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Abstract

Motivation: Recombination is one of the essential genetic processes for sexually reproducing organisms, which can
happen more frequently in some regions, called recombination hotspots. Although several factors, such as PRDM9
binding motifs, are known to be related to the hotspots, their contributions to the recombination hotspots have not
been quantified, and other determinants are yet to be elucidated. Here, we propose a computational method,
RHSNet, based on deep learning and signal processing, to identify and quantify the hotspot determinants in a purely
data-driven manner, utilizing datasets from various studies, populations, sexes and species.

Results: RHSNet can significantly outperform other sequence-based methods on multiple datasets across different
species, sexes and studies. In addition to being able to identify hotspot regions and the well-known determinants ac-
curately, more importantly, RHSNet can quantify the determinants that contribute significantly to the recombination
hotspot formation in the relation between PRDM9 binding motif, histone modification and GC content. Further
cross-sex, cross-population and cross-species studies suggest that the proposed method has the generalization
power and potential to identify and quantify the evolutionary determinant motifs.

Availability and implementation: https://github.com/frankchen121212/RHSNet.

Contact: liyu@cse.cuhk.edu.hk or xin.gao@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recombination is an essential and fundamental genetic process in mei-
osis, which introduces new combinations of alleles and generates hap-
lotypic diversity in sexually reproducing organisms, driving evolution
and biodiversity (Baudat et al., 2013; Halldorsson et al., 2019; Spence
and Song, 2019). Although the molecular mechanism of this process
has not been fully uncovered (Baudat et al., 2013), it is believed that in
many species, including humans and mice, the event begins with the
binding of DNA by the histone methyltransferase PRDM9 (Baudat
et al., 2010). The double-strand break (DSB) machinery, including the
meiotic topoisomerase-like protein SPO11 (Paiano et al., 2020), is then
recruited by an unknown mechanism, forming DSBs. Specialized path-
ways repair these breaks, with the majority leading to non-crossovers

while the minority developing crossovers (COs) (Mancera et al., 2008).
Although PRDM9 binds ubiquitously throughout the genome, the dis-
tribution of COs is non-random, clustered in narrow regions (see
Supplementary Fig. S1), called recombination hotspots (Baudat et al.,
2010, 2013). Despite the unclear reason for forming hotspots, the fol-
lowing factors are suggested to be related to the locations of hotspots
(Halldorsson et al., 2019; Hinch et al., 2019). The DNA binding do-
main of PRDM9 influences sequence specificity and the formation of
DSBs (Baudat et al., 2010; Myers et al., 2008, 2010; Parvanov et al.,
2010); histone modifications can influence the chromatinic local struc-
ture and thus affect CO formation (Jin et al., 2021; Lange et al., 2016;
Spence and Song, 2019); recombination occurs more frequently in GC-
rich regions (Bh�erer et al., 2017; Halldorsson et al., 2019). Yet, more
factors influencing the recombination events and hotspot formation,
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and the molecular mechanism behind it are yet to be discovered
(Baudat et al., 2013; Bell et al., 2020).

Several studies (Auton et al., 2015; Bell et al., 2020; Brick et al.,
2018; Coop et al., 2008; Halldorsson et al., 2019; Hinch et al.,
2019; Kong et al., 2010; Mancera et al., 2008; Myers et al., 2008)
have been conducted to demystify this essential genetic process,
resulting in a large amount of data with different properties. The
availability of such datasets enlightens the possibility of investigat-
ing this problem from a different angle, i.e. in a data-driven manner.
Despite the extensive biological experiments and the development of
computational tools to construct genetic maps (Bruen et al., 2006;
Spence and Song, 2019) and perform binary classification (Brown
and Lunter, 2019; Chen et al., 2013; Liu et al., 2017) of hotspot and
coldspot sequences, computationally, researchers have not investi-
gated the determinants of recombination hotspots systematically
and quantitatively. Based on the accumulated datasets from the pre-
vious studies, it is very promising to develop computational methods
to perform cross-study, cross-sex, cross-population and cross-
species investigation, potentially providing more insights into this
crucial biological process.

Deep learning has been proven to be a successful approach for
performing classifications (Eraslan et al., 2019; LeCun et al., 2015).
However, directly applying deep-learning models to this problem
may cause difficulties in studying the recombination hotspot deter-
minants quantitatively due to the complexities and interpretability
issue of the model (Zou et al., 2019). To analyse the accumulated re-
combination data and facilitate the study of the yet unclear recom-
bination process, we propose a novel transparent computational
method, RHSNet, which combines the strength of deep learning
(LeCun et al., 2015), activation backpropagation (Shrikumar et al.,
2017) and signal processing (Kay, 1993), to systematically identify
and quantify the recombination hotspot determinants taking advan-
tage of data from multiple previous studies crossing different popu-
lations (Bell et al., 2020; Halldorsson et al., 2019; Lange et al.,
2016; Spence and Song, 2019), sexes (Brick et al., 2018) and species
(Lange et al., 2016; Mancera et al., 2008). In addition to predicting
hotspot sequences accurately and identifying the well-known deter-
minants, our method can quantify the relative contribution of each
determinant, showing their differences in different sexes and species,
as well as their evolution across different populations.

2 Materials and methods

2.1 An overview of RNSNet
Our method leverages the strength of deep learning, activation back-
propagation and signal processing to first predict the recombination
hotspot sequences, then quantify the contribution of the input infor-
mation, and finally extract determinants, such as the PRDM9 bind-
ing motif. As shown in Figure 1A, during the prediction, the input
sequences of various lengths, depending on the data, go through a
specific deep-learning model, which consists of two 1-D convolu-
tional layers as the sequence feature extractor, a Gated Recurrent
Unit (GRU) for capturing long-range information and a multi-head
attention layer for detecting interactions within the sequence (see
Supplementary Fig. S2), to output useful information from the raw
sequences. Because histone modifications are also shown to be cru-
cial to recombination (Lange et al., 2016; Spence and Song, 2019),
we use another deep-learning module to process the information,
including H3K4me3 and H3K36me3 from testis and ovary. Then,
the feature vectors extracted from sequence information and ChIP-
seq information are normalized before combination to predict
whether the input sequence is a hotspot sequence. In addition, we
are further interested in identifying and quantifying the recombin-
ation hotspot determinants. One previous study (Brown and Lunter,
2019) extracts motifs by considering only the activation of the first
layer in the deep-learning model. But this method omits the com-
plexity of the downstream layers and has difficulty in quantifying
the motif’s contribution based on the entire model. To resolve the
issue, we utilize an activation backpropagation method (Shrikumar
et al., 2017). The prediction of a specific sequence is

backpropagated through the entire network back to the original
inputs to assign contribution scores to the motifs. Note that we con-
sider the entire deep-learning model and compute the score in a

purely data-driven manner. However, extracting determinant infor-
mation remains a problem because the computed scores can be

noisy, with peaks having various lengths along the sequence, as
shown in Figure 1B. We resolve this problem using signal processing
techniques. We apply a low-pass filter onto the contribution score

array. Then, we extract the significant motifs between two valleys
with a peak. The user has the freedom to choose the low-pass filter,

either obtaining long determinants or short ones with high confi-
dence. Based on the outputs of RHSNet, we further perform com-
prehensive quantitative analysis, as shown in Figure 1C, which will

be discussed in detail below.

2.2 Dataset construction
In our study, we use datasets from a number of projects, including

the Icelandic (Halldorsson et al., 2019) dataset, the HapMap II
(Frazer et al., 2007) dataset, the Sperm (Bell et al., 2020) dataset,
the 1000 Genomes Project (Auton et al., 2015) dataset, the Mice

(Lange et al., 2016) dataset and the Yeast (Mancera et al., 2008)
dataset. The Icelandic (Halldorsson et al., 2019) dataset, provided

by 1 476 140 COs from 56 321 paternal meiosis and 3 055 395
COs from 70 086 maternal meiosis, has a 642 bp resolution (655 bp
for the paternal part) generated from Icelandic pedigrees on the

GRCh38 human reference genome (Harrow et al., 2006), from
which we select 20 000 hotspots with an average recombination rate

of 51.07 cM/Mb and 20 000 coldspots with an average recombin-
ation rate of 1:78� e�10 cM/Mb (resolution from 500 to 1000 bp)
for cross-validation. Based on the fact that, in the sex-average map,

the average length of those hotspots is relatively shorter (averaging
526 bps) than that of coldspots (averaging 3071 bps), we sort the re-

combination rates of all the possible sequences and select the lowest
20 000 coldspots with a proper resolution to construct the negative
samples.

Similar to Myers et al. (2008), we acquired the HapMap II
(Frazer et al., 2007) dataset from Brown and Lunter (2019), in

which the data are segmented into hotspots (average rate 10.5 cM/
Mb) and coldspots (average rate below 0.5 cM/Mb) regions from a
hidden Markov model with emission probabilities defined as

p(observedrate—hot) and p(observedrate—non-hot). Sperm (Bell
et al., 2020) dataset is built with 31 228 sperm cells from 20 sperm

donors, among which 813 122 COs from 787 aneuploid chromo-
somes are identified. The recombination rates vary in 20 sperm
donors ranging from 22.2 to 28.1 COs per cell. A fine-scale genetic

map is generated by us from those 813 122 COs events by stepping
along the genome at 500 kb intervals, dividing the number of COs

that occurs up to each point and by the total number of cells. We
further select 5000 hotspots with an average recombination rate of
19.96 cM/Mb and 5000 coldspots with an average recombination

rate of 1� e�20 cM/Mb for cross-validation. For detailed descrip-
tion about the Mice dataset (Lange et al., 2016), PRDM9 lacking

Yeast (Mancera et al., 2008) (Saccharomyces cerevisiae) dataset,
and 1000 Genomes Dataset (Auton et al., 2015) could be found in
the Supplementary Section S1.

2.3 Low-pass filter-based signal extraction from guided

backpropagation
The previous method, known as DeepLIFT (Shrikumar et al., 2017),

successfully assigns contribution scores of input DNA sequences. By
calculating the gradient of each activated neuron through guided

backpropagation, contribution scores can be computed efficiently in
a single backward pass based on the reference sequence with (A, C,
G, T) distributed with probabilities as 0.3, 0.2, 0.2 and 0.3

(Supplementary Section S2), respectively. With the reference
sequence r0

1; r
0
2; r

0
2 . . . as input, the reference activation y0 could be

computed as:
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y0 ¼ f ðr0
1; r

0
2; r

0
2 . . .Þ: (1)

The key idea of important score extraction is through guided
backpropagation. For each neuron y, �yþ and �y� are defined as
having positive and negative component of �y:

�y ¼ �yþ þ�y�: (2)

Now, given an input neuron x and the target neuron t, there is a
difference of �t from the reference neuron r. The multiplier m�x�t

could be defined as the contribution of �x to �t divided by �x:

m�x�t ¼
C�x�t

�x
: (3)

Also, given C�xi�yi
along with C�yi�t, we can show that the def-

inition of m�x�t according to the chain rule would satisfy summa-
tion-to-delta:

�t ¼
X

i

C�xi�t: (4)

Notably, using the chain rule in which the input layers have one-
hot encoded sequence s1; s2; . . . sn, hidden layers y1; y2; . . . yn and the
target output t, based on Equation (4), we can have:

m�si�t ¼
X

j

m�si�yj
m�yj�t: (5)

We can compute the multipliers for each input sequence si effi-
ciently via backpropagation. Inspired by DeepLIFT, a more advanced
TF-MoDISco (Avsec et al., 2019) introduced for transcription factor
prediction was proposed. However, DeepLIFT and TF-MoDISco
share a common disadvantage of having a strong assumption on the

discovered motif length based on previously known probabilistic motif
models. Such a strong assumption is further enhanced when adjusting
the sliding window size similar to the expected length of the core motif
and its flanks, which can be unknown for innovative motif discovery.
Finding longer motifs is crucial in the recombination hotspot predic-
tion task because each PRDM9 zinc finger is 28 amino acids long and
is usually decoded within an 84bp repeating tandem (Baudat et al.,
2010). Also, the PRDM9c (ZF8–13) motifs are usually 21 bp long, be-
cause they are accompanied by 50 (five prime) and 30 (three prime),
making the traditional sliding window-based method less efficient.

A sliding window-based approach with a fixed window size is
adopted by Brown and Lunter (2019) to find activated motifs from
the networks’ first layer, which has a strong assumption on the dis-
covered motif length. Through backpropagation, RHSNet converts
the discrete contribution scores into a continuous digital signal for
the possible discovery of interesting motifs with variant lengths. In
our motif extraction algorithm, we utilize low-pass filters with dif-
ferent kinds of factors and a peak detection algorithm, from which
we could easily control the length range of the detected motifs by
controlling the low-pass factor.

The contribution scores generated from backpropagation are
firstly transformed into one-dimensional signals (see Fig. 3A) and
fed into the low-pass filter. Opposite from high-pass filters, the low-
pass filter allows low-frequency signals to pass, here, we show the
transition function of an analogue low-pass filter with one order:

HðsÞ ¼ 1
s

Wn
þ 1

;Wn ¼ 2� fc

fs
; (6)

where fc is the critical frequency and fs is the sampling frequency. In
practice, a low-pass filter with higher order would usually have a

Fig. 1. Overview of the proposed framework, RHSNet, along with the proposed filter-based motif extraction approach. (A) The deep-learning algorithm of RHSNet accurately

identifies recombination hotspots from different studies/species/populations/sexes, considering the ChIP-seq information. The model consists of two 1-D convolutional layers

as the sequence feature extractor, a GRU for capturing long-range information and a multi-head attention layer for detecting interactions within the sequence. (B) RHSNet has

a low-pass filter-based motif extractor that can quantify the contribution of hotspot-determinant motifs with flexible lengths (4–30 bp). We propose such a method based on

gradient backpropagation and signal processing. (C) Comprehensive analysis across different studies/species/populations/sexes, based on RHSNet, provides more insights into

the biological process and suggests the effectiveness of the proposed method
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better filtering performance. Therefore, an eighth-order low-pass fil-
ter is implemented in the programme. The Wn scalar can be flexibly
chosen from [0.1,0.2,0.4] when users are looking for motifs with ap-
proximate length of 50, 10 and 5 bp, respectively. Detailed explan-
ation can be found in Supplementary Section S2. The low-pass filter
provides a smooth form of signals by eliminating short-term fluctua-
tions and retaining long-term development trends, in which longer
motifs enriched by a relatively high-frequency signal are reserved.
By detecting each peak with its nearby valley, we could easily ex-
tract the motif in the middle. We choose 0.06 as the prominence par-
ameter for the peaks. Also, the valleys are defined as the peaks of
the reversed signal where the interval of each valley width is set to 1.

2.4 Enrichment factor definition
It is widely acknowledged that the identification of the DNA motifs is
a vital task for recombination hotspot identification (Myers et al.,
2008). We define the motif enrichment factor by the ratio of the
selected motif’s contribution score over the average contribution score
of the entire input sequence through backpropagation. Different from
the recombination rate, which is an absolute value, the enrichment
factor is more of a relative index, which indicates how strong the
enriched motif signal is among the entire input sequence. That is, the
larger the enrichment factor, the higher chance that such a cropped
motif plays a more important role in the recombination events.

3 Results

3.1 Overall recombination hotspot prediction

performance
Although our method is not designed specifically to perform binary
recombination hotspot prediction, it can achieve superior perform-
ance on the task compared with existing methods. PseDNC (Chen
et al., 2013) was first proposed and tested on S.cerevisiae (yeast)
chromosome. It needs to transform DNA sequences into a novel fea-
ture vector, namely pseudo amino acid, and then feed it into trad-
itional classifiers, such as Support Vector Machine. Equivariant
CNN (Brown and Lunter, 2019) as proposed as the first neural-net-
based method towards this problem and was tested on HapMap II
(Frazer et al., 2007) data, and shows its strength as a motif finder.
Here, we report the performance of the classification module in
RHSNet (the Identification module in Fig. 1A). We evaluate the pro-
posed deep-learning model’s performance on different datasets
[HapMap II (Frazer et al., 2007), Icelandic (Halldorsson et al.,
2019) and Sperm (Bell et al., 2020)], different sexes (Halldorsson
et al., 2019), different populations (Frazer et al., 2007), different
species (Lange et al., 2016; Mancera et al., 2008) and across differ-
ent evaluation criteria, whose results are shown in Figure 2. With
the same input data and evaluation criteria, our deep-learning model
in RHSNet is constantly better than the competing models, includ-
ing a simple 2-layer CNN, Equivariant CNN (Brown and Lunter,
2019) and PseDNC (Chen et al., 2013), across different conditions
in terms of F1 score (see Fig. 2A), except for the paternal Icelandic
dataset. Meanwhile, on the sex-specific dataset, for which we can
extract ChIP-seq information from the corresponding ovary and tes-
tis tissues, we utilize six histone modifications (H3K4me1,
H3K4me3, H3K27ac, H3K9me3, H3K36me3 and H3K27me3)
from testis and ovary tissues for the paternal and maternal datasets,
respectively. Adding such information into our model (RHSNet-
chip) can further boost the deep-learning model’s performance,
which is consistent with the previous research (Lange et al., 2016;
Spence and Song, 2019). To further test the robustness of our model,
we evaluate the model’s performance on hotspot regions with vari-
ous lengths (see Fig. 2B, on the Icelandic dataset), using a different
evaluation criterion, Matthews Correlation Coefficients (MCC). As
illustrated in Figure 2B, our method is consistently better and shows
more stable and robust performance than the baseline methods
across different resolutions. As the resolution goes down and the
prediction becomes less demanding, all the models’ performance
improves, although the training dataset size decreases. To further
validate the generalization ability of RHSNet without ChIP-seq

information, we test it against a dataset from different species. On
the Mice dataset (Lange et al., 2016), evaluated with Area Under the
Receiver Operating Characteristic curve (AUROC), RHSNet can
significantly improve over the existing methods (see Fig. 2C). We
have also compared RHSNet with the non-default parameters for
PseDNC and Equivariant CNN. The statistical results about
RHSNet’s identification performance can be referred to
Supplementary Tables S4 and S5 and Supplementary Figures S3–S5.

3.2 PRDM9 binding motif, GC content and histone

modification affect recombination hotspots
The existing research has shown that PRDM9 binding motif
(Baudat et al., 2010; Myers et al., 2008, 2010; Parvanov et al.,
2010), histone modification (Lange et al., 2016; Spence and Song,
2019) and GC content (Bh�erer et al., 2017; Halldorsson et al., 2019)
influence the recombination hotspot. We use RHSNet to analyse
how the above factors are related to the recombination hotspots in
different datasets. As we have discussed, in our method, with differ-
ent low-pass filter factors, we can extract motifs with different
lengths and different enrichment factors (see Figs 1 and 3A). In
Figure 3B, we compare the top-ranked motifs regarding the enrich-
ment factor from different datasets [HapMap II (Frazer et al.,
2007), Icelandic (Halldorsson et al., 2019) and Sperm (Bell et al.,
2020)] with different filter factors against the PRDM9 binding
motif4: CCNCCNTNNCCNC and SPO11-oligo (Lange et al.,
2016). Clearly, in the Icelandic dataset, the top-ranked motifs are
highly correlated (top10: 87.5% 6 1.01; top100: 64.1% 6 1.54)
with the canonical PRDM9 motif regarding the pairwise sequence
alignment matching score. Although, compared with Icelandic, the
PRDM9 pattern is less significantly enriched in the top-ranked
motifs from the HapMap II dataset, we still obtain 53.91% GC con-
tent in the top 100 motifs (see Fig. 3D), with the PRDM9 binding
pattern appearing in these motifs. In contrast, the top-ranked motifs
from the Sperm datasets are different from the ones from the other
two datasets, though the PRDM9 pattern still appears. Unlike the
HapMap II (Frazer et al., 2007) and Icelandic (Halldorsson et al.,
2019) datasets, the Sperm (Bell et al., 2020) dataset focuses more on
comparison across individuals’ cells rather than aggregating them,
and is resolved to much larger regions, with the median resolution
as 240 kilo-base pairs (kb), among which 9746 (1.2%) are inferred
within 10 kb. Consequently, we inevitably involve noisy sequences
in the training dataset, which reduces the sensitivity of our method
and also leads to lower prediction confidence compared to the other
datasets when the filter factor is 0.4. GC content is shown to be
positively correlated with the recombination rate (Bh�erer et al.,
2017; Halldorsson et al., 2019). As shown in Figure 3D and
Supplementary Figure S6, in all the datasets, the GC content of the
hotspots is indeed higher than that of the entire genome (HapMap
II: 44.64% versus 39.26%, Icelandic: 42.81% versus 39.26%,
Sperm: 48.16% versus 39.26%). The comparison of GC content in
hotspots across different resolutions (see Fig. 3E) also suggests that
the determinants in the central hotspot area are GC-richer than the
marginal, detailed description can be found in Supplementary
Section S4. Histone modifications usually accompany the recombin-
ation event, and in the PRDM9 knockout organism, DSB is directed
by histone modifications (Brick et al., 2012) (see Fig. 4A). We quan-
tify the contribution of different histone modifications to recombin-
ation hotspot formation using activation backpropagation. In
Figure 4B, on the Icelandic dataset, we compare the distribution of
different features from three modifications between hotspots and
coldspots, including H3K4me1, H3K4me3 and H3K36me3. The
distribution differences suggest that the histone modification pat-
terns are different in the two kinds of regions. We use the Icelandic
maternal data and the histone modifications from the ovary to fur-
ther investigate such features. In Figure 4C, we show the feature cor-
relations among six histone modifications across hotspots.
H3K4me1is correlated with H3K36me3, which is similar to that in
the functional elements in the genome (Auboeuf et al., 2002). To il-
lustrate the contribution of histone modification features, in
Figure 4D, we visualize the 2D vector embedding of recombination
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hotspots and coldspots from the Principal Component Analysis
(PCA) extracted from the last layer of CNN, RHSNet and RHSNet-
chip. As shown in the figure, the proposed deep-learning model in
RHSNet can learn different representations for hotspots and cold-
spots, and thus identify the hotspot regions. RHSNet-chip, incorpo-
rating the histone modification information, can further enlarge the
difference in the learned representation between hotspots and cold-
spots. To further quantify the contribution of features from histone
modifications, we use activation backpropagation across the entire
network, visualizing their importance scores in Figure 4E. The
results are consistent with previous studies (Brick et al., 2012), with
H3K4me3 and H3K36me3 being the two most essential modifica-
tions. Other related modifications, such as H3K4me1 (Yamada
et al., 2013) and H3K27ac (Chen et al., 2020), are also captured by
our method, although they are less studied for this problem.

3.3 RHSNet reveals the contribution of different PRDM9

alleles in different populations
Not only has PRDM9 been found to be the major determinant of
the recombination hotspots in humans and mice (Baudat et al.,
2010), but different PRDM9 alleles are also believed to influence re-
combination hotspot activities in humans (Auton et al., 2015; Berg
et al., 2010; Spence and Song, 2019). PRDM9-A is the most abun-
dant allele in human populations (found in around 86% of
European and around 50% of African populations), and PRDM9-C
is the second most common one in African populations (12.8%)
(Berg et al., 2010). The two alleles have different binding preferen-
ces (see Supplementary Section S2). Despite the imperfect way of
identifying the motifs, PRDM9-C binding motifs are found to poten-
tially elevate the recombination rates in the African populations. On
the dataset from Phase 3 of the 1000 Genomes Project (Auton et al.,

2015), in the African population, both detected PRDM9-A/C bind-
ing motifs show significantly higher recombination rates than the
other populations (see Fig. 5A), which is consistent with the previ-
ous study (Spence and Song, 2019). Furthermore, among the top
100 motifs (low-pass filter: Wn¼0.1) for each population detected
by our method, the ratio of PRDM9-A/C binding motifs in the
African population (PRDM9-A ratio: 50.4%; PRDM9-C ratio:
33.3%) is much higher than that of the other populations (see
Fig. 5B, Supplementary Tables S6 and S7 and Supplementary Fig.
S9). On the other hand, as we define enrichment factor by consider-
ing the recombination rate of the entire region around the motif, the
enrichment factor of PRDM9-C binding motifs in the African popu-
lation is corrected to be on the same level as the other populations
due to the higher overall recombination rate in the population (see
Fig. 5C). Although using the absolute value of the recombination
rate to show the contribution of recombination hotspot determi-
nants is straightforward, our framework provides an alternative
quantification method by utilizing the relative criterion, which may
be more robust to the local region noise and population batch effect.
The relation between the recombination rate and the enrichment
factor of a motif is complex, which cannot be modelled with a linear
regression (see Fig. 5D), with the Pearson correlation coefficient
being �0.034 and the R2 score being 1:79� 10�3 on motifs
extracted from five populations. However, together with the recom-
bination rate, by quantifying the relative contribution, our method
provides insights into the recombination hotspot determinants.

3.4 Generalization to PRDM9-lacking species and

sensitivity to sex differences
The recombination event has been studied in a broad range of spe-
cies (Lam and Keeney, 2015; Lange et al., 2016; Pan et al., 2011;
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Fig. 2. Performance of RHSNet across different studies/sexes/species. Notice that, here, RHSNet refers to the Identification module of RHSNet in Figure 1. (A) The perform-

ance of RHSNet on datasets from different studies and different populations. We used 5-fold cross-validation to evaluate the performance of different methods including

PseDNC (Chen et al., 2013) and Equivariant CNN (Brown and Lunter, 2019) with their optimal parameters. The box plots show the F1-score distributions from four trials of

the 5-fold cross-validation. P-values calculated from the two-tailed Student’s t-test indicate the significance of the improvement. RHSNet-chip refers to RHSNet accompanied

with ChIP-seq information in sex-specific maps. We used several histone modifications from testis for the paternal maps and ovary for the paternal map. (B) Robustness testing

with MCC on the Human Icelandic dataset of RHSNet over different input lengths ranging from 500 to 1000 bp. The number of hotspot and coldspot sequences within each

interval of 20 bp is showed as a histogram at the bottom. RHSNet’s performance is robust across different resolutions. (C) On the Mice dataset, RHSNet also shows significant

performance improvement on predicting the hotspot sequences in terms of the AUROC score. This result suggests the generalization ability of our method on different datasets,

even across different species
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Singhal et al., 2015), including humans, mice, yeast, birds and pigs.
In addition to the human data, our method can be further applied to
other species, regardless of having the PRDM9 gene. Although
PRDM9 is shown to be the major determinant of recombination
hotspots in both humans and mice, the predicted binding motifs are
different in the two species (Baudat et al., 2010). We apply our
method to the Mice data (Lange et al., 2016) and identify the most
significant determinant motifs. In addition to the GT-rich motifs,
which are enriched in the SPO11-oligo hotspots and the usual mice
PRDM9 binding sites (Lange et al., 2016), surprisingly, we also
identify an AC-rich motif (see Supplementary Fig. S10A). Although
this motif has not been studied extensively in the mice-related

literature, it is reported as a part of the binding motif for the
PRDM99R zinc finger binding domain (Brick et al., 2012; Lange
et al., 2016). Unlike apes and mice, birds and yeast lack a PRDM9
gene, leading to different recombination hotspot patterns in these
species (Lam and Keeney, 2015; Pan et al., 2011; Singhal et al.,
2015). On the Yeast dataset (Mancera et al., 2008), the poly-(A)
motif is identified as the most significant determinant in hotspots
(see Supplementary Fig. S10A), which is completely different from
mice and humans. However, the result is consistent with the previ-
ous study, which demonstrates that Poly-(A) motif occurs more fre-
quently in the hotspots (Mancera et al., 2008). Moreover, the motifs
enriched in the yeast promoters (Badis et al., 2008) are also

Fig. 3. RHSNet quantifies the contribution of PRDM9 binding motifs in variant lengths across different studies/populations/sexes. (A) RHSNet can extract motifs of variant

lengths with different low-pass filter factors. (B) Assembled motif detection results are shown using different low-pass filters ranging from 0.1 to 0.4. PRDM9 binding motifs

and 12-bp motif enriched in SPO11-oligo hotspots show high enrichment factors. (C) The logged recombination rates and the enrichment factor distribution across sexes with-

in the detected motifs. The recombination rates are higher in the females, while the enrichment factors are higher in the males. The lower erosion rate of the hotspot motifs in

males may make the event determinants more conservative. (D) GC content compared across different studies. We show the GC content among the entire genome, total hot-

spots, total cold spots and RHSNet’s detected motifs. (E) GC content of recombination hotspots cropped in different resolutions (1, 5 and 1000 kb) across different species.

The GC content is usually higher in the hotspots and the determinant motifs compared to the nearby regions
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predicted to be of vital importance to the recombination event (see
Supplementary Fig. S10A), which supports the theory that, in the
PRDM9-lacking species, hotspots are highly conserved due to the

natural selection pressure (Lam and Keeney, 2015). Detailed de-
scription for RHSNet’s sensitivity to sex differences can be found in

Supplementary Section S4.

3.5 Recombination hotspot motif embedding for

evolutionary determinants discovery
We extend our method to identify and quantify the recombination
hotspot determinants more intuitively and systematically. Instead of

only listing the detected determinants and their enrichment factors,
we learn the representation of the motifs in a 2D space, visualizing
and clustering them in such a space. To avoid black-box modelling,
we also visualize the physical meaning of the motifs with heatmaps
(see Fig. 6). Within the Icelandic dataset (see Fig. 6A), the standard
deviation of the determinant motif embeddings in the maternal
population is much larger than that in the paternal population (ma-
ternal: 0:044761:9� 10�2; P ¼ 3:11� 10�6; paternal:
0:035561:6� 10�2), which suggests that, in females, the recombin-
ation hotspot determinants are more diverse and less conservative
than that in the males. This finding further supports our hypothesis
that diverse factors contribute to the female-biased hotspots. For all
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Fig. 4. Histone modification affects recombination hotspots formulation. (A) The DSB formation machinery (scissors) is directed to PRDM9 binding sites with functional

PRDM9 protein. However, in the absence of PRDM9, DSB is directed to PRDM9-independent H3K4me3 marks. (B) On the maternal and paternal maps from the Icelandic

dataset, we show the feature distribution comparison from recombination hotspots and coldspots over three histone modifications: H3K4me1, H3K4me3 and H3K36me3. (C)

Heatmap of the 18 feature correlations within six histone modifications across hotspots. (D) For the ChIP-seq feature of female adult’s ovary tissue, we show the 2D vector

embedding of recombination hotspots and coldspots from the PCA extracted from the last layer of CNN, RHSNet and RHSNet-chip. The difference between hotspot features

and coldspot features is more significant in the RHSNet-chip framework, demonstrating the importance of the ChIP-seq feature, although RHSNet alone is significant enough.

(E) The importance score calculated from the contribution backpropagation in the ChIP-seq feature extraction branch quantifies the contribution of each histone feature to

hotspot formulation. The activation of the H3K4me3 features and the H3K36me3 features suggests a higher contribution to the recombination event
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the visualizations of the motifs across different sexes (see Fig. 6A
and Supplementary Fig. S13), different populations (see Fig. 6B and
Supplementary Figs S15 and S16) and different species (see Fig. 6C
and Supplementary Figs S12 and S14), the motifs within the central
area of the embedding space tend to have a smaller enrichment

factor value, represented by the size of the point, than the outlier
motifs. Because the enrichment factor value shows the importance
of the determinant, investigating the outlier motifs may identify the
evolutionary important motifs of the population and species. Similar
to the Icelandic data, within the 1000 Genomes Project dataset, the
enrichment factor differences between central motifs and the outliers
across different populations share a similar pattern (see Fig. 6B),
where enrichment factors differ significantly between central motifs
and outlier motifs across populations, especially in East Asians
(AFR: P ¼ 2:85� 10�4; AMR: P ¼ 8:51� 10�2; EAS:
P ¼ 1:12� 10�5; EUR: P ¼ 1:16� 10�2; SAS: P¼0.23). For the
convenience of the study, we randomly select the most distinct out-
lier motifs in different populations across the embedding space and
visualize them in Figure 6D. Interestingly, the motifs enriched in the
SPO11-oligo hotspots (Lange et al., 2016) show up in the East Asian
population. Although the molecular studies are mainly performed
on Mice (Lange et al., 2016), and researchers have not performed
such studies on different human populations systematically, our
method provides the first quantitative depiction of the recombin-
ation hotspot determinant motifs across diverse populations. We
further extend our analysis to different species (see Fig. 6C). A simi-
lar pattern appears. The central motifs, shared by different species,
have smaller enrichment factors than the outlier motifs, which are
likely to be species-specific (Icelandic human: P ¼ 1:57� 10�25;
Mice: P ¼ 2:2� 10�8; Yeast: P ¼ 7:4� 10�5Þ. For example, the
poly-(A) motifs are the most important ones for yeast, which does
not have the PRDM9 gene (Mancera et al., 2008). On the other
hand, our method provides a new way to define the evolutionary
distance between different species (Shen et al., 2020), using the
embedding of the recombination hotspot determinants.

4 Discussion

Recombination is one of the most important processes in miosis for
sexually reproducing organisms, which can produce genetic diversity
for natural selection. Despite its important role in evolution, people
know little about the entire process and its molecular mechanism.
Although a large amount of data have been accumulated from vari-
ous giant projects, such as HapMap (Frazer et al., 2007) [3.1 million
human single nucleotide polymorphisms (SNPs) genotyped in 270
individuals], Sperm (Bell et al., 2020) (31 228 human gametes from
20 sperm donors) and 1000 Genomes Project (Auton et al., 2015)
(84.7 million SNPs of 2504 individuals), seldom have researchers
developed methods to analyse data from different studies and even
different species.

Here, we propose a new computational method, RHSNet, which
enjoys the strength of deep learning (LeCun et al., 2015), activation
backpropagation (Shrikumar et al., 2017) and signal processing
(Kay, 1993), to identify and quantify the recombination hotspot
determinants. Although our method is not designed specifically for
recombination hotspot region prediction, it can outperform almost
all the previous methods in this task across different studies, differ-
ent populations, different sexes and different species. More import-
antly, RHSNet can identify and quantify the determinants that
contribute significantly to the recombination hotspot formation. In
addition to quantifying the relation between PRDM9 binding motif
(Baudat et al., 2010; Myers et al., 2008, 2010; Parvanov et al.,
2010), histone modification (Lange et al., 2016; Spence and Song,
2019), GC content (Bh�erer et al., 2017; Halldorsson et al., 2019)
and recombination hotspots, it reveals the contribution of different
PRDM9 alleles in different populations. Further studies on different
species, including PRDM9-lacking species, and different sexes sug-
gest the generalization power and sensitivity of the proposed
method. The cross-sex, cross-population and cross-species studies
show the potential of our method to identify the evolutionary deter-
minants. Although RHSNet is purely data-driven and more work
can be done to further improve it, including landscape prediction
across the entire genome (Adrion et al., 2020), using the gene anno-
tation related to the location information (Yandell and Ence, 2012),
chromatin accessibility information (Kumasaka et al., 2016) as well
as the conditional analysis (Wu et al., 2018), it is potentially helpful

Fig. 5. Recombination rates and enrichment factors of PRDM9 alleles within differ-

ent populations. (A) Recombination rates of ground truth hotspots at different

PRDM9 binding motifs in five populations, normalized by log average recombin-

ation rate. The African population has significantly higher recombination rates in

both alleles compared to the other populations. (B) Recombination rates of the

RHSNet-identified PRDM9-A and PRDM9-C binding motifs. The recombination

rate of PRDM9-A/C alleles in the African population is significantly higher than

that in other populations. (C) Enrichment factors of the RHSNet-identified

PRDM9-A and PRDM9-C binding motifs. The enrichment factor of PRDM9-C

binding motifs in the African population is corrected to be on the same level as the

other populations due to the higher overall recombination rate in the population.

(D) Paired relation between enrichment factors and recombination rates among all

the detected PRDM9-A/C alleles across different populations. We show the recom-

bination rate distribution of all the PRDM9-A/C alleles together and within each

population in the upper row. As shown in the middle row, the relation between en-

richment factors and recombination rates is more complex than linear correlation.

In the bottom row, we illustrate the enrichment factor distribution of all the

PRDM9-A/C alleles together and within each population

Fig. 6. Motif embedding and outlier detection for recombination hotspot determi-

nants discovery. (A) Visualization of the motif embeddings over different sexes in

the Icelandic dataset. The size of the scatter reflects the enrichment factor of that

motif. Each heatmap below the cluster suggests the 2-mer appearance frequency in

the detected motifs. The representative central and outlier motifs are shown in (D)

and (E). (B) Visualization of the motif embeddings across different populations. The

enrichment factors differ significantly between central motifs and outlier motifs

across populations. (C) Visualization of the motif embeddings across different spe-

cies. Poly-(A) motifs are the most enriched outlier motifs in Yeast hotspots. Also,

the Human/Mice outlier shows evolutionary discovery in motifs correlated with

SPO11 oligos
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to assist researchers in illuminating the mechanisms underlying re-
combination and evolution.
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