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Abstract

‘Biological aging clocks’ - composite molecular markers thought to capture an
individual’s biological age - have been traditionally developed through bulk-level
analyses of mixed cells and tissues. However, recent evidence highlights the impor-
tance of gaining single-cell-level insights into the aging process. Microglia are
key immune cells in the brain shown to adapt functionally in aging and disease.
Recent studies have generated single-cell RNA sequencing (scRNA-seq) datasets
that transcriptionally profile microglia during aging and development. Leveraging
such datasets, we develop and compare computational approaches for generating
transcriptome-wide summaries to establish robust microglia aging clocks. Our
results reveal that unsupervised, frequency-based featurization approaches strike
a balance in accuracy, interpretability, and computational efficiency. We further
extrapolate and demonstrate applicability of such microglia clocks to readily
available bulk RNA-seq data with environmental inputs. Single-cell-derived clocks
can yield insights into the determinants of brain aging, ultimately promoting
interventions that beneficially modulate health and disease trajectories.
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1 Introduction

An exciting advancement over the recent years has been the development of ‘biologi-
cal aging clocks’, composite molecular markers that are thought to capture the rate at
which an individual ages biologically [1, 2]. Initially developed as predictors of chrono-
logical age [3, 4], the subsequently developed clocks were further shown to predict
diverse aging-related disease and mortality outcomes [5–7], supporting their promise
as disease biomarkers. To date, aging clocks have been generated by various molecu-
lar platforms - e.g., transcriptomics, epigenomics, proteomics - largely applied in data
combined from many tissues and organs or in heterogeneous mixtures of cells from
single tissues (i.e., at the bulk level) [3, 8]. While such bulk-level analyses are essen-
tial for biomarker discovery, molecular changes and aging rates are known to vary
across different tissues and cell types [9–11]. Moreover, disease-related alterations in
aging clocks and their potential underlying pathways have been reported to occur in
a tissue- and cell-type-specific manner [12–14], highlighting the importance of gaining
cell-level insights into biological aging.

Microglia are key immune cells in the brain [15, 16] and have been critically
implicated in the neuroinflammation associated with aging [17, 18], adaptations to
stress [19, 20], neurodegenerative states [21–23], and diverse neuropsychiatric diseases
[24, 25]. In these processes, microglia can undergo dynamic transcriptional alterations
that are relevant to brain function and disease pathogenesis [19, 23, 26]. Recent seminal
single-cell RNA sequencing (scRNA-seq) studies further suggest that such transcrip-
tional alterations involve specific microglia subtypes and key genetic programs that
can be leveraged by machine learning algorithms to develop microglia aging clocks [27–
30]. Importantly, functional alterations in microglia subtypes are also associated with
distinct aging-related brain phenotypes, including neural stem cell proliferation [28],
neurodegeneration [31], and Alzheimer’s disease [30]. Uncovering the transcriptional
dynamics of microglia at the single-cell and cell-type levels may thus yield unique
insights into the determinants of brain aging and disease.

With single-cell technologies offering an unprecedented level of resolution in char-
acterizing functional states of individual cells, quality computational methods are
required to translate such information into machine learning models of sample-level
phenotype. Here, featurization denotes the process of translating multiple prominent
gene expression patterns and relative cell-type abundances from single-cell datasets
into succinct summaries that can be input to machine learning models of aging. Prac-
tically, each sample profiled with a single-cell technology produces a large matrix
of many features measured per individual cell, which must be translated into a
sample-level feature vector to ultimately train machine learning models of age.
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Fig. 1 Overview. a We used three scRNA-seq datasets profiling microglia during aging and devel-
opment to build microglia aging clocks. The Hammond dataset has six discrete time points spanning
between embryonic stage (E14.5) and old age (P540). The Buckley and Kracht datasets have con-
tinuously sampled ages between 3 and 29 months and 9 and 18 gestational weeks, respectively. b
To ultimately build aging clocks, or machine learning models of age, we computed computational
summaries or featurizations for each sample based on frequencies and genetic programs of microglia
subtypes. c Four approaches for featurizing or summarizing transcriptomic patterns of microglia in
profiled samples were applied and include frequency, single-cell landmark kernel mean embedding
(scLKME), pseudobulk++ (PB++), and classical pseudobulk (PBHVG). The various featurization
methods generate succinct features that can be used as input to machine learning models of age. d
A model for age was trained on the Hammond single-cell data and applied to an independent bulk
RNA-seq dataset with an additional environmental input (exposure to early life stress).

Computational featurizations of single-cell data have been explored substantially for
translating abundances and functional states of immune-cell types assayed with flow
and mass cytometry [32–39], but these approaches are not as well explored for high-
dimensional scRNA-seq data. While supervised featurization methods can be trained
to learn per-sample representations, based on external information such as age [36, 37],
here we examine the capacity of unsupervised feature engineering strategies, such as
computing cell-type frequencies [32] or pseudobulk-level features [40] to be used to
train single-cell microglia based models of age. Such unsupervised approaches are well
suited for datasets with small sample sizes and for uncovering meaningful patterns
that are biologically interpretable, such that they can illuminate the cell types asso-
ciated with particular aging trajectories. While Buckley et al. pioneered the use of a
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pseudobulk-based approach to compute per-sample featurizations across diverse cell-
types in the brain, it has not been adequately explored how the myriad of featurization
approaches can translate cellular heterogeneity patterns into models of age.

In this study, we leveraged publicly available scRNA-seq datasets profiling multiple
microglia samples across the lifespan (Fig. 1a), to pursue three main objectives. First,
we determined the extent to which frequencies of particular microglia subtypes and
their gene expression patterns change dynamically during aging and development (Fig.
1b). Using the same datasets, we also quantified how four methodologically diverse,
unsupervised featurization approaches of microglia transcriptome-wide signatures per-
form as age classifiers and aging clocks (Fig. 1c). Lastly, we assessed whether the
newly constructed microglia clocks and their conserved genetic programs are applica-
ble to bulk RNA-seq data with environmental inputs (Fig. 1d). Overall our findings
suggest that single-cell-derived and cell-type-specific microglia clocks can yield unique,
biologically relevant insights into brain aging.

2 Results

To understand the trade-offs in accuracy, interpretability, and efficiency of different
featurization approaches, we leveraged three multi-sample scRNA-seq datasets that
profile microglia transcriptionally during lifespan [27], aging [28], and fetal develop-
ment [41] (Fig. 1a). Key microglia subtypes and their genetic programs identified
under the different featurization approaches were leveraged to generate signatures of
microglia in aging, and to compare such signatures across multiple datasets. To assess
whether the findings uncovered through single-cell analysis can be generalized at the
bulk level, the prominent genes identified by scRNA-seq were validated and used to
train an aging clock in a bulk RNA-seq dataset of young (P9) and old (P200) mice
generated by Reemst et al. [42].

2.1 Single-Cell RNA-Sequencing Datasets of Microglia During
Aging and Development

Here, we provide an overview of the three scRNA-seq datasets (Fig. 1a) used to con-
struct the microglia aging clocks with the four unique featurization approaches (Fig.
1b).

Hammond Mouse Lifespan

The Hammond dataset profiles mice throughout the lifespan [27], with samples col-
lected at embryonic day 14.5 (E14.5), and postnatal days 4 (P4), 5 (P5), 30 (P30),
100 (P100), and 540 (P540). Our analysis included a total of 34,700 microglia isolated
by fluorescence-activated cell sorting (FACS) in N = 47 total mouse samples from 41
unique donors. Note that five of the donors had multiple samples due to additional
experimental perturbations used to induce a demyelinating injury.

Buckley Mouse Aging

The Buckley mouse aging dataset [28] is comprised ofN = 28 mice sampled at different
ages between 3.3 months and 29 months. Our analysis included a total of 3,844 cells.
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Fig. 2 Frequencies of microglia subtypes change dynamically during aging and devel-
opment. Age-related changes in microglia subtype frequencies were observed across the Hammond
(a), Buckley (b), and Kracht (c) datasets. Left panels show two-dimensional UMAP projections of
cells in each dataset. Cells are colored by the usefulness of their respective cluster’s frequency in pre-
dicting age (light to dark indicates less to more useful), according to cluster frequency Gini score
computed for a random forest classifier trained to predict discrete age groups. Discrete age groups
were defined for all datasets (further details in Methods). Five representative clusters with critical
dynamic changes in frequency useful for age-classification are depicted and numbered in each UMAP
plot. Middle panels plot the trajectory of mean frequencies of the top five age-predictive clusters in
each dataset as a function of age group. Right panels show two-dimensional UMAP projections of
cells in each dataset colored by the expression (dark to light indicates low to high expression) of key
genes that were differentially expressed in at least one of the five prioritized clusters.

In the original study, cells extracted from the subventricular zone (SVZ) neurogenic
region were profiled with scRNA-seq, but we selected microglia according to marker
genes indicated in the original study, including, C1qb, C1qb, Cst3, C1qc, Ctss, Hexb,
Fcer1g, Trem2, and Tyrobp.

Kracht Fetal Development

The Kracht fetal development dataset [41] profiled microglia that were isolated by
FACS in post-mortem brains from 20 aborted human fetuses, obtained at timepoints
sampled at different ages between 9 and 18 weeks of gestational age. Each donor
contributed between one and four samples, resulting in N = 223 total samples. Our
analysis included a total of 16,313 cells.
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2.2 Microglia subtype frequencies vary with age

All three datasets exhibited microglia heterogeneity based on Leiden clustering that
identified diverse microglia subtypes with characteristic genetic programs (Supplemen-
tary Figure 1). As a first approach to link cell heterogeneity to age, we examined how
the frequencies of identified microglia subtypes varied over the aging trajectory in each
dataset. To do so, we computed frequency features as the fraction of each sample’s
cells assigned to each cluster according to previously described methods [32]. To iden-
tify the microglia subtypes that most strongly associate with age, subtype frequencies
were then used to train and test a Random Forest classifier for age group over 200 tri-
als (see Methods), and mean Gini [43] scores were computed as a metric of frequency
feature importance (Fig 2). Fig. 2 left shows cells from the Hammond, Buckley, and
Kracht datasets (a-c, respectively) and colored by the importance of the frequency of
the cluster to which they belonged. In each dataset, we further highlighted the tra-
jectories of the top five clusters with predictive and dynamic frequencies across the
age spectrum (Fig. 2 middle). In the Hammond dataset, clusters 4 and 11 exhibited
similar patterns, having high frequencies at embryonic stage (E14.5), peaking at P4,
and then attenuating at older ages. Cluster 4 showed high expression of Ftl1, Apoe,
and Ctsb (Fig. 2a, right, Supplementary Figure 8), whereas cluster 11 was marked
prominently by Stmn1, Tubb5, and Tuba1a. Cluster 13 increased in frequency with age
and was marked by Malat1, Apoe, and Ifitm3. In the Buckley dataset, clusters 4 and
10 exhibited very similar gene expression patterns with frequencies that significantly
increased between adult and old age. These were marked by expression of Fth1, Ftl1
and Ctsb (Fig. 2b, right, Supplementary Figure 9). Clusters 3 and 8 also had distinct
gene expression patterns with frequencies that were highest at young and adult ages
but decreased in old age. These clusters were prominently marked by transcription fac-
tors Jun and Junb, as well as by Malat1. Finally, in the Kracht dataset, clusters 5, 4,
and 9 increased in frequency between the first and second trimesters and were marked
by expression of Cx3cr1, Ftl, and Csf1r (Fig. 2c, right, Supplementary Figure 10),
whereas clusters 2 and 8 decreased in frequency with age and both expressed Malat1,
Ftl, and Spp1. Together these analyses indicate dynamic changes in microglia subtypes
and genetic programs across aging and developmental stages.

2.3 Featurization Methods Impact the Accuracy of Microglia
Aging Markers

With evidence that microglia subtypes change over the aging continuum, we next
explored a range of strategies to generate aging markers derived from scRNA-seq data.
While clocks have historically been developed by modeling age as a continuous vari-
able, we evaluated the usefulness of each featurization approach in both classifying
age groups (i.e., discrete age variable) and predicting age (i.e., continuous age vari-
able), through classification and regression models, respectively. More specifically, we
examined how four methodologically distinct featurization techniques can be applied
to translate a multi-sample single-cell dataset into a succinct vector representation or
transcriptome-wide summary that can be used as input to a machine learning model
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Fig. 3 Accuracy of microglia aging classifiers across featurization approaches. Discrete
age groups were created in each dataset to formulate a discrete age classification problem, using the
various featurizations, including frequency, scLKME, Pseudobulk++50 (PB++50), Pseudobulk++25
(PB++25), and pseudobulk with highly variable genes (PBHVG) as input. Classification experiments
were performed using random forest classifiers and repeated 200 times with randomized train/test
splits of donors. Barplots and error bars show the mean and standard deviation in classification
accuracy obtained over the 200 trials. Details on discrete age categories specified for each dataset are
provided in Methods.

of age (Fig. 1c). We provide a description of each featurization algorithm here and
further technical details in the Methods section.

Frequency

Frequency-based featurization [32, 33] involves defining a common set of microglia
subtypes within a sample through unsupervised clustering of all cells across samples
within a dataset. A feature representation is computed for each sample by counting
the fraction of its cells for each subtype.

scLKME

scLKME [39] is an unsupervised feature learning approach, which encodes the
complexity of the single-cell landscape into a mathematically abstract vector rep-
resentation that can be used as input to classification models. scLKME performs
landmark-based kernel mean embedding, where a set of landmarks or generally pro-
totypical cells are chosen across all samples. Similarity patterns of each cell in each
sample are encoded based on overall similarity to the landmark cells, as evaluated
through a kernel evaluation [35].

Pseudobulk based on highly variable genes (PBHVG)

Pseudobulk representations of single-cell data are the most common approach for sum-
marizing broad gene expression patterns in single-cell data to create a representation
similar to bulk data. While there are a range of techniques for creating pseudobulk pro-
files, outlined comprehensively in Ref. [40], here we computed the sum of each gene’s
expression in each cluster. Because considering the expression of all measured genes
would create a feature space with a prohibitively high dimensionality, we considered
only the expression of the 3,000 most highly variable genes (HVG) in each cluster,
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Fig. 4 Performance of microglia aging clocks across featurization approaches. Age was
used as a continuous variable to train Lasso regression models under frequency, scLKME, Pseudob-
ulk++50 (PB++50), and pseudobulk with highly variable genes (PBHVG) featurization approaches,
using leave-one-out cross validation (LOOCV) in the Hammond, Buckley, and Kracht datasets. Scat-
terplots show the predicted versus true chronological age for each sample obtained in the LOOCV
trial for which it was the test sample. Note that the Kracht dataset has multiple samples (repli-
cates) per donor, so each point depicts the mean predicted age of all samples for each donor from the
LOOCV iteration in which it was a test sample. Correlation coefficients between chronological and
predicted ages are quantified with Pearson correlation (r).

which is a common pre-processing step in many single-cell pipelines [44]). This also
implies that there are 3,000 generated pseudobulk features per cell cluster.

Pseudobulk++ (PB++)

In contrast to a traditional pseudobulk approach [40], which computes aggregate
expression measurements for all genes across all cells in each cluster, the pseudobulk
(PB) ++ approach computes a single value for each cluster, which reflects the general
frequency and alignment with key gene expression programs of cells in the sample.
Specifically, PB++ variants integrate frequency information (i.e., the number of cells
across major cell-populations) with the extent to which key genes are expressed in each
cluster. In the PB++25 and PB++50 variants, we use the top 25 and 50 differentially
expressed genes across clusters, respectively, to imbue the feature representations with

8

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 7, 2024. ; https://doi.org/10.1101/2024.10.05.616811doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.05.616811
http://creativecommons.org/licenses/by-nc-nd/4.0/


gene expression information. This newly proposed method aims to parsimoniously
integrate signals originating from cell-type frequencies and key genetic programs.

Fig. 5 Run-time and memory requirements of featurization approaches. Run-time (top)
and memory (bottom) required for each featurization approach, including frequency, scLKME, pseu-
dobulk++50 (PB++50), and pseudobulk with highly variable genes (PBHVG) were evaluated across
datasets for featurization only (left), age classification based on a Random Forest classifier (middle),
and the overall process of featurization and classification (right). Results were obtained by repeating
the featurization and model training over 30 trials and reporting the mean. Error bars show standard
deviation around the mean. Results were obtained on a machine with Intel(R) Xeon(R) Gold 6226R
CPU @ 2.90GHz.

2.3.1 Microglia Age Classifiers

To assess classification performance across featurization approaches, ages in each
dataset were binned into discrete categories, based on age group (Hammond), age
distribution (Buckley), or trimester of pregnancy (Kracht). Histograms of age dis-
tributions are shown in Supplementary Figure 6. Note that the Hammond dataset
already had discrete age categories (embryonic stage E14.5, P4, P5, P30, P100, and
P540). The Buckley dataset was discretized into young (< 4 months), adult (4 months
to less than 14 months), and old (≥ 14 months and above). The Kracht dataset was
binned by trimester, such that 1st and 2nd trimesters contained samples of ages 9-12
and 13-18 weeks, respectively. Classification experiments involved 200 trials of ran-
dom train/test splits, where 80% of donors and their respective samples were used
for training and the remaining 20% for testing model accuracy (Acc), defined as the
fraction of samples with a correctly predicted age group. Fig. 3 shows the results
of the classification experiments across featurization approaches and datasets. In the
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Hammond Buckley Kracht
Frequency 17 14 13
scLKME 1500 1500 1500
PB++25 & PB++50 17 14 13
Pseudobulk (PBHVG) 51,000 42,000 21,905

Table 1 The number of features generated under each combination of dataset and featurization
approach.

Hammond dataset, which has the largest number of samples and age groups, the
top performing methods were frequency and PB++, resulting in mean accuracies of
Acc = 0.840 and Acc = 0.813, respectively. This suggests that larger datasets are suf-
ficiently well-powered to use these simple, low-dimensional featurization approaches.
In the Buckley dataset, which has the smallest number of samples, the top performing
method was scLKME (mean Acc = 0.752), followed by PB++50 (mean Acc = 0.693).
This suggests that features based on similarity patterns with landmark or anchor cells
contained enough signal to accommodate the relatively small sample size. The Kracht
dataset achieved strong performance with frequency features (mean Acc = 0.925),
followed by PBHVG (mean Acc = 0.918). In each of the three datasets, either fre-
quency or a PB++ variant achieved the top two highest classification accuracies. Such
methods are the least high-dimensional, with the number of features corresponding to
the number of clusters or inferred microglia sub-types. Therefore, our results suggest
robust classification performance by simple and computationally efficient approaches,
such as frequency or PB++ variants across aging and development.

2.3.2 Microglia Aging Clocks

To generate microglia aging clocks (i.e., predictors of chronological age), we employed
a leave-one-out cross-validation approach that used all but one donor and their respec-
tive samples to train a Lasso Regression model on a given set of features. We then
evaluated the predicted age of the held-out sample or donor and plotted them against
their chronological age in Fig. 4. In the Hammond dataset (Fig. 4 top), PB++50
showed the highest correlation between chronological and predicted ages (r = 0.90,
p = 3.04× 10−18), followed by scLKME (r = 0.88, p < 6.87× 10−16). In the Buckley
dataset (Fig. 4 middle), frequency showed the highest concordance between chrono-
logical and predicted age (r = 0.82, p = 9.3 × 10−8), with scLKME as the second
top-performing method (r = 0.80, p = 3 × 10−7), suggesting that the additional
information content included through a higher-dimensional feature space was only
marginally helpful.
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Fig. 6 Modules of genes with characteristic dynamic changes in expression during aging
are conserved across datasets. DELVE was used to identify modules of genes with common
patterns of increase (a) or decrease (b,c) across the aging continuum in the Hammond dataset and
applied to an independent bulk RNA-seq dataset. The top five genes for each module are highlighted.
The left panel shows the average expression pattern across the mouse lifespan for five representative
genes in each particular module. The middle panels show the distribution of expression patterns
for a prominent, representative gene (Malat1, Apoe, and Ccnb2 ) in dynamic modules 1, 2, and 3,
respectively in P9 and P200 mice. The right panels show distributions of aggregate (e.g. summed)
gene expressions of the indicated top five genes in each module in P9 and P200 mice.

In the Kracht dataset, the regression approach was more challenging, given the lim-
ited age range (Fig. 4 bottom). scLKME achieved the highest accuracy (r = 0.86, p =
9.67 × 10−7), followed by PBHVG (r = 0.83, p = 5.38 × 10−6). Overall, the results
suggest that for datasets covering a more extended age range (like Hammond and
Buckley), scLKME is the most robust choice, but lower-dimensional methods such
as PB++50 and frequency can also achieve robust prediction accuracies. In datasets
with a more limited age range (like Kracht), higher-dimensional approaches such as
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PBHVG and scLKME may be necessary to maximize the signal to noise ratio nec-
essary for robust prediction. It is also worth noting that frequency features showed
the weakest performance in the Hammond and Kracht datasets, despite excelling in
age classification (Fig. 3), suggesting these features may lack adequate transcriptional
signal for the regression task. This is especially true in the Kracht dataset, where we
hypothesize that the limited age range is not discernible through frequency features
alone.

2.4 Computational Requirements of Featurization Approaches

We next compared the computational requirements in terms of both run-time and
memory across the featurization approaches (with run-time and memory require-
ments shown in Fig. 5 top and bottom, respectively). The variation in run-time and
in the resources required for age classification and prediction was primarily driven
by the number of features produced under each approach (Table 1). Fig. 5 shows
mean run-time (top) and memory requirements (bottom). The analogous results for
using Lasso regression to build a clock from each featurization approach are shown in
Supplementary Figure 7.

Frequency was unequivocally the most efficient method, both in terms of run-time
and memory requirements, since it is an inherently low-dimensional featurization
technique that produces as many features as the number of clusters. The PB++
variants take slightly longer to compute during the featurization step than PBHVG
but lead to an overall reduced run-time and memory requirements for the overall
pipeline as they produce a low-dimensional space (number of features also equal to
the number of clusters). PBHVG produces a large number of features, increasing the
run-time and memory requirements. Finally, scLKME has the highest run-time and
memory requirements across datasets, likely due to the kernel evaluations built into
the method and the high-dimensional feature space produced.

2.5 Identifying key dynamic modules of genes changing with
the aging trajectory

We next sought to identify the groups of genes that underlie the changes in cell-type
frequencies driving the microglia aging clocks. To this end, we used the DELVE algo-
rithm [45] to uncover groups of genes changing dynamically (i.e., increase or decrease
in expression) and in characteristic ways during aging. Applying DELVE in the Ham-
mond dataset identified four dynamic gene modules with prominent changes across
the aging continuum. As shown in Fig. 6 left, key modules and their respective top-
scoring genes exhibited characteristic monotonic increases (Fig. 6a) or decreases (Fig.
6b) in expression over the aging expression over the aging continuum. As a further
independent validation, we then examined the expression of representative genes in
each module (Fig. 6 middle) in an independent bulk RNA-sequencing dataset gen-
erated by Reemst et al. [42] (hereinafter denoted as the Reemst dataset), profiling
microglia from young mice (P9, nine days of age) and older mice (P200, 200 days of

12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 7, 2024. ; https://doi.org/10.1101/2024.10.05.616811doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.05.616811
http://creativecommons.org/licenses/by-nc-nd/4.0/


age). Strikingly, the expression patterns of genes uncovered in modules in the Ham-
mond dataset tracked similarly in the Reemst dataset (Fig. 6 middle), suggesting the
trends are robust and generalize between single-cell and bulk data. Similarly, compos-
ite expression scores obtained by summing the expression of top five highlighted genes
in each module in each mouse are shown in Fig. 6 right and show consistent patterns
of increase or decrease, according to the DELVE modules.

Fig. 7 Aging clocks trained on scRNA-seq are applicable to bulk RNA-seq datasets
with environmental inputs. a Boxplots show the distribution of predicted ages in P9 and P200
mice under the single-cell to bulk-level extrapolation approach. Predicted ages significantly differed
between P9 and P200 mice (p = 1.69 × 10−10 under t-test). b Samples were separated by stress
condition at each age, and line plots visualize the trajectory in mean predicted age (points) at the
model between P9 and P200 age groups (linear regression p = .19 for P9 and p = .37 for P200). Error
bars show the standard error of the mean. c Barplots visualize the key genes in the elastic net (EN)
model trained on the Hammond dataset for predicting age that were also statistically significant (at
p-value < 10−5) for differentiating P9 and P200 mice in the Reemst dataset. Barplots visualize the
(signed) −log p-value of each gene under a t-test comparing its expression between P9 and P200
mice in the Reemst dataset. The sign (direction) of the bar indicates the sign of the coefficient of the
gene in the EN model for age. d Barplots visualize -log p-value (Wilcoxon test) of the ELS vs CTR
comparison for the key genes prioritized by the elastic net (EN) model trained on the Hammond
dataset. Genes were selected if they had a -log p-value of >= 2.5 at ages P9 (gold), P200 (pink) or
in both conditions (gray). e Line plots visualize expression patterns of key stress-responsive genes,
between P9 and P200 mice, separated by ELS (CTR) colored in purple (teal). Highlighted genes with
differences between ELS and CTR groups include Ier2 (p = 0.064 at P9), Sv2a (p = 0.05 at P200),
Jun (p = 0.02 at P200), Ddit4 (p = 0.07 at P200), Dusp1(p = 0.015 at P200), and Hes1 (p = 0.067
at P9 and p = 0.115 at P200).

Analysis with gene ontology run with the g:profiler tool [46] revealed distinct
biological processes in each DELVE module. Gene ontology categories enriched in
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dynamic module 1 included cytoskeleton organization (GO: 0007010), regulation
of monocyte differentiation (GO:0045655), and lipopolysaccharide immune receptor
activity (GO:0001875) (Supplementary Figure 2) . Dynamic module 2 was enriched
for generation of precursor metabolites and energy (GO: 0006091), detoxification
(GO:0098754), ATP:ADP antiporter activity (GO:0005471), and organonitrogen com-
pound metabolic process (GO:1901564) (Supplementary Figure 3). Dynamic module
3 was enriched for iron-sulfur cluster binding (GO:0051536), mitotic cell cycle
(GO:0000278), and ubiquitin protein ligase binding (GO:0031625) (Supplementary
Figure 4).

2.6 Extrapolating to and validating with bulk RNA-seq
datasets

We next tested if microglia aging clocks trained on scRNA-seq data can be applied
to independent bulk RNA-seq datasets. As bulk datasets are more readily available,
such applicability would present a powerful opportunity to exploit the unique insights
gained by single-cell datasets to a wider range of settings. It would further facilitate the
use of single-cell-trained markers to dissect how bulk-level gene expression programs
relevant to aging are experimentally modulated by various environmental inputs. To
address these questions, we leveraged the bulk-RNA seq dataset of microglia generated
by Reemst et al.. In addition to having different age groups, mice in this study were
also exposed to either control (CTR) or early life stress (ELS) in the form of limited
bedding.

To assess the bulk-level applicability of scRNA-seq-trained microglia clocks, we
extracted the pseudobulk features from the PBHVG aging clock, which was trained
earlier in the Hammond dataset, for the 2,845 genes that were also measured in the
Reemst dataset. To translate such pseudobulk features into a data structure similar to
bulk RNA-seq data with one expression value for each gene per sample, we summed
each gene’s per-cluster composite value across all clusters. These per-sample feature
vectors of gene expression measurements were then used to train an Elastic Net (EN)
regression model for age in the Hammond dataset (see Methods for details). When
applied to the Reemst dataset, this single-cell-trained aging clock resulted in predicted
ages that differed significantly between P9 and P200 mice (p = 1.69 × 10−10 under
t-test) (Fig. 7a). We also tested whether ELS exposure impacted the aging clock.
While there were no statistically significant differences between exposure groups (Fig.
7b), we noted an intriguing pattern whereby ELS resulted in lower predicted age in
P9 (p = 0.19) but higher predicted age in P200 as compared to the CTR condition
(p = 0.37).

As a last step, we examined the expression patterns of key genes prioritized
by the PBHVG model across age and stress groups. We specifically considered the
subset of genes with a coefficient with an absolute value >= 1.2 in the Hammond-
trained EN model and a -log p-value >= 5 upon testing between P9 and P200 in the
Reemst dataset. These analyses identified conserved and distinct transcriptional pat-
terns between P9 and P200 mice, with key genes including Sv2a,Lamc1,C5ar1, Egr1,
Ccl4, Hes1, Batf3, and Zfp93 (Fig. 7c). In addition, ELS exposure resulted in distinct
gene expression differences between ELS and CTR groups in each age group. P9 mice
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exposed to ELS showed statistically significant differences in the expression of Wfdc17
and Tspyl2 (p < 0.05), whereas P200 mice exposed to ELS showed upregulation of
Dusp1 and Jun (p < 0.05), Ddit4 (p = 0.07), and Gm128 (p = 0.053) (Fig. 7d). The
dynamic patterns of these stress-driven effects are visualized across the age groups
in Fig. 7e. Given that no stress-related information was used to train the model, it
is intriguing that some of the key genes with expression patterns that change during
aging also exhibit expression differences in response to early life stress.

3 Discussion

Biological aging clocks have been traditionally developed through bulk-level analyses
[3, 3–8], but recent evidence has highlighted the importance of gaining cell-type and
single-cell-level insights into the aging process [9–14]. Interrogating the transcriptome
of key immune cell types, such as microglia [15, 16, 19, 23, 26], may hold particular
promise for gaining such insights. Leveraging scRNA-seq datasets and state-of-the-
art computational methods, we generated robust microglia-derived aging markers,
compared marker performance across different featurization approaches, identified
microglia genetic programs that change dynamically with aging, and showed that
single-cell insights extrapolate to bulk RNA-seq data.

Rigorous testing of classification and regression-based aging markers in the three
single-cell datasets highlighted ways in which signals across individual cells, sam-
ples, and datasets can be integrated to generate machine learning models of dynamic
processes such as aging clocks. Leveraging a variety of such approaches, including fre-
quency [32, 33], scLKME [39], our novel pseudobulk++ approach, and classical pseu-
dobulk [40], revealed intriguing tradeoffs between accuracy, biological interpretability,
and efficiency. Frequency and pseudobulk++ compute compact, information-rich fea-
tures per each microglia subtype, capturing the extent to which their abundances and
gene expression patterns correlate with age. Frequency and pseudobulk++ proved to
be top performers in age classification in the Hammond and Kracht datasets, and
among the top two performing methods in regression-based aging clocks in the Buck-
ley and Hammond datasets that have samples from donors across a wide age range.
In contrast, scLKME and classical pseudobulk produce higher-dimensional data rep-
resentations, which inevitably pose larger demands on computation time and memory,
but may encode more nuanced information that improves prediction in particular set-
tings. For example, in the Buckley dataset, scLKME had significantly higher accuracy
as an age classifier than the other methods, suggesting that the higher dimensional fea-
ture space was advantageous in this dataset. Similarly, PBHVG and scLKME may be
more accurate as aging clocks in challenging prediction tasks with limited age ranges,
such as in the Kracht dataset. As our study only examines unsupervised approaches,
there are promising opportunities to further explore how supervised, learning-based
featurization [36, 37] and their variants incorporating additional donor-level covariates
[38] can be applied to create more information-rich encodings of single-cell profiles.

Prior work has supported central roles for microglia in the neuroinflammation
associated with aging [17, 18], neurodegenerative states [21–23], and diverse neu-
ropsychiatric diseases [24, 25]. However, the specific microglia subtypes and biological
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processes underlying these roles are unclear. Our unsupervised machine learning anal-
yses, applied across three independent datasets, indicate dynamic age-related changes
in the frequency of microglia subtypes, which are marked by biologically relevant key
signatures. For example, Apoe encodes an apolipoprotein that has a well established
role in neurodegeneration and dementia [47], and Malat1 codes for a long non-coding
RNA that is dysregulated in immune cell subtypes in association with aging and
frailty [48]. These findings corroborate and extend recent scRNA-seq studies show-
ing that transcriptional alterations during aging involve specific microglia subtypes
and key genetic programs relevant to aging-related brain phenotypes, including neural
stem cell proliferation, neurodegeneration, and Alzheimer’s disease [27–31]. Apply-
ing dynamic gene module (DELVE [45]) and ontology analyses further identified gene
modules enriched for distinct biological processes, including cytoskeleton organization,
immune cell differentiation, metabolism-related processes, cell cycle regulation, and
ubiquitination. Together these findings suggest promising research avenues to uncover
the role of microglia in brain aging and disease.

Our results also indicate that single-cell-trained aging clocks are applicable to bulk-
level data. More specifically, we found that our pseudobulk clock trained from scRNA-
seq robustly predicted age in an independent bulk RNA-seq dataset. Consistent with
prior work showing convergent genomic effects of stress and aging [49–51], we further
found that ELS significantly influenced the bulk-level expression of several top genes
comprising the pseudobulk clock, with effect magnitudes differing between age groups.
Notable examples include the genes encoding the master transcription factor AP-1
(Jun) [52] and the key innate immunity regulator Dusp1 [53]. This suggests that
single-cell-derived transcriptomic signatures of aging are applicable to bulk data and
modulated by environmental input. If confirmed by future studies, such single-cell to
bulk-level applicability presents powerful opportunities to exploit the unique biological
insights gained by single-cell datasets to a wider range of settings, spanning large-scale
human cohorts and more nuanced experimental systems.

In summary, the present study builds on the highly promising biological aging
research by leveraging scRNA-seq data and state-of-the-art machine learning methods
to identify robust microglia aging clocks and dynamic cell-type-specific genetic pro-
grams. Such single-cell-derived and cell-type-specific clocks can yield unique insights
into brain aging, ultimately promoting interventions that beneficially modulate health
and disease trajectories.

4 Methods

4.1 Data Acquisition and Pre-Processing

Single-Cell Datasets

The Hammond [27] (GSE121654), Buckley [28] (GSE196364), and Kracht [41]
(GSE141862) scRNA-seq datasets were downloaded from Gene Expression omnibus
(GEO). Associated accession numbers are indicated in parentheses. Note that in
the Buckley dataset, we converted the Seurat multi intergrated seurat2020.rds

object available in Zenodo (https://zenodo.org/records/7145399) as mentioned in Ref.
[28] to an AnnData object for our experiments.
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We performed downsampling in each dataset to increase computational efficiency.
In each dataset, for a given sample i, max{750, total number of cells in sample i} were
randomly selected. Cells across samples were then concatenated into an annData object
for use with single-cell pre-processing tools in Scanpy. In each sample, we performed
Counts per million (CPM) normalization by normalizing each cell by the total number
of counts across all genes, using the function scanpy.pp.normalize total with a
target sum of 1e6. We then performed log(1+ x) transformation for all counts. In the
Hammond and Buckley datasets, the 3,000 most highly variable genes were retained.
In the Kracht dataset, there were only 1,685 measured genes, and hence we did not
do any additional highly variable gene filtering.

Reemst Bulk RNA Sequencing Dataset

The Reemst bulk RNA-sequencing dataset [42] was downloaded from GEO (accession
number GSE207067). All gene expression measurements were log(1+ x) transformed.
For all experiments in the paper, we did not consider any sample from a mouse that
had received a Lipopolysaccharide (LPS) injection.

4.2 Notation and Preliminaries

We define an N profiled sample single-cell dataset, X of N cell × gene matrices as
X = {Xi}Ni=1. Here, Xi ∈ Rci×p gives the data matrix of p transcriptomic features
measured across ci cells in a particular sample, i. We furthermore define a vector
of per-sample ages, y ∈ RN , such that the i-th element, yi gives the age of profiled
sample i. Moreover, our task is to employ a robust featurization strategy to create
a per-sample microglia transcriptomic summary given by d features, si ∈ Rd, such
that some model, f(·) can accurately model age so that

∑N
i=1[f(si) − yi] is as small

as possible.

Defining Cell Types Through Unsupervised Clustering

The partitioning of cells into clusters forms the backbone of many of the featurization
approaches, which engineer sample-level features based on clusters or uncovered cell
types. To pre-process cells for input to clustering algorithms, we used scanpy to first
represent each cell in terms of its top 40 principal components (PCs = 40) and built a
k-nearest neighbor graph (kNN=10) by connecting each cell to its 10 nearest neighbors.
To partition single cells into salient cell types with common gene expression programs,
we used Leiden clustering [54] on constructed graph representation of the data, with
resolution parameter, γ = 1. This algorithm partitions cells in each sample Xi into
K populations. Note that this default resolution parameter, γ will produce different
numbers of clusters per dataset, depending on the total number of cells and the extent
of heterogeneity across cells.
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4.3 Featurization Strategies

Frequency

Given a partitioning of cells in a given sample, Xi into 1 of K populations, we engineer
a frequency feature vector, f i, for sample i, such that the m-th entry, f i

m, encodes
the proportion of cells in Xi that were assigned to cluster m. This implies that the
frequencies sum to 1 with

∑
m f im = 1.

Classical Pseudobulk (PBHVG)

Classical psuedobulk is a standard formulation for compressing aggregate information
across cells into single per-sample feature vectors. Here, we compute classical pseu-
dobulk based only on the most highly variable genes in each dataset, such that for a
given sample, Xi, the objective is to look at summed expressions of each gene across
all cells within a particular cluster, m. This process is repeated across the K clusters.
So, we can define a pseudobulk feature vector for sample, i as pi by concatenating
their per-each-cluster feature representations (gi

m for cluster m in sample i) as,

pi = [gi
1,g

i
2, . . .g

i
K ] = [gi11, g

i
12, . . . g

i
1p|gi21, gi22, . . . gi2p|giK1, g

i
K2, . . . g

i
Kp]. (1)

Here, for a dataset with p genes, each gi
m ∈ Rp is a vector of aggregated expressions

over the p measured genes from all cells in sample i that have been assigned to cluster
m. We chose sum as our aggregation technique so that a particular value, giqm gives
the sum of expression of gene q of all cells in cluster m in sample i.

Pseudobulk++

Pseudobulk++ (PB++) is a novel featurization strategy introduced here, which is a
parsimonious formulation of combining notions of frequency with classical pseudobulk.
For each sample, this method computes a score for each cluster reflecting both the
frequency of the sample’s cells for that cluster and the extent to which the sample’s
cells in that cluster express key genes.

First, we perform a differential expression test in each cluster, which implements
a cluster vs. rest comparison in each of the K clusters. We then rank genes by p-
value from most to least significant, such that the genes at the top of the list are
those that are significantly differentially expressed through prominent up-regulation
or down-regulation in at least one cluster. We then extract the top G genes, in terms
of their p-values (and z-scores) across clusters to form the vector, f , such that f =
[f1, . . . , fG] ∈ RG. Here, fq gives the absolute value of the z-score for gene q, reflecting
its strength of differential expression (either significantly up or down regulated) in
the one vs. rest differential expression test in at least one the clusters. To implement
differential expression tests, we used get.rank genes groups in scanpy. In practice,
we found the method works well for the top 25 or top 50 differentially expressed genes
and their respective scores across all clusters to yield G = 25 and G = 50 for PB++25
and PB++50, respectively. Ultimately, the set of G genes will be treated as a common
set of key genes used to compute a composite per-cluster score for each sample.

For a particular sample, i, we extract a subset of their cell × gene matrix from Xi

as X̃i with X̃im ∈ Rcim × G, which gives the expression of only the common top G
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genes across the cim cells in cluster m in sample i. The feature value, p̃im for cluster
m in sample i is therefore computed as,

p̃im = (X̃im × f)T1cim (2)

Here, 1cim is notation for the vector of length cim (e.g. the number of cells from
sample i in cluster m and provides an operator to sum the re-weighted values of cells
attained by (X̃im × f)T . Moreover, the entire feature vector for sample i under the
PB++ formulation can be expressed as,

p̃i = [p̃i1, . . . , pim] = [(X̃i1 × f)T1ci1 , . . . , (X̃iK × f)T1ciK ]. (3)

Ultimately, each p̃i ∈ RK is relatively low dimensional and only has as many
features as there are clusters.

scLKME

The scLKME strategy was introduced in Ref. [39]. The premise of the algorithm
is to choose a number of landmark cells across all profiled samples and to ulti-
mately compute featurizations based on overall patterns of each cell’s similarity with
each landmark as gleaned through kernel evaluations. We chose L = 1500 landmark
cells obtained through cell sketching [55] across all samples and with kernel, κ(·),
as the radial basis function (RBF). Under this formulation, scLKME computes the
featurization for sample i, si ∈ RL (for L = 1500) as,

si = [µ̂(xℓ1), µ̂(xℓ1), . . . , µ̂(xℓL)]. (4)

Here, each µ̂(xℓj ) computes the mean kernel evaluation over all ci cells and sample
i and the landmark cell, ℓj as,

µ̂(xℓj ) =
1

ci

ci∑
t=1

κ(xt,xℓj ). (5)

4.4 Age classifiers

Age classifiers were trained to predict the ages of samples binned in discrete categories.
The Hammond dataset already had discrete age categories, consisting of E14.5, P4,
P5, P30, P100, and P540, so the classification problem was over six classes. In the
Buckley dataset, we binned ages into young (< 4 months), adult (4 months ≤ age
< 14), and old (≥ 14 months). The classification problem was therefore over three
age categories. Finally, we formulated a binary classification problem in the Kracht
dataset by separating samples into first (9-12 weeks) and second trimester (13-18
weeks), respectively.

Within a dataset, we applied a given featurization approach to each sample to
obtain their vector encoding. These vector encodings were then given to a random
forest classifier (implemented in ScikitLearn using RandomForestClassifier in
Python) with 50 trees and the square root of the total number of features to find
the best split. We used 200 randomized train/test splits of the data using 80% of the
donors and their respective samples (in the Hammond and Kracht dataset, which have
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multiple samples per donor) or samples (in the Buckley dataset) for training and the
remaining 20% for testing to obtain a distribution of classification accuracies. Classi-
fication accuracies reflect the proportion of samples with correctly predicted labels in
the dataset.

4.5 Aging clocks

We used penalized linear regression with the Lasso penalty (implemented in
ScikitLearn using linear model.Lasso in Python) to predict sample ages, under
each given featurization. Given a featurization of N samples into d features obtained
for a dataset that results in a matrix, D ∈ RN×f with a corresponding age response
vector as y ∈ RN , Lasso regression seeks to optimize a vector of per-feature coefficients,
β ∈ Rf that minimize,

1

2N
||y −Dβ||22 + λ||β||1. (6)

We tuned λ, or the magnitude of the penalty applied to each coefficient, through
cross-validation on each training set. To train and test the models, we used a leave-
one-out cross-validation approach (LOOCV) by training the model on all but the
one held-out sample and predicting the age for the held-out sample in each LOOCV
iteration. The Buckley dataset only has one sample per donor, whereas the Kracht
and Hammond datasets have multiple samples per donor, such that samples from a
donor were kept together in the same train/test split in each LOOCV iteration.

We used Pearson correlation and fitted linear regression p-value as the metrics of
success to quantify how well the chronological and predicted ages correlated across
samples (implemented with scikit learn).

4.6 Extrapolating from Single-Cell to Bulk

To generate a scRNA-seq-derived aging clock that could be applied to the Reemst bulk
RNA-seq dataset [42], we converted the multiple cell × gene expression matrices in
the single-cell Hammond dataset [27] into a sample × gene expression matrix, which
has analogous structure to the bulk RNA-seq data. To this end, we used a simple
variation of the classical pseudobulk approach. As classical pseudobulk computes an
aggregate expression measurement for each gene in each cluster (usually by computing
a sum), we decided to simply compute aggregate expression of each gene across all
cells (so, across all clusters) through sum (alternative aggregation methods explored
in Supplementary Figure 5). So, given the Hammond dataset, {Xi}Ni=1 profiling cells
across Nh samples with ci cells measured per sample, we computed the sample ×
gene matrix, X̃ ∈ RNh×G for the dataset such that a given entry X̃iq measuring the
expression of gene q in sample i is computed as the sum of column q (gene q) over all
cells,

X̃iq =

ci∑
i=1

Xiq. (7)

We consider only the G genes that are also measured in the Reemst Bulk RNA-
sequencing dataset profiling Nr samples, which produced a data matrix ofB ∈ RNr×G.
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Using X̃, we trained an Elastic Net linear regression model to find per-gene coeffi-
cients β ∈ RG to optimally predict ages in the Hammond dataset given by yh ∈ RNh

that minimize,

1

2Nh
||yh − X̃β||22 + (α× L1 ratio)||β||1 + (0.5× α× (1− L1 ratio))||β||22. (8)

The model is trained using linear model.ElasticNet in Scikit learn with
default parameter values of alpha = 1 and l1 ratio=0.5.

The ultimate per-gene coefficients encoded in β were ultimately used to predict
the ages (yNr

) of samples in the Reemst dataset as,

yr = B× β (9)

4.7 DELVE implementation to identify gene modules with
common genetic patterns

We applied the DELVE algorithm [45] to the Hammond dataset to reveal dynamic
genetic programs in microglia in an unsupervised manner. We uncovered 5 dynamic
modules with DELVE (using parameter n clusters=5) and otherwise default param-
eters.

5 Data and Code Availability

All featurization strategies and tutorials for reproducing results are available in
github https://github.com/CompCy-lab/microglia-aging-clock. Processed scRNA-seq
datasets are available in anndata format in Zenodo (DOI: 10.5281/zenodo.12811383).
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