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Abstract
Background: Glioma is the most common central nervous system tumor in adults, 
and a considerable part of them are high-degree ones with high malignancy and 
poor prognosis. At present, the classification and treatment of glioma are mainly 
based on its histological characteristics, so studies at the molecular level are needed.
Methods: RNA-seq data from The Cancer Genome Atlas (TCGA) datasets (n = 
703) and Chinese Glioma Genome Atlas (CGGA) were utilized to find out the dif-
ferentially expressed RNA-binding proteins (RBPs) between normal cerebral tis-
sue and glioma. A prediction system for the prognosis of glioma patients based on 
11 RBPs was established and validated using uni- and multi-variate Cox regres-
sion analyses. STITCH and CMap databases were exploited to identify putative 
drugs and their targets. Single sample gene set enrichment analysis (ssGSEA) was 
used to calculate scores of specific immune-related gene sets. IC50 of over 20,000 
compounds in 60 cancer cell lines was collected from the CellMiner database to 
test the drug sensitivity prediction value of the RBP-based signature.
Results: We established a reliable prediction system for the prognosis of glioma 
patients based on 11 RBPs including THOC3, LSM11, SARNP, PABPC1L2B, 
SMN1, BRCA1, ZC3H8, DZIP1L, HEXIM2, LARP4B, and ZC3H12B. These RBPs 
were primarily associated with ribosome and post-transcriptional regulation. 
RBP-based risk scores were closely related to immune cells and immune func-
tion. We also confirmed the potential of the signature to predict the drug sensitiv-
ity of currently approved or evaluated drugs.
Conclusions: Differentially expressed RBPs in glioma can be used as a basis for 
prognosis prediction, new drugs screening and drug sensitivity prediction. As 
RBP-based glioma risk scores were associated with immunity, immunotherapy 
may become an important treatment for glioma in the future.
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1   |   BACKGROUND

RNA-binding proteins (RBPs) comprise a large family of 
more than 2000 proteins that bind to double or single-
stranded RNA through RNA-binding domains (RBDs) 
to form ribonucleoprotein complexes.1 They participated 
in the regulation of cell metabolism and functions, and 
played a key role in cell proliferation, cell differentiation, 
and carcinogenesis. It has been found out that some RBPs 
acted as promoters for oncogenesis and tumor growth in 
non-small cell lung cancer, glioblastoma (GBM), several 
leukemias, and hepatocellular carcinoma.2–4 And some 
RBPs played a role as tumor suppressors in breast cancer, 
hepatocellular carcinoma et al.2,5,6 For instance, Lin28 
was found to be a highly conversed RNA-binding protein 
that was involved in both important biological processes 
and tumor progression and metastasis of various human 
cancers.7 By antagonizing epithelial-mesenchymal tran-
sition (EMT)-associated alternative splicing, A-Kinase 
Anchor Protein (AKAP8) suppressed breast cancer metas-
tasis.8 Previous studies have shown that RBPs were sig-
nificant in post-transcriptional regulation and the activity 
of the RBP-RNA network had a causal relationship with 
cancer development.9 RBP also played an indispensable 
role in metabolic activities of the central nervous system 
(CNS) and the occurrence and development of CNS dis-
eases. For example, antibodies to heterogeneous nuclear 
ribonucleoprotein A1 (hnRNP A1) which was an RBP 
overexpressed in neurons, was found in multiple sclerosis 
patients, suggesting that anti-hnRNP A1 antibodies were 
involved in neurodegeneration in the immune-mediated 
disease of CNS.10 The insulin-like growth factor-2 mRNA-
binding protein 1 (IGF2BP1), which was essential for 
both embryogenesis and carcinogenesis, was associated 
with poor overall survival and metastasis in a variety of 
human cancers by acting as a post-transcriptional fine-
tuner.11 Although the functions of RBPs were gradually 
uncovered, more studies on the relationship between RBP 
and the pathogenesis of glioma are needed, and it is still 
difficult for current studies to provide good guidance for 
clinical diagnosis and treatment.

Glioma is a kind of tumor of the central nervous sys-
tem that originates from the glial cells, which are the sup-
portive cells in the brain. It is the most common type of 
primary tumor of the CNS. Recently, The World Health 
Organization has made molecular parameters in addition 

to histology to define gliomas.12 Gliomas are classified 
into grades I–IV pathologically, and the prognosis of gli-
omas with different grades presented varied prognoses 
in the clinical. Glioblastoma is a kind of Grade IV glioma 
and the median survival of treated patients with glioblas-
toma is about 15  months, while although low-grade gli-
omas (LGG) seem to have longer median survival, they 
tend to progress to higher grade gliomas of grade III and 
grade IV.13,14 Glioblastoma (Grade IV) is the most malig-
nant type with the short survival time of patients and the 
limited available treatments, mainly non-glioma-specific 
radio-chemotherapy with the alkylating agent after max-
imal safe resection.15 Lower grade gliomas (Grade II and 
III) occur in the younger population and have a better 
prognosis. In the classification for LGG proposed by WHO 
in 2016, several molecules including Isocitrate dehydro-
genase (IDH) mutation, IDH wildtype, and 1p/19q were 
included in the criteria for LGG molecular subgroup clas-
sification for the first time.12 Molecular diagnosis is con-
ducive to accurate treatment and there are a lot of studies 
underway in this area, but there is still a long way to 
go.16,17 Compared to histology, molecular parameters can 
be earlier detected, which facilitates earlier diagnosis and 
treatment, leading to the potential to improve patients’ 
prognosis. Researchers have found that the expression 
of RBPs was closely related to the malignancy of glioma. 
Some RBPs played the role of tumor suppressors and their 
expression often decreases in human glioma tissue and 
cell lines, while some others who acted as promoters are 
upregulated. For instance, overexpressed LARP4B could 
significantly inhibit proliferation and was associated with 
the increased expression level of CDKN1A and BAX.18 
However, the knockdown of PCBP2 inhibited glioma 
growth both in vitro and in vivo by suppressing cell-cycle 
and the apoptosis mediated by caspase-3, showing that 
PCBP2 may act as a promoter of glioma development. 
Some RBPs regulated cellular activity in glial cells through 
synergistic action with other RBPs or RNA. MOV10, circ-
DICER1, which were important in regulation for cell mi-
gration, viability, and tube formation, were both found 
upregulated in glioma-exposed endothelial cells (GECs), 
and silencing of both of them have a better effect than si-
lencing one of them alone.19 Moreover, the upregulated 
RNA-binding protein in GECs, FUS, participated in the 
feedback loop of FUS/circ_002136/miR-138-5p/SOX13 
and regulated the angiogenesis in glioma.20 ZRANB2 was 
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also overexpressed in glioma cells and tissue, being a part 
of the ZRANB2/SNHG20/FOXK1 axis which was essential 
in regulating the vasculogenic mimicry formation of gli-
oma. KHSRP played a key role in metastasis of non-small 
cell lung cancer and may be a prognostic predictor.3 FXR1 
was another important RBP for non-small cell lung cancer 
(NSCLC) development, and research has found that its ex-
pression was a candidate biomarker for poor survival in a 
variety of solid tumors, including NSCLC. Since the func-
tion of RBPs is closely related to tumor-related biological 
activities such as protein synthesis, cell proliferation, and 
immune function, RBP can relatively reliably reflect the 
progress of tumor, which is of great significance for the 
prognosis of patients.21

To demonstrate and annotate the integrative roles of 
RBPs in gliomas, in our present study, we identified the 
aberrantly expressed RBPs of prognostic based on Low-
Grade Glioma and Glioblastoma Multiforme cohorts from 
the TCGA database. Gene ontology (GO) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) were per-
formed to annotate the function. We then identified the 
hub genes and constructed an 11-RBPs signature to pre-
dict the clinical outcome of glioma, which showed a good 
prediction efficiency in both the TCGA training cohort and 
CGGA validation cohort. We also screened some drugs 
which are potential for glioma treatment and their target 
protein, as well as performed a correlative analysis of gli-
oma risk score and drug sensitivity to select drugs that can 
be used to more precisely treat high-risk or low-risk glio-
mas. Immune score analysis showed that high-risk groups 
had a higher gene enrichment in both anti-tumor and 
immune-suppressive gene sets, highlighting the potential 
therapeutic targets in both RBPs and tumor microenviron-
ment immunomodulation.

2   |   MATERIALS AND METHODS

2.1  |  Datasets acquisition

In the present study, we integrated three cohorts in-
cluding Low-Grade Glioma (LGG) and Glioblastoma 
Multiforme (GBM) from The Cancer Genome Atlas 
(TCGA) datasets (n = 703); and a Chinese cohort from 
the Chinese Glioma Genome Atlas (CGGA) database 
(n  =  325).13,22 The RNA-seq data and clinical infor-
mation from TCGA were collected to perform gene 
differential expression analysis and construction of 
prognostic gene signature, after which the data from 
CGGA were used for validation. The accessible websites 
of TCGA and CGGA are https://portal.gdc.cancer.gov/ 
and http://www.cgga.org.cn/, respectively.

2.2  |  Gene differential expression analysis

The RNA binding proteins (RBPs) were identified from 
the following resources: SONAR, Gerstberger, Poly(A)-
binding protein, the Gene Ontology project, XRNAX, and 
CARIC. Among the 1542 RBPs, differentially expressed 
genes (DEGs) were identified using transcriptome data 
from TCGA. To perform the analysis, the Limma package 
for R was used to compare the expression between nor-
mal tissues (n = 5) and tumor tissues (n = 698).23 Genes 
with False Discovery Rate (FDR) lower than 0.05 and 
|logFC| > 0.5 were accepted for further analysis.

2.3  |  Gene correlation analysis and 
network construction

STRING database (http://string.embl.de/) is a widely 
used tool to predict the functional interactions between 
proteins by integrating direct interaction (physical inter-
action) and indirect interaction (functional association) 
information from accessible experiments data.24 In the 
present study, we input all the DEGs into the database to 
acquire the correlation coefficient between every two pro-
teins. After that, the correlation data were imported into 
Cytoscape 3.8.0 for reconstruction and visualization.25 To 
determine the hub genes of DEGs, we reanalyzed the cor-
relation data by plug-in MCODE and determined several 
subnetworks. The top three scored subnetworks were vis-
ualized in our study.

2.4  |  Gene signature construction  
and validation

Univariate and multivariate Cox regression analysis was 
successively conducted to determine genes highly corre-
lated with overall survival and survival status using TCGA 
datasets. The FDR filter of univariate Cox regression anal-
ysis was 0.001 and Hazard Ratio (HR) filter was 1.5 or 0.5, 
thus selecting out 28 genes for gene signature construc-
tion in multivariate Cox regression analysis. As a result, 
we constructed an 11-gene signature that can be used to 
calculate risk scores for each patient. The formula can be 
as follows:

Coef(Xi) was considered as the coefficient of each RBP Xi, 
and Exp(Xi) was considered as the expression levels of these 
genes. Based on the formula, the risk scores of each patient 
in both TCGA and CGGA datasets were calculated; and 

(1)riskScore =
∑n

i=1
Coef(Xi) × exp(Xi)

https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
http://string.embl.de/
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patients in each dataset were divided into low- or high- risk 
groups based on the median risk score cutoff.

2.5  |  Gene functional annotation analysis

The functional annotation of genes acquired from subnet-
work or DEGs was performed using the ClusterProfiler 
package for R, including Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis.26 To figure out whether immune cell infiltra-
tion and function differed between low-  and high-  risk 
patients, we also performed single-sample gene set en-
richment analysis (ssGSEA) using GSVA package for R 
to calculate scores of specific immune-related gene sets in 
each patient, and then integrated the score based on their 
risk clustering.27

2.6  |  Putative drugs identification

To determine the possible small molecules targeting DEGs 
of our study, The Connectivity Map (CMap) database 
(https://porta​ls.broad​insti​tute.org/cmap/) was used to 
perform the prediction. The enrichment score represents 
the effects of a drug on the input gene set. The negative 
value was considered to hold the capacity to reverse gene 
expression, which in our cases, to be a candidate anti-
tumor drug. The filters for small molecule compounds 
were p value <0.05 and enrichment scores <−0.85. To 
further determine the potential target proteins of the pre-
dicted drugs, drugs with p value <0.05 were selected and 
analyzed using the STITCH database (http://stitch.embl.
de/). The STITCH database28 can predict the interactions 
between drugs and proteins based on currently published 
studies and experiments, and other predicting databases 
together.

2.7  |  Association analysis of RBP-based 
riskScore and drug sensitivity

The transcriptome for 60 cancer cell lines and IC50 of 
over 20,000 compounds were downloaded from the 
CellMiner database v2.5 (https://disco​ver.nci.nih.gov/
cellm​iner/home.do).29 To enhance the relationship of 
RBP-based riskScore and clinical application, only FDA 
approved drugs and drugs under clinical trials were in-
cluded in the analysis. Spearman correlation analysis 
was performed to determine the correlation between 
RBP-based riskScore and drug sensitivity. Correlations 
with |cor|  >  0.3 and p value <0.01 were considered as 
statistically significant.

2.8  |  The validation and landscape of 
protein expression, mutation, copy number 
alteration, and structural variant

To validate the differential gene expression of the 11 RBPs, 
we searched The Human Protein Atlas (HPA) database 
(http://www.prote​inatl​as.org/) to acquire the public im-
munohistochemistry (IHC) figure of these RBPs in both 
normal brain tissues and glioma tissues. An oncoprint 
presenting the mutation, copy number alteration, and 
structural variant landscape of the 11 RBPs in 14 glioma-
related datasets was constructed using the cBioPortal da-
tabase (http://www.cbiop​ortal.org/).

2.9  |  Statistical analysis

All the statistical analysis and figure construction were 
completed in R software version 3.6.0 (https://www.R-
proje​ct.org/) using packages including Ggplot2 and 
Ggpubr. KM plotter was performed and analyzed using a 
log-rank test. Linear correlation analysis between the ex-
pression of immune checkpoint and risk score was imple-
mented by calculating Spearman's coefficient. Nomogram 
enrolling statistically significant clinical variants in multi-
variate Cox regression analysis was constructed. C-index 
was calculated to determine the concordance between 
prediction and actual diagnosis. Kruskal–Wallis H-test 
was used to compare the difference between groups. In 
all the statistical analyses, p value <0.05 was considered 
statistically significant.

3   |   RESULTS

3.1  |  The differential expression of a 
variety of RBPs is closely related to the 
incidence of glioma

It has been reported that an amount of RNA-binding 
proteins’ expression was changed in glioma, indicating 
that these RBPs may be correlated to glioma develop-
ment.19,30,31 In previous studies, RBPs could participate 
in glioma development in various ways. For instance, 
RBPs could promote glioma by affecting vasculogenic 
mimicry formation, and suppressing it by preventing 
let-7 target gene silencing, which contributed to cell 
differentiation.32,33

To find out the RBPs which expressed differentially 
between normal samples and the ones with glioma, we 
downloaded RNA-sequencing data of 698 glioma patients 
and 5 normal samples from TCGA-GBM and TCGA-LGG 
(Low-grade glioma) of The Cancer Genome Atlas (TCGA). 

https://portals.broadinstitute.org/cmap/
http://stitch.embl.de/
http://stitch.embl.de/
https://discover.nci.nih.gov/cellminer/home.do
https://discover.nci.nih.gov/cellminer/home.do
http://www.proteinatlas.org/
http://www.cbioportal.org/
https://www.R-project.org/
https://www.R-project.org/
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First, we performed the analysis of RBPs’ expression on 
the basis of RNA-sequencing data (Figure 1A) and then 
made a volcano map to select genes that had a significantly 
different expressions between the normal group and the 
glioma group (Figure 1B, FDR ≤ 0.05, |logFC| > 0.5). Two 
hundred and fifty-five upregulated and 185 downregu-
lated genes were screened out, gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG), were 
performed to confirm that these genes are closely related 
to RBPs. The upregulated RBPs were mostly associated 
with the ribosome and RNA catabolic process, which was 
consistent with increased tumor cell division and protein 
synthesis. (Figure 1C,D) Moreover, most of the downregu-
lated RBPs were connected with RNA transport and trans-
lation regulation, suggesting that they may be associated 
with abnormal gene expression in tumor cells, including 
overexpression of oncogene and inhibited expression of 
tumor suppressor gene. (Figure 1E,F) As a result, it can be 
confirmed that the genes selected by us are closely related 
to the differential expression of RBP between normal sam-
ples and glioma samples.

3.2  |  The RBPs closely associated 
with glioma is primarily 
associated with ribosome and post-
transcriptional regulation

After analyzing the correlation between different RBPs 
and glioma, we intended to find out the intrinsic con-
nection of RBPs selected, so as to screen the core RBPs 
in gliomagenesis and development. The "interaction rela-
tionship prediction" of the selected genes was performed 
using the String database to obtain the correlation coef-
ficient of these genes basing on existing research. Then 
Cytoscape analysis was used to obtain the core interac-
tion network, dividing the differentially expressed genes 
into three subnets, respectively, called subnet1/2/3. RBPs 
in Subnet1 had the strongest correlation with others and 
they may be the most promising RBP therapeutic targets, 
followed by Subnet2, and the RBPs in Subnet3 were cor-
related most weakly. In order to show the relationship 
between RBPs and glioma more intuitively, we showed 
RBPs with elevated expression in glioma in red and the 
ones with reduced expression in green (Figure 2).

GO and KEGG analysis was performed for each group 
of RBPs to find out their main function. The most critical 
ones, the RBPs in subnet1, were closely associated with 
ribosome, nuclear-transcribed mRNA catabolic process, 
and translational initiation. The RBPs in subnet2 were 
strongly linked to RNA splicing, while the ones in sub-
net3 had a close relationship with ribosome biogenesis. 
(Tables  1 and 2) The regulation of cell activity by RBPs 

was mainly accomplished by regulating the structure and 
function of ribosome, as well as the post-transcriptional 
process, such as RNA splicing and RNA degradation, thus 
affecting the synthesis of proteins and thus the biological 
function of cells, which may be of great significance in the 
tumorigenesis of glioma and provide new targets for gli-
oma treatment.

3.3  |  11 most clinically relevant 
RBPs are used to establish a mathematical 
model to judge the clinical prognosis of 
glioma patients

In order to further explore the relationship between RBP 
and glioma and provide ideas for the clinical application 
of RBP research, Kaplan–Meier Curve (KM) analysis 
(KM filter = 0.001) and univariate Cox regression analy-
sis (FDR filter = 0.001) were used to select the RBPs that 
were clinically relevant from hundreds of them. Then, to 
select the RBPs which had the strongest clinical correla-
tion, HR (Hazard Ratio) filter were set as 1.5 or 0.5 and 
28 RBPs are obtained. To make our model more accurate, 
the multi-Cox analysis was carried out, and 11 RBPs with 
the most clinical prognostic significance were extracted 
from the 28 RBPs mentioned to establish a mathematical 
model, including THOC3, LSM11, SARNP, PABPC1L2B, 
SMN1, BRCA1, ZC3H8, DZIP1L, HEXIM2, LARP4B, and 
ZC3H12B. The coefficient of them, respectively, are pro-
vided in Table 3. Among them, 6 RBPs’ hazard ratios were 
less than 0.5, while the other 5 have hazard ratios of more 
than 1.5 (Figure 3A).

To verify the model proposed, we downloaded RNA 
sequences of additional 325 glioma patients from CGGA 
and used our model to calculate the risk score for all pa-
tients in both TCGA dataset and CGGA dataset. In each 
dataset, we divided the patients into high-risk group 
and low-risk group, bounded by the median risk score 
(0.712 in the TCGA dataset and 1.692 in the CGGA data-
set) (Figure  3B). It was obvious that the patients with 
higher risk score tended to have poorer prognosis and 
survival and there was a significant survival difference be-
tween the two groups in both TCGA and CGGA datasets 
(Figure 3C). The ROC curve suggested that our model had 
relatively high reliability in predicting the prognosis of 
glioma patients, with the AUC were 0.863 (TCGA, 1-year 
OS), 0.898 (TCGA, 3-year OS), 0.655 (CGGA, 1-year OS), 
0.714 (CGGA, 3-year OS) (Figure 3D).

Principal Component Analysis (PCA) and t-Distributed 
Stochastic Neighbor Embedding (t-SNE) were performed to 
simplify and visualize the difference between the high-risk 
group and low-risk group, and significant differences were 
found, suggesting that our model is effective in predicting 
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F I G U R E  1   The expression of a variety of RBPs is closely related to the incidence of glioma. (A) Heatmap of RNA-sequencing data 
analysis of 698 glioma patients and 5 normal samples from TCGA-GBM and TCGA-LGG of TCGA. (B) Volcano map of differentially 
expressed RBP genes to screen out ones with significantly different expressions. (FDR ≤ 0.05, |logFC| > 0.5) (C, E) Bubble maps of gene 
ontology obtained by GO and KEGG analysis of selected upregulated and downregulated genes. (D, F) Bubble maps and barplots of gene 
ontology obtained by GO and KEGG analysis of selected upregulated and downregulated genes. BP, biological process; CC, cell cycle; MF, 
molecular function



7424  |      CHEN et al.

the prognosis of glioma patients (Figure 3E,F). In addition, 
it was evident that the expression of the selected 11 RBPs 
was discrepant between two groups no matter in the TCGA 
dataset or CCGA dataset (Figure 3G–I). We found the ex-
pressions of these 11 RBPs in normal cerebral cortical tis-
sue and glioma from Human Protein Atlas, and found that 
their differential expression was basically consistent with 
our analysis (Figure 4). RBPs in the left column were up-
regulated in the glioma cerebral cortex, while the ones in 
the right columns were downregulated. Additionally, we 
also exploited the data from 14 different glioma datasets to 
construct the landscape of the mutation, copy number al-
teration, and the structural variant of these 11 RBPs. Data 
showed that the alteration of genomic alteration was more 
common in BRCA1, ZC3H12B, and LARP4B (Figure 5).

3.4  |  Immune function is critical for the 
risk grading of glioma patients

Studies have found that the immune system played an im-
portant role in glioma development. It has been reported 

that GBM cells could establish an immune-privileged 
microenvironment by releasing extracellular vesicles to 
transfer immune-modulating molecules to immune cells, 
and macrophages could be recruited to GBM through the 
mediation by osteopontin.34,35 We inferred that there may 
be similar mechanisms mediated by RBPs, which partici-
pated in the incidence of glioma by disturbing immune 
function. To confirm this, we performed GO and KEGG 
analysis of differentially expressed genes between high-
risk and low-risk groups in TCGA and CGGA datasets 
and found that most of them were related to immunity. 
The regulatory targets included cytokine−cytokine recep-
tor interaction, leukocyte migration, extracellular matrix 
organization, human papillomavirus infection, and so on 
(Figure 6A,B,E,F). This indicated that the prognosis of gli-
oma patients was related to the function of their immune 
system. We calculated immune scores for both groups to 
explore changes in immune cells and immune function 
in glioma. In the high-risk group, the scores of a variety 
of immune cells were obviously increased, including, T-
helper cells, macrophages, CD8+ T cells, iDCs (immature 
dendritic cells), pDCs (precursor DCs), Th2 cells, TIL 

F I G U R E  2   The RBPs differentially expressed between normal samples and glioma ones can be classified into three subnets according 
to their correlation coefficient. (A) Subnet1 contains the RBPs which have the strongest association with others, (B) followed by Subnet2, 
(C) the RBPs in Subnet3 have the weakest correlation. (D) The relationship of these three subnets is shown. The RBP in green are 
downregulated in glioma while the ones in red are upregulated
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(tumor-infiltrating lymphocytes), and regulatory T cells 
(Treg). The immune function of the high-risk group was 
also upregulated, particularly in cytolytic activity, human 
leukocyte antigen (HLA), inflammation-promoting, 
antigen-presenting cells (APC) co-stimulation, and APC 
co-inhibition (Figure 6C,D,G,H). We found that the im-
mune systems of the high-risk group patients were more 
active, but the survival of high-risk patients worsened. We 
then calculated the correlation between risk score and 

marker immunosuppressive genes’ expression in glioma 
patients and found that there was a positive correlation 
between them, indicating that the more immune cells and 
the more immune function was activated, the greater the 
intensity of immunosuppression (Figure  7). As a result, 
regulating the immune function of glioma patients may 
improve their survival. Several studies about the immune 
system and glioma therapeutic approaches were ongo-
ing, including the dendritic cells-based immunization 

Ontology Description p.adjust q value

Subnet1

BP nuclear-transcribed mRNA catabolic 
process, nonsense-mediated decay

2.14E-90 1.76E-90

BP translational initiation 2.75E-88 2.26E-88

BP nuclear-transcribed mRNA catabolic 
process

2.24E-79 1.84E-79

CC cytosolic ribosome 8.57E-89 4.14E-89

CC ribosomal subunit 2.60E-83 1.26E-83

CC ribosome 5.34E-77 2.58E-77

MF structural constituent of ribosome 5.44E-79 3.74E-79

MF translation regulator activity 2.69E-27 1.85E-27

MF translation regulator activity, nucleic 
acid binding

1.09E-22 7.46E-23

Subnet2

BP RNA splicing, via transesterification 
reactions with bulged adenosine as 
nucleophile

3.40E-55 1.99E-55

BP mRNA splicing, via spliceosome 3.40E-55 1.99E-55

BP RNA splicing, via transesterification 
reactions

3.40E-55 1.99E-55

CC Spliceosomal complex 1.70E-38 6.51E-39

CC U2-type spliceosomal complex 5.32E-28 2.04E-28

CC Catalytic step 2 spliceosome 5.10E-24 1.96E-24

MF Single-stranded RNA binding 0.000223 0.000159

MF DNA-directed 5'-3′ RNA polymerase 
activity

0.00228 0.001623

MF Single-stranded DNA binding 0.00228 0.001623

Subnet3

BP Ribosome biogenesis 6.98E-12 4.04E-12

BP Ribonucleoprotein complex biogenesis 3.26E-10 1.89E-10

BP rRNA processing 6.91E-10 4.00E-10

CC Box H/ACA RNP complex 0.001199 0.000705

CC Transcription export complex 0.00121 0.000712

CC Small nucleolar ribonucleoprotein 
complex

0.003325 0.001956

MF RNA helicase activity 8.25E-07 5.11E-07

MF Catalytic activity, acting on RNA 2.28E-06 1.41E-06

MF Helicase activity 1.11E-05 6.88E-06

Abbreviations: BP, biological process; CC, cell cycle; MF, molecular function.

T A B L E  1   GO analysis for three 
subnets, respectively
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approach and therapeutic modulation of phagocytosis in 
GBM.36,37

3.5  |  The values of our model on 
glioma prognosis prediction and novel 
drug identification may be useful for 
clinical treatment

To confirm the effectiveness of the mathematical model 
mentioned, we performed a clinical independence test for 
our model with data from both TCGA and CGGA data-
sets. The risk score calculated by the formula brought up 
by us was relevant with age, glioma grade, and IDH muta-
tion but had little correlation with gender (Figure 8A,B). 
We established nomograms (1–3 years) to verify the for-
mula, qualitative analysis showed that our model is ef-
fective in predicting the 1–3 years survival rate of glioma 
patients as the curve calculated by our formula was in 
good agreement with the calibration line (Figure 8C–E). 

We presented a clinical predictive nomogram based on 
the risk score calculating formula mentioned and hope it 
can provide a reference for the clinical diagnosis and grad-
ing of glioma patients (Figure 8F).

Moreover, according to the genes with differential ex-
pression in glioma, we searched for drugs that may be 
useful for glioma treatment by calculated in the Cmap da-
tabase and they are demonstrated in Table  4. The drugs 
we screened included anisomycin, puromycin, 16-phenyl 
tetranor prostaglandin E2, 5182598, sulfadoxine, and NU-
1025. Since these drugs were screened based on the same 
data analysis, we suspected that they may have similar 
mechanisms and targets. In order to figure out the poten-
tial targets and regulatory pathways of these drugs, we 
selected drugs with p value <0.05 to study the proteins 
targeted by them using the STITCH database (Figure 9). 
We identified a number of important downstream regula-
tory proteins, including MAPK14, HSP90AA1, ABCB11, 
FABP6, ABCB1, NR1H4, ADCY2, etc.

3.6  |  IC50 analyses based on RBP-
related signature showed different drug 
sensitivities between high-risk and low-
risk groups

In order to further prove that the RBP-based risk score es-
tablished by us has good reliability, we studied the drug 
sensitivity of the compounds selected according to this 
model. We used our risk score calculating model to screen 
out these compounds by an analysis on the transcriptome 
for 60 cancer cell lines collected from the CellMiner da-
tabase, which included five glioma cell lines, and data of 
IC50 (50% inhibitory concentration) of over 20,000 com-
pounds. To better link our RBP-related signature to the 
clinical practice, we only involved 707 drugs that have 
been approved by FDA or are now under clinical trials. 
First, we calculated the risk score of the mentioned cell 
lines medicated by different drugs. Then for each kind 
of drug, we analyzed the relationship between risk score 
and IC50, and thus filtered out several drugs whose IC50s 
were strongly correlated with the risk score (Figure 10). 
Statistically significant correlations were identified with 
|cor| > 0.3 and p value <0.01. We also performed a com-
parative study on these drugs between high-risk group 
and low-risk group, and the IC50 of drugs showed a sig-
nificant difference between the two groups, such as oka-
daic acid, PLX-4720, PLX-8394, vemurafenib, oxaliplatin 
and 8-Chloro-adenosine, which means that our risk score 
calculation model was effective in predicting the sensitiv-
ity of cancer cells to these drugs (Figure 11). It also dem-
onstrated that we can select drugs based on a patient's risk 
score, which may lead to more precise drug use.

T A B L E  2   KEGG analysis for three subnets, respectively

Description p.adjust q value

Subnet1

Ribosome 9.21E-70 7.27E-70

RNA transport 2.95E-10 2.33E-10

mRNA surveillance pathway 0.000113 8.96E-05

Subnet2

Spliceosome 5.99E-29 3.88E-29

RNA degradation 2.85E-06 1.84E-06

Subnet3

Ribosome biogenesis in eukaryotes 3.00E-05 2.11E-05

T A B L E  3   Coefficients of the 11 RBPs involved in the 
mathematical model

ID coef HR p value

THOC3 0.242 1.274 0.0035

LSM11 −0.303 0.738 0.0821

SARNP −0.438 0.645 0.0417

PABPC1L2B 0.609 1.838 0.0204

SMN1 0.260 1.297 0.0504

BRCA1 0.222 1.249 0.0024

ZC3H8 −0.269 0.764 0.0167

DZIP1L 0.397 1.487 0.0008

HEXIM2 −0.497 0.609 0.0004

LARP4B −0.226 0.798 0.0045

ZC3H12B −0.548 0.578 0.0002
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4   |   DISCUSSION

RBPs play an important role in post-transcriptional reg-
ulation and the activity of RBP-RNA networks has been 
shown to be closely related to tumor development, so the 
differential expression of RBP can be used as a basis for 
tumor typing and tumor malignancy, and can be used to 
predict the prognosis of patients.9

In this study, we screened out genes with significant 
differential expression between glioma samples and nor-
mal samples based on TCGA-GBM, TCGA-LGG, and 
CGGA datasets, and through univariate and multivariate 
Cox, we screened out 11 RBPs that can provide a reference 
for the prognosis prediction of glioma, then established a 
model and a rigorous verification was carried out. These 
11 RBPs were closely linked to metabolism and glioma de-
velopment. THOC3 was involved in the THO subcomplex, 
which was necessary for coupled mRNA transcriptional 
extension and nuclear export, its expression was signifi-
cantly elevated in glioma cells.38 LSM11 participated in 
histone RNA 3’ processing and SARNP, playing a role in 
mRNA splicing and export, was not only significant in 
glioma but also acted as an important molecule in triple-
negative breast cancer.39,40 Both LSM11 and SARNP played 
roles in preventing disorders of cell protein synthesis or 
cell division, and their decreased expression in gliomas 
may be associated with glioma development. BRCA1 and 
LARP4B were traditionally recognized as a tumor sup-
pressor but BRCA1 unexpectedly plays as a promotor in 
GBM.18,41 Our work illustrated this at the molecular level 
as BRCA1’s expression was significantly increased in gli-
oma cells, while the expression of LARP4B was decreased. 
As members of ZC3H-family, ZC3H8, and ZC3H12B could 
negatively regulate NFκB and affect cell proliferation, 
survival, and differentiation.42 HEXIM1 was a promiscu-
ous double-stranded RBP and participates in several bi-
ological processes including controlling P-TEFb, which 
regulated eukaryotic gene expression.43 In this study, we 
synthesized the 11 RBPs which played important roles in 
the regulation of cell proliferation and metabolism in dif-
ferent aspects, and established a relevantly highly reliable 
prognosis prediction model for glioma patients, providing 

a reference for the grading of risk score and the selection 
of clinical treatments.

We also found that those RBPs with differential expres-
sion were closely related to immune cells and immune 
function. Interestingly, in high-risk glioma patients, the 
immune gene sets associated with immune promoting 
(TIL, CD8+ T cells, etc.) and immune-suppressing (Treg, 
APC co-inhibition, etc.) tumor immunity were both up-
regulated, but the prognosis was worse in high-risk glioma 
patients as immunosuppression was positively correlated 
with risk score.

The increase of immune cells and function in glioma 
was associated with chemokine in tumor tissue. For in-
stance, CD8+ cells and chemokine CCL5 were both ob-
served increased in GBM, CCL5-CCR5 axis may be an 
important mechanism for attracting effector T cells such 
as CD8+ T cells from tumor tissue to tumor microenvi-
ronment. Being activated in glioma, CCR5+CD38+HLA-
DR+CD8+ T cells express a higher level of PD-1, 
suggesting that the PD-1/PD-L1 loop may be a potential 
target for glioma treatment.44 However, it has been re-
ported that glioma cells could lead to suppression of the 
immune system. By recruiting innate immune cells, in-
ducing their phenotype modification and suppressing 
adaptive immune responses, glioma tumor cells could 
downregulate antitumor response. Researchers have also 
found reduced Neoantigen expression, which may con-
tribute to the inhibited immune function.45 In addition, 
tumors also induced normal brain cells to create a micro-
environment suitable for tumor proliferation and inva-
sion of brain.46 What is more, it has been reported that 
myeloid-derived suppressor cells (MDSC), which was el-
evated in peripheral blood in glioma patients, were more 
tend to differentiate into DCs in LGG and remain MDSC 
in GBM, this may also be related to the induction of im-
mune cells by high-grade gliomas.47

Upregulation of tumor suppressor and immune-
related genes did not necessarily improve the prognosis 
of patients, which may be related to the concurrent in-
tensification of immunosuppression. Through computa-
tional analysis, we found that the increase of risk score 
was usually accompanied by the enhancement of immu-
nosuppression as a variety of marker immunosuppressive 

F I G U R E  3   Model establishment and survival analysis of TCGA dataset and CGGA dataset. (A) 28 RBPs are selected after KM analysis 
(KM filter = 0.001), univariate Cox regression analysis (FDR filter = 0.001), and HR (Hazard Ratio) filter are set as 1.5 or 0.5. Eleven most 
clinically relevant RBPs are obtained to establish mathematical model by multi-Cox analysis. (B) In TCGA and CGGA datasets, samples are 
divided into high-risk group and low-risk group bounded by the median risk score (0.712 in TCGA dataset and 1.692 in CGGA dataset). (C) 
Significant survival difference were observed between two groups in both TCGA and CGGA datasets, patients with higher risk score tend to 
suffer from poorer prognosis and survival. (D) The ROC curves for glioma patients, which predict survival according to risk score in TCGA 
and CGGA datasets. (E, F) PCA and t-SNE of samples from TCGA and CGGA datasets, showing that there is a significant difference between 
high-risk and low-risk groups. (G) Heatmaps of the 11 RBPs for high-risk and low-risk groups in TCGA and CGGA datasets. (H, I) Boxplots 
of the 11 RBPs for high-risk and low-risk groups in TCGA and CGGA datasets. Kruskal–Wallis H-test was used to compare difference 
between groups. ns: p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001
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F I G U R E  4   The slice images for differential expression of the 11 RBPs mentioned were obtained from the Human Protein Atlas. The 
staining results were basically consistent with our analysis, namely, RBPs presented on the left including THOC3, PABPC1L2B, BRCA1, 
DZIP1L, and SMN1 were up-regulated in glioma, while the expression of the remaining six RBPs on the right was downregulated
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genes’ expression present positively correlative with risk 
score. In addition, glioma cells had the ability to induce 
immune cells to evade immune examination and induce 
normal nerve cells to participate in the establishment of 
tumor microenvironment, so the final manifestation in 
high-risk glioma patients was immunosuppression and 
deterioration. Although the gene expressions related to 
TILs are elevated, exhaustion and clonal restriction were 
found in the TILs of patients with GBM, suggesting that 
inhibition was stronger than promotion to TILs.48 It has 
been reported that microglia cells and macrophages in the 
glioma microenvironment could secrete chemokine CCL2 
to recruit CCR4+ Treg and CCR2+ ly-6C+ Monocytic 
MDSCs and suppress tumor immunity.49 It is worth men-
tioning that increased gain-of-function mutation of TP53 
in glioma promoted antitumor inflammation, but deteri-
orated prognostic outcomes in patients with GBM either 
because inflammation can accelerate the process of GBM 
or strengthen treatment resistance.50 This may be the 
reason why genes regulating immunity were generally 
up-regulated but the prognosis of patients was poorer. 
Research is underway to overcome immunosuppression 
in gliomas. CXCL16/CXCR6 signaling acted directly on 
promoting tumor cell growth, migration and invasion 

by promoting glioma-associated microglia/macrophages 
modulation toward a pro-tumor phenotype, being a crit-
ical target for glioma treatment.51 Immunotherapy may 
provide a breakthrough for the treatment of glioma. 
Researchers have found that glioma cause changes of 
immune cells in the brain and therapeutic approaches 
that can target intracellular immune pathways have been 
brought up.52,53

On the basis of the analysis of differentially expressed 
genes, we also selected several drugs that might be effective 
for the treatment of glioma and yielded their main target 
proteins. Anisomycin and puromycin, as protein synthesis 
inhibitors, could Inhibit tumor proliferation.54 Anisomycin 
induced glioma cell death via downregulation of the PP2A 
catalytic subunit.55 It is also a potential drug for immu-
notherapy in hepatocellular carcinoma by playing an im-
portant role in both direct killing and natural killer (NK) 
cell-mediated immunotherapy.37 Puromycin-based inhibi-
tors of aminopeptidases have shown great potential in the 
treatment of hematologic malignancies. Sulfadoxine was 
traditionally used for the treatment of malaria, but some 
studies have found that it had a certain potential in the sup-
pression of cancer. A double-blind, placebo-controlled study 
found that prophylactic use of trimethoprim—sulfadiazine 

F I G U R E  5   The oncoprint plot describing the mutation, copy number alteration, and structural variant landscape of the 11RBPs in 
glioma. The data was captured by exploiting the data from 14 different datasets correlated with glioma. The legend of different rectangles 
representing different genetic alterations, study of origins, cancer types, and mutation spectra were listed below
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reduced the incidence of osteosarcoma or lymphoma in 
dogs during the first 14 days after doxorubicin treatment.56 
Benzarone has been confirmed in zebrafish experiments 
that it could inhibit tumor angiogenesis by inhibiting the ac-
tivity of pro-angiogenic tyrosine phosphatase Eyes Absents 
(EYA). However, single-agent therapy has provided disap-
pointing outcomes so far, the combination of a variety of 
therapies, especially biomarker-targeted clinical trials will 
be the focus of future therapeutic development.57 NU-1025, 
as a poly (ADP ribose) polymerase inhibitor, was basically 
inactive when used as a single drug, but it could signifi-
cantly improve the effect of temozolomide (TMZ) on the 
treatment of malignant tumors in the brain of mice when 
used as a combination with TMZ.58

Correlation analysis of glioma risk score and drug sen-
sitivity identified a number of drugs with different sensi-
tivities in the high-risk and low-risk groups, the ones with 
significant difference (p value <0.01) included okadaic 
acid, PLX-4720, PLX-8394, vemurafenib, oxaliplatin and 

8-Chloro-adenosine. This suggested that the selection of 
different drugs for patients with different risk scores may 
improve the outcome. It was reported that okadaic acid 
could induce apoptosis of malignant glioma cells through 
inhibiting dephosphorylation, which activated c-Jun-N-
terminal kinase (JNK) and extracellular signal-regulated 
kinase (ERK) pathways to promote apoptosis.59 And our 
analysis pointed out that okadaic acid has a better ther-
apeutic effect in low-risk glioma patients. Vemurafenib 
and its analog PLX-4720 were promising molecules for 
inhibiting tumor growth in gliomas with BRAFV600E 
mutation, which was more common in children,60 and 
both of them showed a higher sensitivity in the low-risk 
group. However, using BRAFV600E inhibitors alone could 
easily induce glioma cells’ resistance to them, the escape 
mechanisms of glioma cells included the up-regulation 
of the Wnt pathway and increased activity of receptor 
tyrosine kinases, including EGFR.60 And a combination 
of BRAFV600E inhibitors and pharmacologic inhibition of 

F I G U R E  6   Pathway analysis showed a high association between RBPs and tumor microenvironment immune function (A) GO analysis 
of differentially expressed genes between high-risk and low-risk groups in the TCGA dataset. (B) KEGG analysis of differentially expressed 
genes between high-risk and low-risk groups in TCGA dataset. (C) Boxplot of comparison of immune cells between high-risk and low-risk 
groups in TCGA dataset. (D) Boxplot of comparison of the immune system between high-risk and low-risk groups in TCGA dataset. (E) GO 
analysis of differentially expressed genes between high-risk and low-risk groups in the CGGA dataset. (F) KEGG analysis of differentially 
expressed genes between high-risk and low-risk groups in CGGA dataset. (G) Boxplot of comparison of immune cells between high-risk 
and low-risk groups in CGGA dataset. (H) Boxplot of comparison of the immune system between high-risk and low-risk groups in CGGA 
dataset. Kruskal–Wallis H-test was used to compare the the difference between groups. ns: p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001

F I G U R E  7   Immunosuppression was positively correlated with risk score in glioma. (A) Correlation between risk score and marker 
immunosuppressive genes’ expression in glioma patients of TCGA dataset, including PDCD1(PD-1), HAVCR2 (TIM3), CD274(PD-L1), 
CD276(B7-H3). (B) Correlation between risk score and marker immunosuppressive genes’ expression in glioma patients of CGGA dataset, 
including PDCD1(PD-1), HAVCR2 (TIM3), CD274(PD-L1), CD276(B7-H3). Spearman rank correlation test was utilized to estimate the 
strength of correlation. p < 0.05 was considered as statistically significant
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F I G U R E  8   The validation of the clinical independence of RBP-related prognostic model. (A, B) Clinical independence test for our 
model with data from both TCGA and CGGA datasets. (C–E) Nomograms (1–3 years) for verifying the formula, the curve calculated by our 
formula is in good agreement with the calibration line. (F) A clinical predictive nomogram based on the risk score calculating formula
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EGFR could greatly improve the efficacy by decreasing 
glioma cell proliferation and promoting apoptosis.61 PLX-
8394 is a kind of drug with limited study, our analysis 

based on the database predicted that it may have better 
effectiveness in the low-risk group. Oxaliplatin, which 
has a higher sensitivity to glioma with high-risk score, 

T A B L E  4   Drugs can be potentially used in glioma treatment

Rank Cmap name Mean Enrichment p value Specificity

1 anisomycin −0.685 −0.942 0 0.0254

2 puromycin −0.643 −0.914 0.00010 0.0299

3 16-phenyltetranorprostaglandin E2 −0.596 −0.905 0.00014 0

4 5182598 −0.744 −0.978 0.00107 0.0126

5 sulfadoxine −0.667 −0.905 0.00162 0

6 NU-1025 −0.529 −0.908 0.01708 0.0161

The values of mean and enrichment were the indicators to measure the effectiveness of drugs, and the absolute value was positively correlated with the 
therapeutic effect of drugs, while the negative value represented its inhibitory effect on tumorigenesis.

F I G U R E  9   Potential targets and regulatory pathways of the drugs selected from the Cmap database. The red lines show drug-drug 
interactions, and green lines represent interactions between the drug and the target protein, while the grey ones mean protein-protein 
interaction. The thickness of the line indicated the correlation strength between the two substances
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F I G U R E  1 0   Correlations between cell risk score and IC50 for different drugs. The correlation analysis between RBP-related 
signature-based risk score and IC50 of (A) Dexrazoxane, (B) PLX-4720, (C) Okadaic acid, (D) Pluripotin, (E) Nelarabine, (F) Sapacitabine, 
(G) Vemurafenib, (H) PLX-8394, (I) 8-Chloro-adenosine, (J) Oxaliplatin, (K) AM-5992, (L) ARQ-680, (M) ST-3595, (N) IDH-C227, (O) 
Encorafenib, (P) Palbociclib, (Q) LY-3009120, (R) P-529, (S) MLN-7243. Spearman rank correlation test was implemented to estimate the 
correlation between risk score and IC50 of each drug. p <  0.05 was considered as statistically significant
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has been proved to be a promising anti-glioma drug as 
it inhibited glioma growth in a relatively low concentra-
tion.62 It increased glioma cell apoptosis through reactive 
oxygen species (ROS)-dependent mitochondrial pathway 
by inhibiting the activity of signal transducer and acti-
vator of transcription 3 (STAT3) and downregulating 
the level of O-6-methylguanine-DNA methyltransfer-
ase (MGMT).62 Further research found out that it had a 
synergistic activity with silver nanotriangles (AgNTs).63 
8-Chloro-adenosine has been shown to inhibit glioma 
cell proliferation by disrupting nucleic acid synthesis 
and block cell cycle at the G2 M phase,64 but the research 
of 8-Chloro-adenosin in glioma is still limited. Our re-
search suggested that it may be more effective for high-
risk glioma treatment.

Immunotherapy is considered one of the most prom-
ising treatments for glioma and a lot of work is ongoing. 
Among various immunotherapies, vaccination was con-
sidered to be one of the most promising ways to improve 
the prognosis of patients with glioblastoma, but as single-
modality immunotherapy the challenge remained.65 
Measures have been taken to improve the probability of 
successful immunotherapy, in order to improve the effi-
cacy of antitumor immunity within a meaningful time 
window.66 Immune checkpoint was another important 
target for glioma treatment and some immunotherapy 
drugs had entered clinical trials, inhibition of PD-L1, 
CTLA4, Indoleamine 2,3-dioxygenase (IDO) was in-
cluded.67 Many immunotherapy drugs have been listed as 
potential strategies for treatments of glioma, and we be-
lieve that immunotherapy will provide more possibilities 
for glioma treatment in the future.

However, due to the inevitable limitations of data 
sources and research methods, there are still some de-
ficiencies in this study. We established the mathematic 
model by multi-Cox analysis, which was more likely to 
retain some of the less weighted factors, but it also made 
our modeling results more comprehensive. Although 
the heterogeneity of the patients’ data rooting in pa-
tients’ different backgrounds would cause a difference 
between results from are TCGA dataset and CGGA data-
set to some degree, but the similarities among them 
were statistically significant and were verified by various 
methods. In risk score-IC50 correlation analysis, due to 
the limited data of glioma cell lines, we selected a part 
of non-glioma cell lines for analysis, which may affect 
the accuracy of the results. But delightfully, the compar-
ison between the high-risk group and the low-risk group 

proved that the results of the correlation analysis had 
good reliability. What is more, due to limited conditions, 
we have not verified our results at the cellular and ani-
mal levels, and we hope that further studies can be con-
ducted in the future.

5   |   CONCLUSIONS

In general, we screened 11 RBPs with strong clinical 
prognostic relevance from hundreds of differentially 
expressed RBPs in glioma, and established a progno-
sis predicting model for glioma patients with them. 
We also found that RBPs differentially expressed in 
gliomas were closely related to immune cells and im-
mune function, indicating that immunotherapy will be 
an important direction in glioma therapy. In addition, 
through the analysis of differentially expressed RBPs, 
we also selected several drugs and some possible drug 
regulatory targets that may be useful in the treatment 
of glioma based on these aberrantly expressed RBPs. In 
addition, we identified a number of drugs with differ-
ent sensitivities between high-risk and low-risk glioma 
patients through risk scoring combined with drug sen-
sitivity analysis. We hope that our work could provide 
a reference for the clinical prognosis and treatment of 
glioma.
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