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Abstract

Motivation: In genetic association studies, meta-analyses are widely used to increase the statistical

power by aggregating information from multiple studies. In meta-analyses, participating studies

often share the same individuals due to the shared use of publicly available control data or acciden-

tal recruiting of the same subjects. As such overlapping can inflate false positive rate, overlapping

subjects are traditionally split in the studies prior to meta-analysis, which requires access to geno-

type data and is not always possible. Fortunately, recently developed meta-analysis methods can

systematically account for overlapping subjects at the summary statistics level.

Results: We identify and report a phenomenon that these methods for overlapping subjects can

yield low power. For instance, in our simulation involving a meta-analysis of five studies that share

20% of individuals, whereas the traditional splitting method achieved 80% power, none of the new

methods exceeded 32% power. We found that this low power resulted from the unaccounted differ-

ences between shared and unshared individuals in terms of their contributions towards the final

statistic. Here, we propose an optimal summary-statistic-based method termed as FOLD that in-

creases the power of meta-analysis involving studies with overlapping subjects.

Availability and implementation: Our method is available at http://software.buhmhan.com/FOLD.

Contact: mail: buhm.han@amc.seoul.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent genetic association studies, researchers commonly use

meta-analyses to achieve sufficient statistical power. A meta-analysis

involves a combination of the summary statistics from multiple studies.

These participating studies often share the same subjects because the

researchers either used publicly available controls or recruited the

same subjects accidentally at multiple sites (Chubb et al., 2013;

Crowther-Swanepoel et al., 2009; Di Bernardo et al., 2008; Kilpivaara

et al., 2009; Mukherjee et al., 2011; Onengut-Gumuscu et al., 2015;

Orozco et al., 2014; Shete et al., 2009; Speedy et al., 2014; Weinhold

et al., 2013; Wellcome Trust Case Control Consortium, 2007; Zhao

et al., 2007). In particular, the repeated use of the same controls is

prevalent in cross-disease meta-analyses, where association results of

multiple diseases are combined to uncover pleiotropic loci (Dichgans

et al., 2014; Kar et al., 2016; Moskvina et al., 2013). These overlap-

ping subjects can induce correlations between the summary statistics

and inflate the false positive rate of meta-analyses. A straightfor-

ward solution is to split the overlapping subjects in the studies prior

to meta-analysis, which requires access to genotype data and is not

always possible.
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Fortunately, recently developed meta-analysis methods can

systematically account for overlapping subjects at the summary stat-

istics level (Bhattacharjee et al., 2012; Bulik-Sullivan et al., 2015;

Han et al., 2016; Lin and Sullivan, 2009; Zaykin and Kozbur,

2010). Most of these methods explicitly model correlations between

the statistics, such as the Lin and Sullivan method (Lin and Sullivan,

2009), Zaykin and Kozbur method (Zaykin and Kozbur, 2010),

ASSET (Association analysis for SubSETs) (Bhattacharjee et al.,

2012) and decoupling method (Han et al., 2016). LD score regres-

sion (LDSC) (Bulik-Sullivan et al., 2015) does not explicitly model

correlations, but can distinguish inflation caused by overlapping

subjects from the true polygenic effects, thus enabling appropriate

control of the false positive rate.

In this study, we found that these methods designed to account

for overlapping subjects at the summary statistics level can yield low

power compared to the traditional splitting method. For instance,

in our simulation involving a meta-analysis of five studies that

share 20% of individuals, whereas the traditional splitting method

achieved 80% power, none of these methods exceeded 32% power.

Notably, the use of these methods often reduced power even below

the level of an analysis based on data in which all overlapping sam-

ples were discarded. We discovered that this low power resulted

from the unaccounted difference between the shared and unshared

subjects in terms of their contributions towards the final statistic. To

increase the power of the meta-analysis involving overlapping sub-

jects, we developed an optimal summary-statistic-based method

termed as FOLD (Fully powered method for OverLapping Data). In

this method, we categorize subjects based on their contributions to

the final statistic and then calculate the summary statistic per each

category. We analytically show that the FOLD estimator can

achieve smaller variance than the current methods. Moreover, we

propose a companion method FOLD-split that determines the

optimal splitting design in cases where genotype data are available

and subjects can be split prior to meta-analysis.

2 Materials and methods

2.1 Existing methods for meta-analysis with

overlapping subjects
A straightforward solution to account for overlapping subjects is to

split the genotype data of overlapping subjects into individual stud-

ies before meta-analysis. However, this approach requires access to

genotype data, and hence, the methods mentioned hereafter were

developed.

2.1.1 Lin and Sullivan (LS) method

Lin and Sullivan (2009) were the first to introduce a summary-

statistic-based method that can account for the correlations between

statistics caused by overlapping subjects. The LS method analytically

approximates the correlations between statistics and then constructs

an optimal meta-analysis statistic while taking the correlations into

account.

Let X1, . . ., XK denote the observed effect sizes in K studies in

the meta-analysis, and V1, . . ., VK represent their variances. Lin and

Sullivan (2009) derived a formula for correlation of Xi and Xj:

rij � nij�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
niþnjþ
ni�nj�

r
þ nijþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ni�nj�
niþnjþ

r� �
=
ffiffiffiffiffiffiffiffi
ninj
p

(1)

where ni, nj, and nij are the total number of samples in the ith and

jth studies and the number of overlapping samples between the

two studies, respectively. Subscripts þ and � denote the case and

control subjects, respectively. Given the correlation matrix of X ¼
(X1, . . ., XK),

R ¼ rij

� �
K�K

;

the covariance matrix, X, can easily be calculated.

Lin and Sullivan (2009) proposed a score test statistic assuming

the fixed effects model:

XLS ¼
eTX�1X

eTX�1e

where e is a K � 1 vector with ones. The variance of this statistic is

Var XLSð Þ ¼ 1

eTX�1e

Therefore, one can obtain a z-score, XLSffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXLSÞ
p , as well as a P-value.

When there is no overlapping of subjects, the LS method becomes

equivalent to the traditional fixed effects model (inverse-variance-

weighted average) method.

2.1.2 Other methods for meta-analysis with overlapping samples

For details of Zaykin-Kozbur method (Zaykin and Kozbur, 2010),

ASSET (Bhattacharjee et al., 2012), decoupling method (Han et al.,

2016) and LDSC (Bulik and Sullivan et al., 2015), see Section S1 of

Supplementary Text.

2.2 FOLD
2.2.1 Motivation

We first provide a toy example to demonstrate the cause of the low

power of the existing methods. For simplicity, we will consider

samples drawn from a normal distribution with mean b, and test

whether the mean is non-zero. We consider one dataset consisting of

n samples, x ¼ (x1, . . .,xn) and another independent dataset of the

same size, y ¼ (y1, . . ., yn). All 2n samples are independent draws

from N(b,1). The standard approach is to merge all the samples and

calculate the statistic bb ¼ 1
2n

P
i xi þ

P
i yiÞ

�
, where bb � N b; 1

2n

� �
.

Alternatively, in a meta-analytic setting, we may only have access to the

summary statistics from the two datasets, namely cb1 ¼ 1
n

P
i xi

and cb2 ¼ 1
n

P
i yi. We can meta-analyze these values

as dbmeta ¼ 1
2
cb1 þcb2

	 

, which can be considered as the inverse-

variance weighted average and is equivalent to bb above. We now assume

that x and y are correlated such that each sample pair originated from

a multivariate normal distribution, xi; yið Þ �MVN ðb;bÞ; Rð Þ, where

R ¼
1 r

r 1

" #
and r > 0. Then, let b

! ¼ cb1 ;
cb2

	 

�MVN ð b; bð Þ;VÞ

be a vector containing the two summary statistics, where V ¼ 1
n R.

Analogous to the LS method, given b
!

, an optimal meta-analysis statis-

tic would be cbLS ¼ b
!

V�1e
eT V�1e

, where e is a vector of ones. Note that cbLS is

the same as 1
2
cb1 þcb2

	 

regardless of r for this two-study example.

The variance of cbLS is 1
eT V�1e

, which is calculated as 1þr
2n . Thus, we can

consider the additional variance r
2n as a penalty for having correlations

between samples. In other words, the 2n correlated samples

contain less information with respect to the final statistic, as if we

have 2n
1þr independent samples. Note that this was the intuition of

the decoupling approach of Han et al. (2016). The decoupling

approach transforms the data to obtain a new variance V
0

whose

non-diagonals become zero and whose diagonals increase such
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that V
0 ¼ 1

n

1þ r 0
0 1þ r

� �
. Thus, the decoupling approach can be

thought of as translating the lower amount of information in de-

pendent data into increased variances.

Next, we assume that half of x and y are independent and

the other half are correlated. That is, xi; yið Þ �MVN ðb; bÞ; Ið Þ for

i ¼ 1,. . .,n/2, and xi; yið Þ �MVN ðb; bÞ; Rð Þ for i ¼ n/2 þ 1, . . ., n.

Then, b
!

follows MVNð b; bð Þ;VÞ where V ¼ 1
n

1 r=2
r=2 1

� �
. The

application of the LS method gives a variance of 1þr=2
2n . However, this

approach may not be optimal in this situation as the independent

samples contain more information than the dependent samples as

demonstrated by the decoupling approach. Thus, samples are het-

erogeneous in terms of their contributions to the final statistic. This

situation is related to heteroscedasticity (Rao, 1973), which often

describes a situation in which samples have different variances

(Foulley and Quaas, 1995; Yin et al., 2011). If the data for the de-

pendent samples are transformed using the decoupling approach

(Han et al., 2016), the variances would increase. Thus, the two types

of samples would be heteroscedastic with respect to the decoupled

data. An optimal strategy in this situation is to perform meta-analysis

separately for independent samples (x1, . . ., xn/2, y1, . . ., yn/2) and

dependent samples (xn/2þ1, . . ., xn, yn/2þ1, . . ., yn), and

perform another meta-analysis on the two results. The variance for

the meta-analysis statistic of the independent samples is 1
n and the

variance for the meta-analysis statistic of dependent samples is 1þr
n .

Thus, using the inverse-variance-weighted average, the final vari-

ance becomes 1þr
nð2þrÞ. Note that the variance has now decreased as

compared with the naı̈ve application of the LS method, because
1þr=2

2n � 1þr
n 2þrð Þ ¼ r2

4n 2þrð Þ > 0. This shows that when a subset of samples

exhibits a correlation structure, simply aggregating these samples

can lead to suboptimal performance.

2.2.2 FOLD framework

We propose a summary-statistic-based meta-analysis framework

that can account for the overlapping samples without losing power.

The main idea is to categorize subjects in a study based on their con-

tributions to the final statistic and then calculate the summary statis-

tic for each category. For example, consider a combination of two

case/control studies A and B (Fig. 1), which share a subset of con-

trols. We first calculate the log odds ratio by comparing the study A

cases to the controls specific to A. This estimator is referred to asbbA;Spe (where ‘Spe’ denotes specific). We then calculate the log odds

ratio by comparing the same study A cases to the shared controls.

This estimator is referred to as bbA;Share. We similarly obtain bbB;Spe

and bbB;Share from study B. We then consider the vector (bbA;Spe,bbA;Share,
bbB;Spe,

bbB;Share), of which the correlation matrix of this

vector is as follows:

R ¼

1 rA

rA 1

0 0

0 rAB
0

0 0

0 rAB
0

1 rB

rB 1

266664
377775:

rAB
0 is the correlation between bbA;Share and bbB;Share, which is driven

by their shared controls. Because all the controls rather than a spe-

cific subset are shared between bbA;Share and bbShare, no heterogeneity

is present with respect to the information contained in each control.

rA is the correlation between bbA;Spe and bbA;Share, which is driven by

the re-use of the study A cases in the calculation of these two statis-

tics. Similarly, rB is the correlation between bbB;Spe and bbB;Share, which

is driven by the re-use of the study B cases. Finally, we combine

these four estimators while accounting for their correlation structure

R (Fig. 1). We refer to this entire procedure as FOLD.

In practice, investigators commonly meta-analyze more than two

studies. Moreover, subjects can be shared in a complicated manner;

for example, for studies A, B and C, some controls can be shared by

A and B, some controls can be shared by B and C, and some controls

can be shared by all three. Therefore, we describe the general pro-

cedure of FOLD as follows:

1. Categorize the control subjects into T groups, where each group

is homogeneous in terms of the sharing of subjects between stud-

ies. We refer to these as T ‘configurations of sharing’.

2. From each of the K studies, obtain the T summary statistics,

each of which is calculated using a specific control group versus

all the cases.

3. Define the KT � KT correlation matrix between the KT statistics

using Equation (1).

4. Apply the LS method to combine the KT statistics.

Although we assumed the sharing of controls, it is possible to general-

ize the procedure to the sharing of cases as well. Note that although T

can be as large as 2K�1 in theory, it is much smaller in practice.

Moreover, because not all configurations of sharing may occur in all

studies, each study typically has fewer than T configurations.

2.2.3 Variance analysis of FOLD

We analytically prove that FOLD is more efficient (yields smaller vari-

ance of estimator) than the LS method in case/control study designs under

certain conditions (see Section S2 of Supplementary Text for details).

2.2.4 FOLD-split

In addition to FOLD, we developed a companion method called

FOLD-split to facilitate splitting in conditions where splitting is pos-

sible. As Han et al. (2016) showed, the split proportions of overlapping

subjects in multiple studies can markedly affect power. Previously, Lin

and Sullivan (2009) suggested splitting the controls proportionally to

the case sizes. However, an optimal splitting design may also depend on

the study-specific controls and the configurations of subject sharing. We

focus on the fact that the variances of the commonly used statistics

are typically inversely proportional to the effective sample size

nEff;i ¼
4n�i nþ

i

ðn�
i
þnþ

i
Þ, where nþi and n�i denote the numbers of cases and con-

trols in study i, respectively. If we use the inverse-variance-weighted

average method for meta-analysis, the variance of the final estimator

becomes inversely proportional to the total effective sample size,

nEff;Total ¼
XK

i¼1
nEff;i

where K denotes the total number of studies included in the meta-

analysis. Thus, we set our goal to maximize this value. This problem

is an integer nonlinear programming, because the numbers of split

subjects are integers whereas the objective function is nonlinear. Let

St be the set of studies that share controls belonging to a sharing con-

figuration t. For each t, the conditions to satisfy areX
i2St

n�i � n�t

n�i � 0

where n�i is the number of the shared controls split into study i, and

n�t is the total number of the shared controls in t. In FOLD-split, we

maximize nEff;Total while satisfying these conditions. We solve
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this nonlinear optimization problem by utilizing the augmented

Lagrange multiplier method (Ghalanos and Theussel, 2015).

2.2.5 Power simulations

See Section S3 of Supplementary Text for details of our power

simulations.

2.2.6 WTCCC and PGC data

See Section S4 of Supplementary Text for details of our real data

analyses using the Wellcome Trust Case Control Consortium

(WTCCC) and the Psychiatric Genomics Consortium (PGC) data.

3 Results

3.1 Low power of existing methods designed to account

for overlapping subjects
Using simulations, we comprehensively evaluated the power of the

existing methods designed to account for overlapping subjects at the

summary statistics level, including the LS method (Lin and Sullivan,

2009), Zaykin-Kozbur method (Zaykin and Kozbur, 2010), ASSET

(Bhattacharjee et al., 2012), decoupling method (Han et al., 2016)

and LDSC (Bulik-Sullivan et al., 2015). We first simulated five

studies each with 6000 cases and 6000 controls (nþ ¼ 6000 and

n� ¼ 6000). We assumed a SNP with a relative risk of 1.16 and a

minor allele frequency of 0.3. Then we modified the study design so

that a certain proportion (g) of control samples of each study was

shared by all five studies. Beginning with no overlap (g ¼ 0), we

gradually took some portions of controls from the five studies and

used them as shared controls. Thus, we varied g from 0 to 1, while

keeping the overall number of distinct control individuals

contributing to the meta-analysis the same as 30 000. Thus, the

power of the splitting approach was maintained at the same level,

regardless of g. Here, the splitting approach refers to a strategy that

splits the genotype data of shared controls into individual studies be-

fore meta-analysis. For example, the splitting approach for the LS

method involves the application of the LS method after splitting (be-

cause the method can also be used for dataset without sample over-

laps), and the splitting approach for each of the other methods is

similarly defined.

Figure 2 shows that all these methods severely lose power, as

compared to their corresponding splitting approaches. For example,

at g ¼ 0.2, the splitting approach for the LS method (equivalent to

the standard fixed effects model meta-analysis) achieved 80%

power, whereas without splitting, the LS method, Zaykin-Kozbur

method, ASSET, decoupling method, and LDSC achieved only 31%,

28%, 23%, 31%, and 32% power, respectively. Interestingly, when

all the controls were shared (g ¼ 1), which we refer to as the full

overlap design, no power drop was noted. However, the power of

the methods markedly decreased when a subset of controls was

shared (g < 1), which we term as the partial overlap design. This

pattern of power drop suggested that the power was reduced due to

the mixing of shared subjects and unshared subjects in the analysis.

The power drop was more dramatic when a small portion was

shared (g close to 0) as compared to that when a small portion was

unshared (g close to 1). The power drop was the most severe at

approximately g ¼ 0.16 regardless of the method used, wherein the

power of the method was less than half that of the corresponding

splitting approaches. In this simulation, the decoupling method had

the same power as the LS method, because we assumed the applica-

tion of the fixed effects model after decoupling in which case the

two methods are equivalent (Han et al., 2016). Note that a relative

Fig. 1. Analysis pipelines of the existing meta-analysis methods and our proposed strategy FOLD. bb represents the estimated effect size. Subscripts of bb denote

the study (A and B) and design of control samples (Spe, using study-specific controls; Share, using shared controls). In the existing methods, rAB refers to the

cross-study correlation between bbA and bbB . In FOLD, r0AB refers to the cross-study correlation between the two statistics bbA;Share and bbB;Sharethat are calculated

using shared controls only. rA refers to the within-study correlation between the statistic calculated using study-specific controls (bbA;spe) and the statistic calcu-

lated using shared controls (bbA;Share). rB is defined similarly to rA. In the correlation matrix for FOLD, we applied a distinct color for each correlation element to de-

note which samples were overlapping and thus caused the correlation
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power comparison between these methods is not of our interest in

this simulation. ASSET showed the lowest power because we

assumed a fixed effect size across the studies, as ASSET is designed

to detect heterogeneous effects. Interestingly, in the full overlap de-

sign (g ¼ 1), the powers of the existing methods were often slightly

higher than those of their corresponding splitting approaches. For

example, the LS method achieved 82% power with splitting and

84% without splitting. Further investigations are necessary to con-

firm the cause and extent of this observation.

The power reduction was also related to the number of studies

that shared controls in the meta-analysis. Figure 3 shows the power

of the LS method, as we varied the number of studies from 2 to 10.

In this simulation, we adjusted the relative risks between 1.14 and

1.18 to maintain similar power for differing numbers of studies.

The power reduction became more severe as more studies shared

controls. This was possibly because, as more studies shared

controls, the difference between the shared subjects and unshared

subjects in terms of their contribution to the final statistic increased.

3.2 Adding shared controls can reduce the power

of existing methods
Due to the power loss of the existing methods under the partial over-

lap design, these methods showed a counter-intuitive property that

the addition of shared controls to the independent studies decreased

the power, even though the total sample size increased. In this

simulation, we assumed five independent studies (nþ ¼ 1000 and

n� ¼ 1000). We also assumed a SNP with a minor allele frequency

of 0.3 and a relative risk of 1.22. We added nA shared controls that

were assumed to be shared by all five studies, where we gradually

increased nA from 100 to 5000. We observed that as we added

shared controls, the meta-analysis power dropped (Fig. 4). For ex-

ample, the LS method had 86% power without shared controls, but

showed 69% power with 500 shared controls and 72% power with

1000 shared controls. When we added even more shared controls,

the power slowly recovered. The LS method recovered the original

power after adding approximately one half of the total number of

original controls (nA ¼ 2900). These results demonstrated that the

use of the methods to correct for overlapping samples can reduce

power even below the level of an analysis based on data in which all

overlapping samples are discarded.

3.3 FOLD increases power
Using simulations, we first measured the false positive rate of

FOLD, which was well controlled (Supplementary Figs S1 and S2).

We then simulated the partial overlap design, where g varied from 0

to 1 similar to Figure 2. FOLD maintained identical power to the

splitting approach regardless of g or the number of studies in the

simulated meta-analysis (Fig. 5).

3.4 WTCCC data analysis
We compared the splitting approach, the LS method, and FOLD

using Wellcome Trust Case Control Consortium (WTCCC) data

(Wellcome Trust Case Control Consortium, 2007). In this analysis,

splitting refers to a method that applies the standard fixed

effects model (inverse-variance weighted average) after splitting.

The three methods were in the following relationship. (i) With no

overlap (g ¼ 0), the three methods were equivalent. (ii) With full

overlap (g ¼ 1), LS and FOLD were equivalent. We assumed a

cross-disease analysis combining the results for the three autoim-

mune diseases under the fixed effects model: Crohn’s disease (CD),

rheumatoid arthritis (RA) and type 1 diabetes (T1D). We focused on

Fig. 2. Power of the existing meta-analysis methods for differing proportions

of shared controls. We assumed a meta-analysis of five studies and varied

the proportion of shared controls among all the controls within each study

(g). The black lines denote the power of splitting, a strategy that splits overlap-

ping samples before applying each meta-analysis method. Arrows indicate at

which g the power was minimized. The LS method and decoupling method

were analytically equivalent, because we applied the fixed effects model after

decoupling (Color version of this figure is available at Bioinformatics online.)

Fig. 3. Power of the LS method for differing numbers of studies in a meta-

analysis. We varied the number of studies (K) as well as the proportion of

shared controls among all the controls within each study (g). We adjusted

the relative risk between 1.14 and 1.18 to maintain a similar power for

differing K

Fig. 4. Power of the existing meta-analysis methods after adding shared con-

trols to independent studies. We plotted the power of the existing methods

after adding shared controls to five independent studies, each consisting of

1000 cases and 1000 controls prior to the addition. We assumed that the

shared controls were shared by all five studies. Dashed lines denote the

shared control size that recovered the original power of the methods meas-

ured before adding shared controls (Color version of this figure is available at

Bioinformatics online.)
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eight candidate pleiotropic loci: two SNPs from the combined ana-

lysis results of the original WTCCC study, excluding MHC and

PTPN22, and six additional loci from ImmunoBase (http://www.

immunobase.org). Refer to Section S4 of Supplementary Text for de-

tails of the analysis. In the original WTCCC study design, all con-

trols were shared among diseases. We modified the study design and

established a partial overlap design by using some controls as

disease-specific and some as shared, such that g was approximately

0.5. When we considered 433,901 SNPs, excluding the MHC and

PTPN22 region, the QQ-plot did not show inflation for any of the

methods (Supplementary Fig. S3). The genomic control factors were

1.00 for splitting, 1.00 for the LS method, and 1.03 for FOLD.

In this partial overlap design, at the eight candidate pleiotropic

loci, the LS method attenuated the statistical significances of splitting

at seven loci (Supplementary Table S1). The average log10P difference

was –0.79; thus, the LS method provided nearly one order of magni-

tude larger P-values. In contrast, FOLD yielded nearly identical re-

sults to splitting (Supplementary Table S1). The average log10P

difference between FOLD and splitting was close to zero (�0.004).

As a result, the association P-values were notably smaller in FOLD

than in the LS method (Fig. 6A).

We also established the full overlap design (g ¼ 1), where we

used all the controls for each disease and then combined the statistics

using the LS method or FOLD. The LS method and FOLD were ana-

lytically equivalent in this design. FOLD (¼ LS) showed slightly

smaller P-values than splitting at the eight loci (Supplementary Table

S2), consistent with our simulation results where FOLD (¼ LS)

showed slightly higher power than splitting at g ¼ 1. The average dif-

ference in log10P was 0.44 between FOLD and splitting.

3.5 PGC data analysis
Using the Psychiatric Genomics Consortium (PGC) data (Cross-

Disorder Group of the Psychiatric Genomics, 2013), we simulated

cross-disease meta-analysis combining five psychiatric disorders

(autism spectrum disorders, attention deficit-hyperactivity disorder,

bipolar disorder, major depressive disorder, and schizophrenia). We

downloaded the summary statistics of the original meta-analysis,

which came from studies without sample overlap. We sought to

simulate a design that augments additional shared controls to these

data. Hence, for each tested SNP, we approximately reconstructed a

2 � 2 allele count table from the reported summary data (Section S4

of Supplementary Text). We then randomly generated additional nA

¼ 2000 shared controls and augmented them to the analysis. We

examined 11 candidate pleiotropic loci that showed P-values smaller

than 10�6 in the original meta-analysis (Cross-Disorder Group of

the Psychiatric Genomics, 2013).

Supplementary Table S3 shows that under this partial overlap

design, the LS method attenuated the statistical significance of split-

ting at the 11 loci, with the average log10P difference being �0.72. In

contrast, FOLD yielded nearly identical results to splitting, with the

average log10P difference being 0.05. As a result, the association

P-values were notably smaller in FOLD than in LS (Fig. 6B).

3.6 Splitting strategy comparison
In addition to the FOLD approach, we also proposed the FOLD-

split method to facilitate splitting. We compared its performance to

two other splitting strategies: (i) equal splitting that equally distrib-

utes the shared controls to studies, and (ii) case-based splitting that

distributes the shared controls proportionally according to the case

sample sizes. We assumed a meta-analysis of five studies and a SNP

with a relative risk of 1.16. We randomly sampled the case sample

size from Uniform (1, 1000), Uniform (1, 2000), Uniform (1, 3000),

Uniform (1, 4000) and Uniform (1, 5000) for the five studies re-

spectively, where Uniform (x,y) refers to the uniform distribution

between x and y. We also sampled the study-specific control sizes

from Uniform (1, 3000) and assumed 1000 shared controls (nA ¼
1000). Our goal was to reflect real situations with varying sample

sizes. Given the sample sizes, we simulated genotypes and applied

different splitting strategies to measure their power. Finally, we

gradually increased nA from 1000 to 5000. Supplementary Figure

S4A shows that FOLD-split achieved the best power among all the

splitting approaches, followed by case-based splitting and equal

splitting. For example, at nA ¼ 3000, the power of FOLD-split was

78%, whereas the powers of case-based splitting and equal splitting

were 73% and 66%, respectively.

We then sought to examine the difference between the splitting

results of FOLD-split and those of other approaches under specific

Fig. 5. Power of FOLD. We measured the power of our proposed method

FOLD, as we varied the number of studies in the simulated meta-analysis (K)

as well as the proportion of shared controls among all the controls within

each study (g). The black lines denote the power of the splitting approach

(Color version of this figure is available at Bioinformatics online.)

Fig. 6. Cross-disease meta-analysis results of WTCCC and PGC data. We per-

formed cross-disease meta-analysis while accounting for overlapping sub-

jects using WTCCC data (A) and PGC data (B). In WTCCC data, we examined

two loci reported by WTCCC (denoted with *) and six additional pleiotropic

loci obtained from ImmunoBase. In PGC data, we examined four reported loci

by PGC (denoted with *) and seven additional loci satisfying P < 1 � 10�6.

The top panel shows the odds ratios and the 95% CIs. The bottom panel

shows the difference between three methods in terms of statistical significances

(–log10P), where zero is calibrated to the mean value of the three methods

(Color version of this figure is available at Bioinformatics online.)
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situations. We assumed a meta-analysis combining four studies,

wherein the case/control sample sizes were 4000/5000, 5000/3500,

2500/1000 and 2500/500, respectively. We aimed to distribute

10 000 shared controls. Equal splitting equally distributed them as

2500 controls per study. Case-based splitting distributed the shared

controls proportionally to the case size, as 2857, 3571, 1786 and

1786 controls to the four studies, respectively. FOLD-split assigned

714, 3643, 2572 and 3071 controls to the four studies, respectively

(Supplementary Fig. S4B). When we assumed a relative risk of 1.08,

the powers were estimated as 75.9%, 76.2% and 77.4% for equal

splitting, case-based splitting, and FOLD-split, respectively.

4 Discussion

In this article, we identified and reported a phenomenon wherein

existing meta-analysis methods for overlapping subjects experience

a markedly reduced power compared with the traditional splitting

method. To recover this loss of power, we proposed a solution

termed as FOLD which categorizes samples based on the sharing

of the subjects and calculates multiple statistics. To combine the

multiple statistics in FOLD, we employed the LS method, although

the use of other frameworks was also suitable (Supplementary Fig.

S5). Moreover, we described the FOLD-split method to determine

the optimal splitting design for conditions where splitting is possible.

To our knowledge, the power decrease of existing methods has not

been previously reported. We found that the original developers

of the existing methods only evaluated the power under the full

overlap design in their simulations (Bhattacharjee et al., 2012;

Bulik-Sullivan et al., 2015; Han et al., 2016; Lin and Sullivan, 2009;

Zaykin and Kozbur, 2010), which is possibly why this phenomenon

was overlooked.

Overlapping subjects are a particularly important issue in cross-

disease meta-analyses, which is a recently developed study design

that combines multiple diseases. Since it is possible to reuse controls

for multiple diseases, the issue of overlapping subjects can easily

occur. Recently, Moskvina et al. (2013) used the LS method to com-

bine Alzheimer’s disease and Parkinson’s disease, Dichgans et al.

(2014) used the Zaykin-Kozbur method to combine ischemic stroke

and coronary artery disease, and Kar et al. (2016) used the decou-

pling method to combine three types of cancer. These studies were

in the partial overlap designs, which suggested that the use of split-

ting or FOLD could have possibly enhanced the statistical power.

In this study, we focused on the fixed effects (FE) model that as-

sumes a constant effect size between studies, similar to previous

studies (Lin and Sullivan, 2009; Zaykin and Kozbur, 2010).

Recently, the application of random effects (RE) model was shown

to be powerful when the effect size heterogeneity existed (Han and

Eskin, 2011). In cross-disease analysis, the use of RE could be suit-

able because we can expect heterogeneity. To employ RE in FOLD,

we can utilize RE implementation that can account for correlations

(Lee et al., 2017). However, for optimal performance, we will need

a flexible RE framework that can account for the fact that the statis-

tics from the same study (bbB;Spe and bbB;Share in Fig. 1) do not exhibit

heterogeneity. We expect that we will be able to fully utilize RE in

FOLD as the RE framework becomes more flexible in the future.

We compared the performance of FOLD to existing methods,

and the required information for each method differs. LDSC does

not require any information of shared subjects prior to the analysis,

and can be the most convenient if we do not have that information.

However, LDSC cannot be easily applied to data with small sample

size, population without appropriate reference panel, or genotyping

platforms with uneven density (Bulik-Sullivan et al., 2015). All other

methods require the information of the numbers of shared subjects

to calculate the correlation matrix. Our method FOLD additionally

requires multiple statistics from each study, calculated based on the

sharing of the subjects. However, this can occasionally be extremely

difficult, particularly in a retrospective meta-analysis design, and

may require contacting the original investigators. Hence, applying

FOLD may be as difficult as splitting. If FOLD and splitting have

the same difficulty, the use of splitting has an advantage that the

statistics become independent and therefore can be straightfor-

wardly used in future analyses. However, the use of FOLD can be

preferred if the researchers want deterministic results, because the

results of splitting can change depending on how the individuals are

randomly split. Despite the difficulties of obtaining additional infor-

mation, we emphasize that the use of FOLD or splitting to prevent

power loss may be worthwhile, given the gain in power achieved.

Another challenge is to identify the hidden duplicate individuals be-

tween studies without sharing genotype data, which can be per-

formed using recently described methods (He et al., 2014;

Hormozdiari et al., 2014).
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