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Ranking metrics in gene set enrichment
analysis: do they matter?
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Abstract

Background: There exist many methods for describing the complex relation between changes of gene expression
in molecular pathways or gene ontologies under different experimental conditions. Among them, Gene Set
Enrichment Analysis seems to be one of the most commonly used (over 10,000 citations). An important parameter,
which could affect the final result, is the choice of a metric for the ranking of genes. Applying a default ranking metric

may lead to poor results.

Methods and results: In this work 28 benchmark data sets were used to evaluate the sensitivity and false positive
rate of gene set analysis for 16 different ranking metrics including new proposals. Furthermore, the robustness of the
chosen methods to sample size was tested. Using k-means clustering algorithm a group of four metrics with the
highest performance in terms of overall sensitivity, overall false positive rate and computational load was established
i.e. absolute value of Moderated Welch Test statistic, Minimum Significant Difference, absolute value of
Signal-To-Noise ratio and Baumgartner-Weiss-Schindler test statistic. In case of false positive rate estimation, all
selected ranking metrics were robust with respect to sample size. In case of sensitivity, the absolute value of
Moderated Welch Test statistic and absolute value of Signal-To-Noise ratio gave stable results, while
Baumgartner-Weiss-Schindler and Minimum Significant Difference showed better results for larger sample size.
Finally, the Gene Set Enrichment Analysis method with all tested ranking metrics was parallelised and implemented in
MATLAB, and is available at https://github.com/ZAEDPoISI/MrGSEA.

Conclusions: Choosing a ranking metric in Gene Set Enrichment Analysis has critical impact on results of pathway
enrichment analysis. The absolute value of Moderated Welch Test has the best overall sensitivity and Minimum
Significant Difference has the best overall specificity of gene set analysis. When the number of non-normally
distributed genes is high, using Baumgartner-Weiss-Schindler test statistic gives better outcomes. Also, it finds more
enriched pathways than other tested metrics, which may induce new biological discoveries.
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Background

Ever since the high-throughput measuring techniques
were introduced into molecular biology, methods for
complex gene interaction analysis were developed (in
parallel to methods for detecting differentially expressed
genes). Throughout the years, three generations of gene
set analysis methods were proposed. The first group
is called Over-Representation Analysis (ORA) and was
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established in 1999 [1]. A wide array of tools belongs to
this category, including simple ones, such as GOstat [2]
and DAVID [3] or more sophisticated like RuleGO [4].
The main statistical assessment of a gene set significance
in ORA is based on hypergeometric, x? or Fisher exact
test, which makes first generation methods simple and
easy in implementation. However, there are two serious
drawbacks of over-representation analysis: the informa-
tion about the strength of feature differentiation is lost
by binarisation (features in gene sets are represented
only as differentially expressed genes or non-differentially
expressed genes); assumption of gene expression indepen-
dence in the hypergeometric test is not fulfilled in most
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of the cases. To overcome these problems, the second
generation of gene set analysis methods was proposed in
2003 [5] and they are known as Functional Class Sorting
(FCS). Those methods use information about all anal-
ysed genes and sort them according to some metric. The
information from gene ranks is further transformed to
pathway level (this process is specific to each algorithm)
and statistical significance of each gene set is established.
Nevertheless, gene sets are analysed independently (like
in ORA), and direction of gene regulation according to
biological knowledge is not incorporated. In literature
several FCS methods were proposed, e.g. [6], CAMERA
[7], PLAGE [8] and GSEA [5, 9]. In parallel the third
generation of methods (Pathway Topology (PT)-based
approaches) was developed in 2004 [10]. In their structure
these methods are similar to FCS, but they use pathway
topology to compute gene-level statistics. In this group
methods like NetGSEA [11], CePa [12] or hybrid approach
EnrichmentBrowser [13] were proposed. Even though the
third generation methods seem to be the most consis-
tent with the complexity of molecular level biology, they
also have some limitations. The main one is that true
pathway topology depends on cell cycle phase, cell types
or specific conditions, but this information is nowadays
rarely available. Additionally, they require much larger
computational resources.

Despite drawbacks mentioned above, first and second
generations methods are still commonly used. Among
them, GSEA method seems to be the most popular with
over 10,000 citations of original articles [9] in Google
Scholar (over 1,000 citations only in 2016). Researchers
apply this procedure to a variety of genomic studies,
including large non-coding RNA [14], microRNA [15] or
system biology of complex diseases [16, 17]. GSEA was
constructed for analysis of gene expression data, how-
ever, there are extensions of the algorithm dedicated to
deal with single nucleotide polymorphism data e.g. GSEA-
SNP [18], MAGENTA [19] and i-GSEA4GWAS [20] or
RNA-sequencing data e.g. SeqGSEA [21].

The first implementation of Gene Set Enrichment
Analysis algorithm was created in Java by the authors
of the original concept [22]. The biggest advantage of
the application is a user friendly interface, a couple of
different ranking methods and an access to gene set
resources from Broad Institute. The same functionalities
are provided in R package named GSEA-P-R. Recently,
new implementations appeared. In rapidGSEA software
suite [23] they proposed two tools for permutation-
based GSEA using parallel computations on CUDA
designated GPUs (cudaGSEA) or multi-core CPUs
(ompGSEA). They introduced a simple gene ranking
metric by calculating the local deviations. In both
implementations it is not possible to use other gene
ranking metrics.
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The GSEA procedure is commonly used by the Java-
based application [22], where the main parameter which
needs to be set and can affect the final result is a choice
of the ranking metric that measures the level of difference
in gene expression between phenotypes. In the standard
Java-based application basic metrics are implemented e.g.:
signal-to-noise ratio (S2N), ratio of average expression
from two classes (Ratio), T-test statistic (T-test), or the
Pearson correlation coefficient for quantitative studies.
However, researchers used also other gene ranking met-
rics e.g. logarithm transformed p-value from t-test [24],
the Gaussian z-value corresponding to the one-sided p-
value from the Welch t-test [25], Significance Analysis
of Microarray [26]. New ranking metrics were used in
combination with the pre-ranked GSEA procedure, where
gene permutation is performed to obtain the enrichment
score distribution. However, this type of permutation is
not recommended, because it lose gene-gene correlation,
so the phenotype sampling is more appropriate [9, 27].

Here, we present a complex comparison of multiple
ranking metrics for GSEA, including ones implemented
in standard Java application and novel metrics, that
were successfully applied in feature selection of high-
throughput data. To assess the effectiveness of tested
ranking metrics, we propose two unique, statistically jus-
tified measures which are created by modification of those
presented in [28]. The proposed measures are accompa-
nied by computational time, and can be used in any other
comparison study. Until now, there have been few studies
where ranking metrics in Gene Set Enrichment Analy-
sis were tested [29-31], however here we use a variety of
ranks with powerful phenotype permutation, a large col-
lection of data sets and statistical quality measures of gene
set analysis. Finally, we have implemented GSEA method
in MATLAB and named it MrGSEA (MATLAB metric
GSEA - https://github.com/ZAEDPolSI/MrGSEA). The
implementation includes all tested ranking metrics and
leaves the possibility to implement new ranking metrics
with the most powerful phenotype permutation. Addi-
tionally, the implementation has parallel computing capa-
bilities. All of this can refine and extend the existing
Java-based solution [22] or CUDA-based solution [23].

Methods

Data sets

The publicly available microarray data sets from two
Bioconductor packages were used. In both collections, to
each disease the target pathway from Kyoto Encyclopedia
of Genes and Genomes (KEGG) [32] has been assigned,
which provided the main information about efficiency of
the tested gene ranking metric. The assignment of the tar-
get pathway to disease was performed based on KEGG
Disease resource, where to each disease the leading path-
ways are pointed out. To each disease the pathway with
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the same name as a disease was chosen as a target path-
way, e.g. when a subject of the study was a renal cancer,
the target pathway is hsa:05211 termed Renal cell carci-
noma. The first data collection is available in KEGGdz-
PathwaysGEO package [6] consisting of 24 microarray
data sets, while second one is available in KEGGand-
MetacoreDzPathwaysGEO package [28] consisting of 18
microarray data sets. From both collections the data sets
with paired study design and with Metacore pathways
identification were removed. Additionally, data sets of
clear cell renal cell carcinoma (ccRCC) previously used in
[33], were downloaded from Gene Expression Omnibus
[34] (IDs: GSE6344, GSE15641, GSE14994, GSE11024)
and included into the analysis. The duplicates of probe set
assignments to genes were removed according to the fol-
lowing procedures: for KEGGdzPathwaysGEO by keeping
the probe set with the smallest p-value, and for KEG-
GandMetacoreDzPathwaysGEO and ccRCC data sets by
keeping the probe set with the highest average expression
across all samples [6]. For every data set, the proportion
of non-normally distributed genes was found by Lilliefors
test. Detailed description of the 28 data sets used is shown
in Table 1. As a gene set collection KEGG pathways
were used via KEGGREST package (updated on 11/2015)
consisting of 299 different pathways.

Gene set enrichment analysis method

The Gene Set Enrichment Analysis method proposed by
Subramanian et al. [9] remains one of the most popu-
lar method used for testing possible dis-regulations in
pathways (gene sets) due to differences in expression of
genes between analysed experimental conditions. It has
been categorised as a second-generation method, com-
petitive with sample randomisation (more details on the
tested hypothesis are available in [27]). The general idea of
GSEA method is to test whether the distribution of genes
(according to an established ranking metric) in the gene
set differs from a uniform distribution, using a weighted
Kolmogorov-Smirnov test statistic. To establish interest-
ing gene sets the Enrichment Score is calculated as a
maximum deviation from zero between hits of genes g
into gene set S marked as Py;; (Eq. 1) and genes g outside
gene set S marked as Py;ss (EqQ. 2):

. |71
Prig(Siy = Y N—’R (1)
g € S
j<i
L 1
Piiss(S, 1) = Z (N — Ng) (2)
g ¢S
j<i

where N is a sum of absolute values of ranking met-
rics for all genes in gene set S, Ny is a gene set size, N
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is a total number of analysed genes and r is a value of
ranking metric, representing how strong is the difference
in gene expression between experimental groups. The i
and j are indicators of the position in the sorted list of
gene ranks. The significance of an observed enrichment
score is assessed by a permutation test. In GSEA method
two types of permutations can be performed: by sam-
ple or by gene labels. Since only the sample permutation
type allows to keep gene correlation structure, which is
recommended [27], only this approach is considered in
the presented work. Finally, to adjust estimated enrich-
ment score for variation in gene set size, the normalised
enrichment score is calculated. In this study, p-value of
normalised enrichment score is used as a measure of
pathway enrichment.

Ranking metrics

We compared 16 ranking metrics divided into two groups.
Detailed formulae for all tested metrics are presented
in Table 2. The first group consists of metrics available
in standard GSEA Java-based application [22]: signal-to-
noise ratio (S2N; the default measure in GSEA), abso-
lute value of signal-to-noise ratio (|S2N|), difference of
expression means between classes (Difference), ratio of
expression means of two classes (Ratio), logy of Ratio
(log,(Ratio)), and T-test statistic (T-test). The second
group consists of ranking metrics originating from the
field of feature selection and frequently applied for discov-
ery of differentially expressed genes in high-throughput
biological experiments. First two metrics are based on
Moderated Welch Test statistic (MW T and its absolute
value, [IMWT]), calculated using weighted pooled and
unpooled standard errors in the t-test procedure and
adjusted by estimation of the gene-level variance across
genes [35]. Next two ranking metrics use non-parametric
test statistics: the Sum of Ranks (SoR) and Baumgartner-
Weiss-Schindler test statistic (BWS) [36]. Both have been
used in GSEA before [31]. In contrast to other methods,
these metrics make no assumption about the distribution
of gene expression data. The SoR is based on the sum
of ranks for genes belonging to a particular experimental
class. The BWS test is based on the squared value of the
difference between two empirical distribution functions
weighted by the respective variance and approximated by
average of B statistics for each class. Neuhduser showed
that BWS gives a more accurate Type I error control and
more power compared to the Wilcoxon test [37]. Two fur-
ther metrics are derived from ReliefF algorithm, which
for each gene assess a weight (from 1 as the best to -1
as the worst). The weight represents the best separation
between classes based on nearest neighbor distance esti-
mation [38]. To each weight, the tied rank is assigned
as a second ReliefF-based metric (ReliefF ranked). Also,
the weighted average difference method (WAD) and its
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Table 1 General information about used microarray data sets
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GEO Target KEGG ID Disease/KEGG pathway name Tissue Sample Size (Control+Case)
GSE1145 hsa:05414 Dilated cardiomyopathy Left Ventricle 26 (11+15)
GSE14924_CD4 hsa:05221 Acute myeloid leukemia CD4 T cells 20 (10+10)
GSE14924_CD8 hsa:05221 Acute myeloid leukemia CD8T cells 21 (11410)
GSE16759 hsa:05010 Alzheimer's disease Parietal lobe 8 (4+4)
GSE24739_GO hsa:05220 Chronic myeloid leukemia Peripheral blood 12 (4+8)
GSE24739_G1 hsa:05220 Chronic myeloid leukemia Peripheral blood 12 (4+8)
GSE32676 hsa:05212 Pancreatic cancer Pancreas 32 (7425)
GSE4183 hsa:05210 Colorectal cancer Colon 23 (8+15)
GSE1297 hsa:05010 Alzheimer’s disease Hipopocampal CA1 16 (9+7)
GSE14762 hsa:05211 Renal Cancer Kidney 21 (1249)
GSE19188 hsa:05223 Non-small cell lung cancer Lung 153 (62+91)
GSE19728 hsa:05214 Glioma Brain 21 (4+17)
GSE20153 hsa:05012 Parkinson’s disease Lymphobilasts 16 (8+8)
GSE20291 hsa:05012 Parkinson’s disease Ppstmortem brain putmen 33 (19+14)
GSE21354 hsa:05214 Glioma Brain, Spine 17 (4+13)
GSE3585 hsa:05414 Dilated cardiomyopathy Subendocardial left ventricle 12 (5+7)
GSE4107 hsa:05210 Colorectal cancer Mucosa 22 (10+12)
GSE5281_EC hsa:05010 Alzheimer's disease Entorhinal cortex 21 (1249)
GSE5281_HIP hsa:05010 Alzheimer's disease Hippocampus 23 (13410)
GSE5281_VCX hsa:05010 Alzheimer's disease Primary visual cortex 31 (12+19)
GSE781 hsa:05211 Renal Cancer Kidney 17 (5+12)
GSE8762 hsa:05016 Huntington’s disease Lymphocytes 22 (10+12)
GSE9348 hsa:05210 Colorectal cancer Colon 82 (12+70)
GSE9476 hsa:05221 Acute myeloid leukemia Peripheral Blood 63 (37+26)
GSE6344 hsa:05211 Renal Cancer Kidney 20 (9+11)
GSE15641 hsa:05211 Renal Cancer Kidney 55(23+32)
GSE14994 hsa:05211 Renal Cancer Kidney 30 (84+22)
GSE11024 hsa:05211 Renal Cancer Kidney 22 (12+10)

absolute value (JWAD|) were included. According to the
authors, WAD gives better sensitivity and specificity in
identifying differentially expressed genes and more stable
top-rank genes list compared to standard mean difference
or fold change [39]. Second to last of tested ranking met-
ric is the fold change rank ordering statistics (FCROS),
which is based on a truncated mean calculated from the
matrix of fold changes from pairwise comparison between
sample groups [40]. Finally, we used the Minimum Signif-
icant Difference (MSD) [41] that is defined as the signed
distance of the confidence interval (CI) of the logarithm
of fold change (logFC) estimate from no change (zero).
This can be interpreted as the most pessimistic estimate
of logFC which is still within the 95% CI. A value of MSD
metric shows that in 95% of the cases the log fold change
will have at least this magnitude. Negative value of MSD
indicates that logFC of zero is within the CI. Although,

our implementation of MSD is parametric, in general
the calculation of CI can be achieved in non-parametric
framework.

Implementation

The Gene Set Enrichment Analysis method was imple-
mented using 64-bit MATLAB R2016a programming
environment. All ranking metrics tested in the publica-
tion are available. There is a possibility to use the external
ranking metric method by applying an intrinsic MATLAB
function. For every ranking metric the software calculates
the p-value corresponding to a difference in expression
between phenotypes by use of permutation test. The
Enrichment Score distribution can be estimated by per-
mutation of gene labels or phenotypes. Additionally, there
is a function to create a custom gene set database from
an Excel file containing genes grouped into gene sets.
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Table 2 Description of ranking metrics sorted from the most parametric, through non-parametric to data mining methods

Metrics Description Comments Ref.
X-%
T-test 75% 257 Bl
e
R — 2 2
MWT X*ngxz ise2 = do;%iifw and absolute value [35]
a log(FC) > 0
MSD left g(FC) 41]
—Clight log(FC) < 0
n-x3
S2N 51 +S§ and absolute value [9]
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WAD and absolute value [39]
_ FX=min_.¢ _ W+%
Wﬁm);xr—nr/gm'xf 122
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Ratio % and logy 9]
FCip . FCig
Mean % 40
FCROS (truncated,10%) [40]
FCn .. FChk
k - pairwise comparison; FC - fold change, N - no. of genes
Nq
SoR > Ri; Ny - size of group 1; R - ranks of elements from group 1 [31]
i=1
n . 2
31+57»51_Lm (Rjﬁz’:wj
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ReliefF W — W + > FP(F;(/*;;(X)) W and tied rank [38]

c#£class(x)

Results of the enrichment analysis are stored as MATLAB
variables, in Excel files and as PNG images.

The algorithm was parallelised using the idea of repli-
cated workers. Due to the nature of the GSEA method,
each thread calculates the enrichment score and its dis-
tribution for different gene sets independently. Since the
number of genes in each gene set is different, which cause
divergent computational time, this solution provides the
fastest results. The number of tasks performed in paral-
lel depends on the number of available processor cores
and MATLAB software license (maximum 12 threads
with Parallel Computing Toolbox). The source code with
an example data set and demonstration script can be
freely downloaded from https://github.com/ZAEDPolSl/
MrGSEA [42].

Experimental design

The computational experiment is based on the collection
of 28 microarray data sets, where to each of them a target
pathway is referred. Sixteen GSEA ranking metrics were
tested by two scores: i) surrogate sensitivity — a p-value of

normalised enrichment score statistic for target pathway
(the smaller, the better) (see [28] S1 Note) and ii) false
positive rate (FPR) — the percent of false positives found
at 5% significance level (the closer to 5%, the better). To
assess FPR, the original phenotypes of each data set were
permuted creating 50 independent data collections. To
estimate the overall sensitivity of a given ranking met-
ric, the conservative estimator 77y from Storey’s method
for multiple testing was used [43]. The 7y represents a
proportion of truly null tests with the expectation that
all p-values will follow uniform distribution, where 1-7
is the proportion of truly alternative tests. To estimate
the overall FPR of the ranking metric, the absolute devi-
ation of mean FPR (observed level) from 5% (expected
level) was taken. Additionally, the computational load
of each ranking metric was evaluated. Obtained scores
(overall sensitivity, overall FPR, computational load) were
normalised to one scale, and the k-means clustering pro-
cedure with Euclidean distance was used to divide ranking
metrics due to total performance in gene sets enrichment.
The number of clusters in k-means algorithm was set with
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the use of Dunn index [44]. Finally, for the best rank-
ing metrics, the robustness to sample size was tested in
the following scenario: the largest data set (GSE19188)
was randomly divided 30 times into different sample size
collections (10, 20, 30, 40, 60, 80 and 100) in a strati-
fied manner. For each scenario, the surrogate sensitivity
and FPR of gene set enrichment for a given method was
calculated.

Results and discussion

Overall sensitivity and FPR of gene set analysis

For each of the 28 data sets the GSEA method, with 1000
phenotype permutations and 16 different ranking metrics,
was performed. The p-values of target pathways, which
represent surrogate sensitivity, are shown in Fig. 1a. The
average percent of significantly enriched gene sets, which
represents FPR, is presented in Fig. 1b. In all figures rank-
ing metrics are sorted from the most parametric statistics,
through non-parametric to data mining approaches. As
can be seen in Fig. 1a, we can distinguish two ranking met-
rics with the lowest median of surrogate sensitivity and
relatively small spread of distribution, i.e. Ratio and BWS.
The worst results are observed for T-test statistic and Reli-
efF ranked metric. In case of FPR, the group of seven
metrics with a low value is observed: T-test, IMWT],
MSD, |S2N]|, BWS, ReliefF and ReliefF ranked. To find
the overall performance of ranking metric, expected out-
comes for both scores were estimated: the 1-7( estimator
from Storey method [43] for overall sensitivity, and abso-
lute value of difference between average FPR and expected
one for overall FPR (Table 3). Ideally, for introduced defi-
nitions a ranking metric should have high value of overall
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sensitivity and low value of overall FPR. This approach
highlights four ranking metrics: [MWT|, |S2N|, BWS and
ReliefF. The Ratio metric has very good overall sensitiv-
ity, at the expense of poor FPR estimation, while opposite
is observed for the ReliefF ranked metric and MSD. Addi-
tionally, detailed results of surrogate sensitivity and FPR
for each ranking metric on every data set are presented in
Additional file 1.

Establishing the best ranking metrics

For all ranking metrics, the computational load was cal-
culated as an important measure of practical application
of given method (detailed evaluation for each metric and
data set is included in Additional file 1). To find met-
rics which have the best overall sensitivity, overall FPR
estimation and low computational cost, the k-means clus-
tering approach with Euclidean distance was used. The
estimators of each score were normalised to range [0, 1]
to avoid favoring a single score. The Dunn index indicated
four clusters as an optimal solution of clustering. Results
of using k-means with 4 clusters are presented in Fig. 2.
The most relevant clusters are the ones where computa-
tional load and overall FPR are low, and overall sensitivity
is high. These three conditions are fulfilled for a clus-
ter 1 (Fig. 2) with the metrics: IMWT|, MSD, |S2N| and
BWS - green colour superiority. Out of those four metrics
the IMWT| had the highest overall sensitivity, while MSD
showed the lowest overall FPR and low computational
load on the tested data collection. In this group only |S2N]|
is available in the original GSEA Java-based implementa-
tion [22], added as a consequence of results obtained in
[45]. For other clusters showed in Fig. 2, we can observe
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Table 3 Results of overall sensitivity, false positive rate and
average evaluation time for all ranking metrics

Rank metric 1 — 7o |FPR — F7’7?| Average evaluation time [s]
T-test 0.066 8.162 118363
MWT 0.928 19.634 191.944
[MWT] 0.998 3.665 191.944
MSD 0.559 0.008 117.627
S2N 0.926 17.932 115.090
|S2N| 0.981 2.542 115.090
WAD 0.992 23482 112.534
|WAD| 0.994 23971 112.534
Difference 0.985 25212 111.920
Ratio 0.997 26429 121.228
log, (Ratio) 0.824 23337 120.820
FCROS 0.758 19.228 324413
SoR 0.756 23.087 264.746
BWS 0.900 2.696 289.215
ReliefF 0.840 6.394 912471
Relieff ranked 0.548 2.852 912471

Overall sensitivity is defined as 1 - estimator from Storey’s method (the higher, the
better). Overall false positive rate is defined as an absolute value of the difference
between observed and expected false positive rate (the lower, the better)
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a poor value for at least one of the tested measures (red
colour). Additionally, the k-means procedure was applied
only for overall sensitivity and overall FPR estimators to
show another group with the best ranking metrics, when
the computational load does not matter (Fig. 3). As can
be observed the IMWT]|, |S2N| and BWS are located in
a cluster with the best outcomes, however this time k-
means procedure also distinguished two other interesting
clusters with weaker scores. The first cluster includes Reli-
efF metric which has medium FPR estimation and good
overall sensitivity; the second cluster includes MSD and
ReliefF ranked metrics, with low overall sensitivity but
good FPR estimation.

Robustness to sample size

The four best ranking metrics ((MWT|, MSD, |S2N| and
BWS) were tested for robustness of pathway enrichment
analysis with respect to number of samples in the anal-
ysed data set. Both surrogate sensitivity and FPR were
assessed for each metric and different sample size (Fig. 4).
Two metrics, MW T| and |S2N| have similar levels of sur-
rogate sensitivity, independent of sample size. BWS and
MSD metrics show better results for larger sample sizes.
In case of BWS it is related with the method of empirical
estimation of B statistic. In case of MSD, it is caused by the
weakness of standard error estimation for calculating the
logFC CI. In case of FPR, it may be observed that it is con-
stant for all metrics and sample sizes. The only exception

Normalised
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ReliefF ranked
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WAD
[WAD|
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SoR
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computational time

Cluster 4
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Fig. 2 Results of k-means cluster analysis based on three performance criteria. Results highlighted with green colour show good performance, red
colour represents poor performance and yellow colour represents medium performance
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is observed for IMWT| method, where for extremely low
sample size the obtained FPR is higher. Analysis of robust-
ness of the ranking metrics to sample size revealed that
IMWT| and |S2N| give stable results, but for larger exper-
iments obtained surrogate sensitivity is worse than for
BWS and MSD.

Precision in pathway enrichment

Finally, the percentage of enriched pathways at differ-
ent significance levels was determined. Figure 5a, shows
average percent of discovered pathways for tested data
collection with 95% confidence intervals, while Fig. 5b
represents average level of enriched pathways after ran-
dom permutation of sample labels (false positive estima-
tion). As can be seen the Baumgartner-Weiss-Schindler
test ranking metric gives the highest rate of statistically
significant gene sets at different threshold levels, keep-
ing the false positive results at the expected level. Results
obtained for |S2N|, IMWT| and MSD are very similar and
do not differ at 0.05 significance level between each other.
For these three methods the expected level of number of
false positives is also preserved. Those results show that
BWS ranking metric not only finds expected target path-
ways with low p-values, but can detect more dis-regulated
pathways in comparison to other metrics, with accepted
number of false positive findings. Further research is
needed to confirm the link between additional significant

gene sets found by BWS and phenotypes under study in
28 data sets collection.

Selected attributes of the best ranking metrics

Three of four best ranking metrics (|]S2N|, MWT and
MSD in the current implementation) are calculated using
arithmetic mean and standard deviation. As these are
parametric statistics, two assumptions are made: nor-
mality of data distribution and absence of outliers. In
case of gene expression obtained using high-throughput
biological techniques the assumption about normality of
distributions is often not met and outliers are frequently
present. Thus, it may lead to reduced power of pathway
enrichment analysis. The data collection used in this study
is characterised by not strongly skewed distributions of
gene expression (see Additional file 2), so the described
disadvantage of parametric methods is not evident. At
0.05 significance level, about 25% genes, on average, has
a non-normal distribution, but when we set the signifi-
cance level to 0.01 this number is reduced to 11%. Notably,
whether MSD depends on parametric assumptions it
depends on the specific implementation. On the other
hand, the BWS test statistic has no assumption about the
distribution of data, which allows to use this metric for
every kind of biological data. In a group of analysed data
sets the proportion of non-normally distributed genes
is significantly correlated with gain in overall sensitivity
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obtained when using BWS comparing to [IMWT| and
|S2N]| (p-value=1.16E-4 and 1.03E-4, respectively). No sig-
nificant overall sensitivity gain is observed for comparison
of BWS to MSD (p-value=4.56E-1). These findings are
similar to the one obtained by Neuhduser and Senske
[37]. They also demonstrate that in case of symmetri-
cal distributions BWS has similar power to parametric
tests.

The GSEA method allows to detect direction of dis-
regulation (up- or down-regulated) in gene sets. The
result depends on the type of used ranking metric. When
high positive and low negative values of ranking met-
ric represent differentially expressed genes, we can detect
gene sets with mostly up-regulated genes or mostly down-
regulated genes. When the information about direction
of gene expression change due to phenotype is missing,
GSEA allows only for detection of dis-regulated gene sets
(despite the direction of expression difference). The sec-
ond case is stated for all four best ranking metrics. These
findings are consistent with biological knowledge, where
in the same pathway up- and down-regulated genes are
observed. Nevertheless, in some biological experiments
enrichment of pathways with only up-regulated or only
down-regulated genes is desirable, thus while using GSEA
researchers have to be aware of its properties.

A common disadvantage of |S2N| and BWS metrics is
that a p-value for each gene, showing a magnitude of
statistical difference in expression between phenotypes,
can be only estimated using permutation test [46]. As
it is known, when the exact p-value is very low, per-
mutation test estimation is very time consuming. By
using IMWT| and MSD ranking metrics accurate p-values
can be obtained without any additional computational
cost.

Finally, MSD ranking metric required a higher num-
ber of permutations (more than 10,000 in our analysis) to
correctly estimate p-value for gene set enrichment. This
phenomenon is caused by existence of negative values of
MSD metric indicating non-significant log fold changes.
When we performed label permutation, the variance of
gene expression within phenotypes was increased, which
lead to huge increase in the number of genes with negative
MSD value (and more pathways with negative normalised
enrichment score). In GSEA, to calculate a p-value for
a given pathway only the positive or negative portion
of the normalised enrichment score distribution is used,
corresponding to the sign of the observed normalised
enrichment score. In all cases, when using MSD, the dis-
tribution of normalised enrichment score for permuted
data consists of a much smaller number of positive values
than negative, and thus establishing an adequate p-value
for positive NES requires more permutations. However,
this weakness has also a positive consequence in the form
of decreased false positive rate. Furthermore, the MSD
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was defined in a way that allows implementation even in
case of complex linear models or contrasts, thus allowing
for a greater flexibility.

Conclusions

With the use of 28 microarray data sets, contrasting
results of gene set enrichment for 16 ranking metrics in
GSEA algorithm were observed. All metrics were tested by
statistical measures of sensitivity and FPR with the accom-
panying of computational load. From the group of all
tested methods four showed better outcomes, i.e. [ MW T]|,
MSD, |S2N| and BWS. Out of tested metrics the best over-
all sensitivity was observed for [IMWT/|, while the best
overall FPR estimation was obtained by MSD. In the group
of four best metrics, [IMWT|, MSD (in current imple-
mentation), and |S2N]| are based on parametric estimators
and should be carefully used when this assumption is not
met. BWS shows better outcomes for larger sample size
and non-normal gene expression distributions compared
to other metrics. It also detects more enriched pathways,
keeping false discovery at a reasonable level, which may
suggest new discoveries. We showed that choosing rank-
ing metric does matter in case of GSEA and its role is
not negligible. Appropriate setting of ranking metric can
improve FPR estimation of GSEA method that was criti-
cised in [28]. Nevertheless, it is possible to use any ranking
metric, but researchers have to be aware of possible weak-
nesses presented in this study. In the enclosed MATLAB
implementation GSEA computations are efficiently paral-
lelised, giving the opportunity to easily modify the scripts
to fulfill researcher expectations. In comparison to exist-
ing implementations MrGSEA offers much higher flexibil-
ity and functionality in the form of a large scale of ranking
metrics (including own one), usage of custom gene set
database and two different types of permutation.

Additional files

Additional file 1: Table with detailed results of surrogate sensitivity, false
positive rate and evaluation time for every tested ranking metric on every
data set. (XLS 59 kb)

Additional file 2: Table with data sets description about gene expression
distribution normality and variance homogeneity. (XLS 38 kb)
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