

Strains and growth conditions
C. reinhardtii cell wall-deficient mutant 92 (cw92) which is

regarded as the standard wild type in photosynthesis studies, was

obtained from the Chlamydomonas Culture Collection at Duke

University, Durham, NC, USA. The cell wall-deficient, high-CO2-

requiring cia3 double mutant was kindly provided by J. V.

Moroney (Louisiana State University, Baton Rouge, LA) [9]. All

strains were grown in batch cultures at 25uC under a continuous

irradiance of 150 mmol/m2/s supplied from cool, white fluores-

cent lamps. Cells were cultured in minimal medium [45], under

aeration with air enriched with 5% CO2 (high-CO2-grown cells).

For experiments in which cells were shifted from high CO2 to low

CO2 (0.035% CO2), cells were previously cultured in high CO2

conditions and then shifted to ambient CO2 for various times (low-

CO2-grown cells).

Isolation of PSII membrane fragments, PSII core
complexes, and pyrenoids

Thylakoid membranes were isolated from high- and low-CO2-

grown Chlamydomonas cells according to [46]. The PSII

membrane fragments (BBY preparations, from Berthold, Babcock

and Yocum PSII membrane fragments) were isolated as previously

described from higher plants [47] PSII core complexes were

isolated from BBY preparations of wild-type cells according to

[48]. All buffers were supplemented with 10 mM NaF, a

phosphatase inhibitor. Pyrenoids were isolated according to the

method of [49]. Chlorophyll concentrations of algal subcellular

fractions were determined spectroscopically after extraction in

absolute methanol [50].

Differential extraction of extrinsic proteins from
thylakoids and PSII core complexes

Differential extraction of Cah3 from thylakoid membranes was

performed by salt washing. Thylakoid membranes were resus-

pended to a chlorophyll density of 1 mg Chl/ml in incubation

buffer containing 50 mM Tris-HCl buffer pH 8.0, 1 mM EDTA,

and supplemented with 1 M NaCl. Samples were incubated in the

washing solution for 1 h at 4uC in darkness with gentle stirring.

After incubation, samples were centrifuged. The pellet was washed

twice with buffer containing 50 mM Tris-HCl buffer pH 8.0,

400 mM sucrose, and 10 mM NaCl, and then resuspended in the

same buffer. The supernatants were desalted by serial dilution with

the salt-free buffer by centrifugation in Centriprep YM-10 tubes

(Millipore). Each desalted sample was then concentrated 15 times

by centrifugation in the same tubes overnight. All buffers were

supplemented with 10 mM NaF, a protein phosphatase inhibitor.

PSII hydrophobic and hydrophylic proteins were extracted

from PSII core complexes using a chloroform/methanol (2:1, v/v)

mixture [51], [52]. Briefly, PSII core complex sample was slowly

diluted in 6 ml of cold chloroform/methanol (2:1, v/v) solution.

The resulting mixture was stored for 15 min on ice before

centrifugation. The proteins insoluble in this phase (peripheral

proteins) were recovered as a white pellet and resuspended in 26
SDS-PAGE sample buffer. The organic phase, that contained

integral proteins was precipitated with ice-cold acetone and

resuspended in 26SDS-PAGE sample buffer. Both fractions were

analyzed by SDS-PAGE and western blot. For in vivo analysis of

the phosphorylation pattern of extrinsic proteins, thylakoid

membranes were incubated in medium containing 50 mM Tris-

HCl pH 7.5, 150 mM NaCl, 1 mM MgCl2, and 0.05% (v/v)

Triton X-100. After 20 min incubation on ice, the membranes

were pelleted and the supernatants were analyzed by SDS-PAGE

and western blots.

In vitro dephosphorylation of Cah3
The fraction obtained after treatment of thylakoid membranes

with incubation medium containing 0.05% Triton X-100 (100 to

150 mg protein) was incubated for 10 min at 30uC. After this

incubation, the sample was divided into two halves. One was

treated by adding 30 units of alkaline phosphatase (type VII-T,

Sigma) for 15 min at 30uC; the other was used as a control. The

reaction was terminated by adding an equal volume of 26 SDS-

PAGE sample buffer. The completion of the dephosphorylation

reaction was checked by analyzing samples by western blot.

Immunoprecipitation experiments
Samples obtained after washing thylakoid membranes from

low-CO2 cells were diluted to 300 ml by using ice-cold immuno-

precipitation buffer containing 50 mM Tris-HCl pH 7.5, 150 mM

NaCl, 2% (v/v) Igepal CA-630, and a protease inhibitor cocktail

(Complete, Roche Diagnostics, Mannheim, Germany). 10 ml of

affinity-purified anti-Cah3 antibodies were subsequently added,

and samples were mixed by gentle shaking for 2 h at room

temperature. 20 ml 10% (v/v) protein A-Sepharose CL-4-B beads

(Sigma) were added, and samples were mixed for 4 h at room

temperature. Protein A beads were collected by centrifugation and

washed twice with 1 ml washing buffer containing 50 mM Tris-

HCl pH 7.5, 150 mM NaCl, 0.5% (v/v) Igepal CA-630, 0.1% (w/

v) SDS. The beads were boiled for 5 min in 26 SDS-PAGE

sample buffer and samples analyzed by western blot.

Carbonic anhydrase activity measurements
The activity of CA was potentiometrically determined by

measuring the time for the pH to decrease from 8.2 to 7.4, at 2uC,

in a sample of 2 ml of 75 mM phosphate buffer (pH 8.2),

containing 1 mM EDTA and 0.1 mM dithiothreitol (DTT), upon

addition of 2 ml of ice-cold CO2-saturated distilled water [53].

One Wilbur-Anderson unit (WAU) [54] was defined as:

WAU = (t0/tc-1) 10, where t0 was the time for the pH change

with buffer controls and tc was the time obtained when CA-

containing samples were added.

Photosynthetic response curves
Photosynthetic O2 evolution was measured at saturating white

light and 25uC using a Clark-type oxygen electrode (CB1D,

Hansatech, Norfolk, UK). Cells were resuspended in 20 mM

CO2-free buffer HEPES-KOH buffer (pH 7.2) at a chlorophyll

density of 2–5 mg Chl/ml. The cell suspensions were then placed

in the illuminated electrode chamber and allowed to consume the

dissolved Ci of the medium and the intracellular Ci pool until no

net photosynthesis was observed. HCO3
2 at the indicated

concentrations was added and the rate of O2 evolution measured.

In vitro measurements of electron flow
The light-saturated electron flow through PSII in BBY

preparations was measured in a buffer containing 20 mM MES-

KOH pH 6.5, 400 mM sucrose, and 35 mM NaCl, in the

presence of 1 mM K3Fe(CN)6, and 1 mM DCBQ. The light-

saturated rates of oxygen evolution in PSII core complexes were

measured in a buffer containing 25 mM MES-KOH (pH 6.5),
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300 mM sucrose, 10 mM NaCl, and 50 mM CaCl2, in the

presence of 1 mM DCBQ and 1 mM K3Fe(CN)6 as described by

[55].

Western blot analysis
Isolated thylakoid membranes, PSII membrane fragments, total

cell proteins, and PSII core complexes were separated on 12%

SDS polyacrylamide gels [56]. After electrophoresis, proteins were

blotted onto a nitrocellulose membrane. Immunoblotting was

performed as described in the protocol supplied by BioRad

Laboratories. Horseradish peroxidase-labeled secondary antibod-

ies and enhanced chemiluminescence (ECL, Amersham Interna-

tional) were used to detect the antibody-antigen conjugate.

Electron microscopy and immunolocalization
For immunolabeling experiments, cells were fixed with 3%

freshly depolymerized paraformaldehyde and 0.3% glutaralde-

hyde in PBS for 1 h, transferred to 3% paraformaldehyde and

stored at 4uC over night. The pellets were infused with 20%

polyvinylpyrrolidone in 2.3 M sucrose in PBS for 3 h, mounted on

stubs and subsequently frozen in liquid nitrogen. Ultrathin sections

were cut and mounted on formvar coated niquel grids.

Preincubation of sections was performed in a solution of 0.01%

blocking reagent (Boehringer Mannheim) and 0.75% glycine for

15 min. The sections were incubated for 1 h with the primary

antibodies (1:200 dilution) or with preimmune serum diluted

similarly as a control, washed for 30 min in PBS/blocking reagent,

and incubated with goat anti-rabbit gold conjugate (Biocell)

(diluted 1:50) for 1 h. Finally, the sections were washed in PBS and

distilled water and embedded in 2% methyl-cellulose and 0.3%

uranyl acetate.

Evaluation of immunogold labeling was made using the

computer program UTHSCSA Image Tool version 3.0 (Depart-

ment of Dental Diagnostic Science, University of Texas Health

Science Center, San Antonio, Texas). The gold particles

associated with the pyrenoid were counted, as were the particles

in the same size area in the cytosol and stroma regions of the

individual cells.

Estimation of relative transcript levels with RT-PCR
To determine specifically the relative transcript levels of the cah3

gene, RT-PCR assays were performed. Total RNA was isolated

from 2 ml culture by using the TrizolTM reagent according to the

manufacturers protocol (Life technologies, US). 2,5 ng total RNA

from wild-type and mutant cia3 were preheated to 70uC for

20 minutes prior to the RT-PCR reactions. Advantage One-step

RT-PCR Kit (Clontech Laboratories, Inc CA, USA) was used and

10 ml of each reaction mix were run on a 1% agarose gel. The

following primers were used for the different transcripts: tubB2, 59–

CTTGTTCTGCACGTTCAGC–39 and 59–AAGCA-

GATGTCGTACAGG–39; cah3, 59-GTTCATTGGCAACATG-

GAGC-39 and 59-TGGCGTATGTCTTGTTGTCG-39.

Supporting Information

Figure S1 Association of Cah3 polypeptide with PSII
core complexes from high- and low-CO2-grown C.
reinhardtii cells. Immunoblot analysis of thylakoid membranes

(Thy), BBY preparations (BBY), and PSII core complexes (Core)

from cells of C. reinhardtii with antibodies raised against the over-

expressed Cah3 polypeptide (Cah3) and D1 protein of PSII. The

lanes were loaded with 10 mg protein.

(TIF)
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23. Rintamäki E, Salonen M, Suoranta U-L, Carlberg I, Andersson B, et al. (1997)

Phosphorylation of light-harvesting complex II and photosystem II core proteins

shows different irradiance-dependent regulation in vivo. J Biol Chem 272: 30476–
30482.

24. Turkina MV, Kargul J, Blanco-Rivero A, Villarejo A, Barber J, et al. (2006b)
Environmentally modulated phosphoproteome of photosynthetic membranes in

the green alga Chlamydomonas reinhardtii. Mol & Cell Proteomics 5: 1412–1425.
25. Allen JF, Nilsson A (1997) Redox signalling and the structural basis of regulation

of photosynthesis by protein phosphorylation. Physiol Plant 100: 863–868.

26. Mitra M, Mason CB, Xiao Y, Ynalvez RA, Lato SM, et al. (2005) The carbonic
anhydrase gene families of Chlamydomonas reinhardtii. Can J Bot 83: 780–795.

27. Lacoste-Royal G, Gibbs S (1987) Immunocytochemical localization of ribulose-
1,5-bisphosphate carboxylase in the pyrenoid and thylakoid region of the

chloroplast of Chlamydomonas reinhardtii. Plant Physiol 83: 602–606.

28. Gunning BES, Schwartz M (1999) Confocal microscopy of thylakoid
autofluorescence in relation to origin of grana and phylogeny in the green

algae. Aust J Plant Physiol 26: 695–708.
29. Gal A, Zer H, Ohad I, (1997) Redox-controlled thylakoid protein phosphor-

ylation. News and views. Physiol Plant 100: 869–885.
30. Fulgosi H, Vener AV, Altschmied L, Herrmann RG, Andersson B (1998) A

novel multi-functional chloroplast protein: identification of a 40 kDa immuno-

philin-like protein located in the thylakoid lumen. EMBO J 17: 1577–1587.
31. Peltier J-B, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, et al. (2002)

Central functions of the lumenal and peripheral thylakoid proteome of
Arabidopsis determined by experimentation and genome-wide prediction. Plant

Cell 14: 211–236.

32. Schubert M, Petersson UA, Haas B J, Funk C, Schröder WP, et al. (2002)
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