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Summary Ageing is accompanied by chronic inflammatory responses due to elevated circula-
tory inflammatory cytokine production. Several inflammatory cytokines have been shown to be
responsible for a decrease in muscle mass. However, little is known about the possible relation-
ship between inflammation and sarcopaenia. This review aims to summarise the existing evi-
dence about inflammation and sarcopaenia. Sarcopaenia is defined as an age-related
decrease of muscle mass and/or muscle strength; it is caused by multiple factors, such as skel-
etal muscle atrophy, neuromuscular junction degeneration, hormone imbalance, cytokine
imbalance, protein synthesis and proteolysis. Several inflammatory cytokines have been consid-
ered to promotemuscle loss; C-reactive protein levels are significantly upregulated in sarcopae-
nia and sarcopenic obesity, and high levels of interleukin-6 are associated with reduced muscle
mass andmuscle strength (the administration of interleukin-6 could lead to a reduction inmuscle
mass). Up-regulation of tumour necrosis factor-a expression is also related to the development
of sarcopaenia. Signalling pathways, such as protein kinase B/mammalian target of rapamycin,
Janus kinase/signal transducer and activator of transcription-5 and signal transducer and acti-
vator of transcription 3 signalling, involved in muscle metabolism are regulated by insulin-like
growth factor-1, tumour necrosis factor-a and interleukin-6 respectively. In conclusion, the in-
flammatory cytokines produced during chronic inflammation due to ageing, may influence their
respective related pathways, thus leading to age-related muscle deterioration.
The translational potential of this article: This review can provide more information for sarco-
paenia medicine research in terms of anti-inflammation therapy.
ª 2017 The Authors. Published by Elsevier (Singapore) Pte Ltd on behalf of Chinese Speaking Or-
thopaedic Society. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Inflammation is now considered a major risk factor in age-
related diseases, such as arthritis, osteoporosis, cardio-
vascular diseases and metabolic syndrome [1]. It is now
accepted that chronic low-grade inflammation, which is
quite different from acute inflammation, plays an impor-
tant role in age-related diseases. Inflammatory cytokines
are molecules that are secreted from immune cells and
some other cell types, such as fibroblasts and endothelial
cells, which are responsible for immune regulation [2].
Studies have shown that inflammatory cytokines accumu-
late during ageing and lead to a redox imbalance, which
may act as the underlying mechanism in age-related dis-
eases [3e5].

Ageing has adverse effects on skeletal muscles. Sarco-
paenia is a syndrome characterised by progressive loss of
skeletalmusclemass and strength, which can lead to physical
disability and poor quality of life [6,7]. Age-related sarco-
paenia pathogenesis includes physical inactivity, malnutri-
tion and increased oxidative stress [8]. Sarcopaenia in the
elderly has become a significant public health problem. It is
reportedly associated with osteoporosis, and people with
sarcopaenia have higher fall risks than non-sarcopenic in-
dividuals [9,10]. Histologically, sarcopaenia is characterised
by fast-twitch type II muscle fibre atrophy and fatty infiltra-
tion, which is associated with muscle power loss [11].

It was recently demonstrated that inflammation is an
important factor in sarcopaenia. Circulatory cytokines
participate in activating or blocking signalling pathways, thus
affecting protein synthesis and proteolysis [12]. C-reactive
protein, interleukin-6, tumour necrosis factor-a, growth
hormone, interleukin-10 and interleukin-15 are considered to
be related cytokines of sarcopaenia according to the existing
research [3e5]. However, there is no clearly defined rela-
tionship between inflammation and sarcopaenia.

Therefore, this review aims to focus on the role of in-
flammatory cytokines and their corresponding molecular
pathways that impact muscle metabolism in sarcopaenia.
We further describe the involvement of chronic inflamma-
tion in sarcopaenia during ageing.

A literature search was performed in Pubmed (last ac-
cess date was on 31 January 2017) using the following
keyword search combination: “sarcopenic obesity OR sar-
copaenia OR low muscle mass OR low muscle strength” AND
“inflammatory cytokine OR inflammatory marker OR
inflammation”. One thousand and thirty-six papers were
retrieved in the initial search. From these results, 47 pre-
clinical and clinical studies that investigated the relation-
ship between inflammation and sarcopaenia were included
in this review. Thirteen additional studies that investigated
signalling pathways involving the aforementioned cytokines
related to sarcopaenia were selected from the originally
retrieved 1036 papers. Papers not written in English
(approximately 4.2%) were excluded.

Pathogenesis of Sarcopaenia

The progressive loss of muscle mass and strength due to
ageing is considered to be attributed to complex interactive
factors, such as neuromuscular junction degeneration,
hormone imbalance, cytokine imbalance, protein synthesis
and proteolysis [13,14]. Skeletal muscle atrophy due to
ageing is mainly characterised by two factors: decreased
cross-sectional area of individual muscle fibres and
decreased number of muscle fibres. Both of these changes
contribute to a decrease in muscle mass [15]. There is a
reduction in the number of muscle neurons due to ageing,
thus leading to progressive denervation of muscle fibres
followed by partial re-innervation of remaining neurons.
This is considered a crucial factor in age-related loss of
muscle force [14e16]. In ageing individuals, there is a
decline in the serum concentration of oestrogen, testos-
terone, growth hormone, dehydroepiandrosterone and
insulin-like growth factor I (IGF-1). These anabolic hor-
mones are associated with age-associated muscle loss
[17,18]. As an individual ages, the balance of protein syn-
thesis and degradation is disturbed: the rate of protein
synthesis decreases but that of protein degradation in-
creases. Even small imbalances of synthesis and proteolysis
can eventually lead to sarcopaenia [19].
C-Reactive Protein and Sarcopaenia

C-reactive protein (CRP) is produced by the liver and is
recognised as a marker of systemic inflammation. It can be
triggered by cellular damage induced by injuries or disease,
thus leading to inflammation [20]. High-sensitivity assays
can detect CRP at very low concentrations.

In a study involving several thousand Eastern Europeans
aged 65 years and older, CRP levels showed a significant
increasing trend with ageing in the entire sample size
(n Z 3632, p Z 0.003). In the subgroup of individuals who
had age-related diseases/disability, CRP was not observed
to increase with age (nZ 2320, pZ 0.249) [21]. It has been
proven that CRP significantly positively-correlated
(p < 0.01) with body mass index (BMI) (spearman correla-
tion coefficient rs Z 0.34) and fat mass (rs Z 0.25) [22].
Atkins et al. reported that CRP levels were positively
associated with low muscle mass independent of age, life-
style and body composition [23]. Another study showed that
high CRP (> 6.1 ng/mL) levels were associated with a 2- to
3-fold greater risk of losing more than 40% of muscle
strength [24]. In clinical studies, patients with sarcopaenia
showed significantly higher CRP concentrations as
compared to those without sarcopaenia [25]. These studies
have demonstrated that CRP levels are closely related to
age-associated deterioration of skeletal muscle.

Sarcopenic obesity (SO) is defined as a combination of
sarcopaenia and obesity. It is characterised by excess
weight, decreased muscle mass and/or decreased muscle
strength [26]. Levine et al. investigated the changes of CRP
levels in SO. In their study, CRP levels were highest in pa-
tients who were sarcopenic only, followed by the SO pa-
tients and non-sarcopenic obese patients, while those with
normal body composition had the lowest CRP levels [27].
Similarly, Joppa et al. explored the relationship between
inflammation and SO in Chronic Obstructive Pulmonary
Disease (COPD) patients. The results demonstrated little
difference from those in Levine’s study. They concluded
that patients with SO had higher CRP levels than those with
normal body composition. Moreover, patients with SO
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showed higher circulatory CRP levels than those with only
sarcopaenia [28]. Yang et al. conducted a community-based
study and showed that high-sensitivity CRP (hs-CRP) levels
were significantly higher in the obese only group and the SO
group than in the normal group (p Z 0.012 and 0.036,
respectively), implying that SO is associated with increased
hs-CRP levels [29]. In general, higher CRP levels are asso-
ciated with SO; however, whether CRP is higher in SO pa-
tients than in those with only sarcopaenia, remains
uncertain. Van de Bool et al. investigated sarcopaenia with
or without abdominal obesity in COPD patients. They found
that sarcopenic patients without abdominal obesity were
younger and had lower CRP levels than sarcopenic patients
with abdominal obesity [30]. Based on this evidence, it is
apparent that CRP plays a crucial role in both primary and
secondary sarcopaenia, where circulatory CRP levels posi-
tively correlate with sarcopaenia and sarcopenic obesity.

Higher levels of physical activity were consistently
associated with 6e35% lower CRP levels when compared
with lower levels of physical activity. Moreover, longitudi-
nal training exercises reduced CRP concentrations by
16e41% [31]. However, another clinical study found no
differences in CRP levels between the control and exercise
groups [32]. Fedewa et al. analysed these inconsistent
studies using meta-analysis. In their study, the mean effect
size (ES) of 0.26 [95% confidence interval (CI) 0.18 to 0.34,
p < 0.001] indicated a reduction of CRP levels after exer-
cise. Exercise, when accompanied by a reduction in BMI,
led to a greater decrease in CRP levels (ES Z 0.38, 95% CI
0.26e0.50). These studies provide evidence that CRP levels
decrease after exercise, which was consistent with the
recommended interventions of sarcopaenia by the Euro-
pean Working Group on Sarcopaenia in Older People.
Interleukin-6 and Sarcopaenia

Interleukin-6 (IL-6) is secreted by T cells, macrophages, fi-
broblasts and endothelial cells; it acts as a pro-
inflammatory cytokine and an anti-inflammatory myokine.
IL-6 was the first myokine to be identified and also the most
frequently studied. It is considered a type of myokine,
because circulatory IL-6 increases significantly during ex-
ercise. IL-6 acts through two different pathways. The first is
the classic IL-6 signalling via membrane-bound receptors
(IL-6R), which is mainly regenerative, protective and anti-
inflammatory. Conversely, the second pathway via the
soluble IL-6R (sIL-6R) is instead pro-inflammatory [33]. IL-6
is important for both specific and nonspecific immune re-
sponses. In acute-phase immune responses, IL-6 can induce
the production of CRP, complement components and other
acute-phase proteins [34]. Furthermore, IL-6 also induces
differentiation of activated B cells, leading to the produc-
tion of immunoglobulins [35,36].

It is indicated that IL-6 gene expression, serum con-
centrations and tissue levels all increase with age [37e39].
The age-related increase of IL-6 accounts for some alter-
ations due to ageing, such as lean body mass decrease and
bone mineral density (BMD) reduction [40], and thus, it very
likely that it accounts for the age-associated skeletal
muscle deterioration (sarcopaenia) and other alterations
during ageing [40].
A study showed that increased levels of IL-6 was signif-
icantly associated with sarcopaenia in elderly patients with
renal disease (OR Z 2.35, 95% CI: 1.21e4.58) [41]. Dutra
et al. reported that IL-6 levels significantly positively-
correlated (p < 0.05) with age (rs Z 0.19), fat mass
(rs Z 0.19) and waist circumference (rs Z 0.17). Handgrip
strength significantly decreased with higher IL-6 levels
(p Z 0.02) in this study [22]. Similarly, higher levels of IL-6
(> 5 pg/mL) were found to lead to an increased risk of loss
of muscle mass and a reduction of muscle strength in the
elderly [24]. Schaap et al. investigated a correlation be-
tween cytokine levels and sarcopaenia, and confirmed that
IL-6 levels were up-regulated in older persons, with an as-
sociation between increased IL-6 soluble receptor levels
and a decrease of muscle strength in men. As we now
know, soluble receptor levels can mediate pro-
inflammatory reactions; thus, the decline of muscle
strength may be due to IL-6/sIL-6R signalling pathways.
However, in a cross-sectional study on older men, IL-6 was
not associated with mid-arm muscle circumference and fat-
free mass index [23]. Based on the current evidence, it is
believed that high levels of IL-6 are associated with low
muscle mass and decreased muscle strength. This is sub-
stantiated by an in vivo study which showed that the
administration of IL-6 could lead to muscle mass reduction
[42].

Joppa et al. reported that patients with SO presented
with higher IL-6 levels (p < 0.01) than those with only
sarcopaenia. Compared with the patients with normal body
composition, those with SO were shown to have higher IL-6
levels (p < 0.01) [28]. Research on inflammation and
obesity using logistic regression analysis indicated a greater
possibility of metabolically healthy obesity with lower IL-6
concentrations [odds ratios (ORs), 1.7e2.9] among in-
dividuals [43]. Another report showed that obese in-
dividuals (BMI � 30 kg/m2) presented with significantly
increased hypermethylation of the IL-6 gene compared to
individuals with normal weight (BMI < 23 kg/m2) and those
who were overweight (BMI Z 23e30 kg/m2) (p Z 0.034 and
0.026, respectively), implying that methylation of the IL-6
gene may be one of the mechanisms in sarcopenic obesity
[44]. Therefore, the expression of the IL-6 gene increases in
SO patients, particularly in unhealthy obese individuals.

The level of plasma IL-6 was significantly greater after
high-intensity interval exercise (2.70� 1.51) than after low-
intensity interval exercise (1.40 � 0.32) (p Z 0.04), sug-
gesting that exercise could result in a significant increase of
IL-6 levels, and that the increase was greater in the high-
intensity group than in the low-intensity group [45]. How-
ever, another study on postmenopausal women showed
inconsistent results. After endurance exercise, a decline of
IL-6 levels were detected and the decline was parallel with
improvements of the metabolic syndrome score (rZ 0.30, p
Z 0.04); in addition, high-density lipoprotein cholesterol
levels (rZ�0.33, pZ 0.03) improved in the exercise group.
These changes demonstrate the beneficial effects of exer-
cise on high-density lipoprotein cholesterol levels and low-
grade inflammatory states [46]. Therefore, more studies are
needed to evaluate the change of IL-6 during and after ex-
ercise to unravel the relationship between IL-6 and exercise,
as well as the role of IL-6 (pro-inflammation or anti-
inflammation) during exercise. Only after understanding
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the mechanism and role of IL-6 during exercise can we
develop clinical applications for sarcopaenia.
Tumour Necrosis Factor-a and Sarcopaenia

Tumour necrosis factor (TNF) was named so, because it was
first identified as responsible for the haemorrhagic necrosis
of tumours. It is mainly secreted by macrophages. The
concentration of plasma TNF-a was significantly more
elevated in aged individuals than in middle-aged subjects,
implying that inflammatory biomarkers increased gradually
with age [47]. TNF is considered to be a pro-inflammatory
cytokine related to the wasting syndrome in many chronic
diseases, such as chronic infection. TNF-a (a member of the
TNF super family), also called cachectin, is a protein
responsible for metabolic disorders, such as chronic
inflammation, accompanied with IL-1 formation. An in vitro
study reported that TNF-a had positive effects on IL-6
secretion from skeletal cells [48]. IL-1 and IL-6 both play
important roles in inflammatory responses and the immune
system [49,50].

TNF-a has been regarded as a crucial factor in the loss of
musclemass andmuscle damage. It can inducemuscle loss by
promoting protein degradation and decreasing protein syn-
thesis [51,52]. Wang et al. has confirmed that the increase of
TNF-a could accelerate catabolic pathways in skeletal mus-
cle [53]. It is believed that the up-regulation of TNF-a may
lead to muscle proteolysis, which subsequently causes a
decrease in muscle mass and eventually sarcopaenia. One
of the reasons may be that TNF-a induces both type I and
type II muscle fibre apoptosis [54]. Furthermore, a report
showed that TNF-a inhibited myogenic differentiation
through MyoD protein destabilisation [55]. Two clinical
studies in community-dwelling elderly provided more evi-
dence of the same. (1) A previous study in older persons
showed that higher levels of TNF-a were associated with a
decline in thigh muscle cross-sectional area and hand grip
strength (p Z 0.02 and 0.03, respectively), suggesting that
TNF-a was consistently associated with the decline of both
muscle mass and muscle strength [56]. (2) Another study in
frail elderly persons presented similar results; a significant
negative correlation between protein synthesis and TNF-a
levels was detected in the study [57].

Several previous studies investigated the role of TNF-a
in skeletal muscle using different methods. Zamir et al.
administered TNF-a injections in skeletal muscle and
observed a significant increase in proteolysis and protein
synthesis tended to decrease [58]. In another study, TNF
inhibition therapy led to a significantly higher fat mass;
however, no significant difference was found in muscle
mass and muscle strength [59]. TNF-a gene transfer
resulted in an elevated concentration of TNF-a and muscle
atrophy in vivo; the regeneration of injured muscle was
also significantly inhibited [60]. These studies indirectly
prove that TNF-a is associated with catabolism of muscle
protein.

The TNF-a gene is mapped to human chromosome 6 [61].
Polymorphism at �308 in the TNF-a promoter is associated
with activation of TNF-a gene transcription [62]. Di et al.
investigated the association between G/A �308 TNF-a
polymorphism and skeletal muscle mass. They observed
that SO was positively associated with �308 TNF-a poly-
morphism, suggesting that the TNF-a polymorphism
accounted for SO susceptibility in normal weight obese
(NWO) syndrome [63]. NWO syndrome is characterized by
normal body mass index (BMI), but high amount of fat mass
and reduced lean mass. However, a large-scale clinical
study investigating the relationship among obesity, muscle
strength and circulating pro-inflammatory cytokines,
involving 378 men and 493 women aged �65 years, did not
find any significant difference in TNF-a levels among no
obesity group, central obesity group, global obesity group
and both global and central obesity group, which may be
due to the very low circulating levels and very short half-
life of TNF-a [64].

Starkie et al. attempted to explore the relationship
between exercise and TNF-a. They found that the admin-
istration of endotoxin induced a significant increase of
plasma TNF-a (p < 0.0001) in the control group, but this
increase was alleviated by physical exercise (riding a bi-
cycle), and hence, there was no increase of the TNF-a level
in the exercise group. This study suggests that exercise can
inhibit TNF-a production, implying that TNF-a plays an anti-
inflammatory role in exercising muscles [65]. Similarly,
another study in frail elderly individuals revealed that the
rate of muscle protein synthesis in the exercise group
(resistance exercise) was negatively correlated with muscle
TNF-a protein content (r Z �0.53, p Z 0.04). These results
provide evidence for TNF-a’s role in age-associated
deterioration of skeletal muscle. Exercise can suppress
TNF-a expression in skeletal muscle, which may retard
muscle wasting [57]. In general, the up-regulation of TNF-a
expression is regarded as one of the mechanisms in the
development of sarcopaenia, and TNF-a can also be a po-
tential serum marker in individuals with sarcopaenia.
Other Cytokines: Growth Hormone,
Interleukin-10, Interleukin-15

Growth hormone (GH) is mainly secreted by somatotrophs
in the anterior pituitary gland. It has been proven that the
GH-IGF (insulin-like growth factors) axis regulates the
growth and differentiation of skeletal muscles [66]. The
GH-IGF axis is also crucial for the regulation of immunity
and inflammation [67]. GH levels are usually lower in
elderly people. Brioche et al. applied GH replacement
therapy to aged rats and found an increased synthesis of
skeletal muscle protein, suggesting that GH may have
beneficial effects for the treatment of sarcopaenia [68].
Another study has also found that GH secretion was sup-
pressed in SO patients, which is usually accompanied by a
decrease of IGF-1 [69]. Similarly, a significant negative
correlation was observed between basal free fatty acid
(FFA) levels and GH levels (r Z �0.44, p Z 0.001), indi-
cating that a decreased release of GH during ageing may be
due to an increase of FFA [69,70]. These studies help us to
understand that low GH levels were associated with low
muscle mass. It is reported that exercise can increase GH
secretion, suggesting that it can act as a stimulus for GH
secretion in individuals [71].

IL-10 is mainly produced by monocytes and was reported
to be increased in elderly people [72,73]. It is considered to
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be an anti-inflammatory cytokine. IL-10 levels were up-
regulated during exercise, indicating that it may also be
secreted by skeletal muscles [74]. Compared to age
matched wild-type controls, skeletal muscles of IL-10 null
mice presented with higher levels of damaged mitochondria
and destructive autophagosomes, suggesting that IL-10 and
inflammation were important in altered mitochondrial
biology, in skeletal muscles of aged mice [75]. Additionally,
circulatory IL-10 levels were elevated in obese individuals
[76]. After 16 weeks of high-fat diet administration, mus-
cle-specific overexpression of interleukin-10 (MIL-10) mice
developed obesity, but their insulin function was better
than that of wild-type mice. This implies that IL-10 may be
able to attenuate inflammation and improve insulin sensi-
tivity in skeletal muscles of obese mice [77].

IL-15 is expressed in many cell types, including mono-
cytes, macrophages and fibroblasts. It can facilitate satel-
lite cell differentiation and regulate the balance between
muscle cells and adipocytes [78]. Marzetti et al. found that
ageing is associated with a reduction of IL-15 signalling in
muscles and that calorie restriction can preserve IL-15
signalling, which may contribute to an anti-ageing effect,
preventing muscle wasting in rats [79]. IL-15 was also
reported to be significantly increased after resistance
exercise and endurance exercise in clinical studies,
suggesting that it may be a mediator of skeletal muscle
mass [80,81]. IL-15 has therapeutic potential to reduce
inflammation, thus alleviating muscle loss.
Pathways Related to Inflammation in
Sarcopaenia

The signalling pathways involved in protein synthesis and
degradation are very complicated and regulated by multi-
ple factors. Inflammation and the related inflammatory
cytokines are very likely to be involved in age-related
muscle loss in humans.

Akt (known as protein kinase B, PKB)/mTOR (mammalian
target of rapamycin) and Akt/GSK (glycogen synthase ki-
nase) pathways are related to muscle protein synthesis, and
the GH/IGF-1 axis is a key regulator within these pathways
[82,83]. IGF-1 affects Akt activation, thus regulating the
Akt/mTOR and Akt/GSK pathways [84]. IGF-1 was found
to be decreased in older people, and so were the
Table 1 Summary of inflammatory cytokines related to sarcopa

Inflammatory
cytokines

Source Function

CRP Liver A marker of system
IL-6 T cells, macrophages,

fibroblasts and endothelial cells
A pro-inflammator
inflammatory myo

TNF-a Macrophages A pro-inflammator
GH Somatotroph in anterior

pituitary gland
GH-IGF axis regula
differentiation of

IL-10 Monocytes Anti-inflammatory
IL-15 Mononuclear phagocytes Induces differenti

cells

CRP Z C-reactive protein; GH-IGF Z growth hormone-insulin-like gr
mycin; TNF-a Z tumour necrosis factor-a.
downstream regulators, such as mTOR, p70s6k and eIF2B
[85,86]. Thus, these pathways may also contribute to
decreased muscle protein synthesis during ageing. Akt/
FKHR (forkhead family of transcription factors, also called
Foxo1) and Akt/FKHRL1 (Foxo3) are the pathways respon-
sible for muscle protein degradation. Reduction of Akt
phosphorylation caused by a decrease of IGF-1 in the
elderly could activate FKHR, thus promoting the
transcription of atrogin-1 and MuRF1 (muscle ring-finger
protein 1). These two genes are involved in muscle atro-
phy [87,88].

STAT3 (signal transducer and activator of transcription 3)
is a downstream effector of IL-6. The IL-6-activated STAT3
signalling pathway can regulate satellite cell differentia-
tion, thus facilitating myogenic differentiation. This in-
dicates that IL-6 and its receptor could activate its
downstream signalling pathways in skeletal muscle, under
pathological conditions [89]. After treating muscle cells
with myostatin, IL-6 levels were elevated through MEK1
(mitogen-activated protein kinase 1) and p38 MAPK path-
ways. This may be another mechanism related to protein
degradation and age-related muscle loss [90]. Additionally,
IL-6 was also involved in activating AMPK (adenosine
monophosphate-activated protein kinase) and PI3K (phos-
phatidylinositide 3-kinases) pathways, thus regulating
skeletal muscle metabolism [91,92].

TNF-a could increase myostatin expression through the
NF-kB signalling pathway. In elderly people, there was a
substantial increase of TNF-a, which led to the increase of
its target gene SOCS-3 (suppressor of cytokine signalling 3)
[93]. SOCS-3 could block the growth hormone receptor
signalling pathway, thus resulting in the inhibition of JAK
(Janus kinase)/STAT5 (signal transducer and activator of
transcription-5) [94]. As JAK/STAT5 pathway is related to
muscle protein synthesis, the indirect inhibition of this
pathway by TNF-a would lead to a decrease of protein
synthesis.

The summary of inflammatory cytokines related to sar-
copaenia in this review are listed in Table 1.

The purpose of this review was to identify the most
relevant and widely studied inflammatory factors related to
the pathogenesis of sarcopaenia, with a high potential for
being used in an interventional target strategy. However,
limitations exist for some factors that were not as widely
reported; these factors were not included in this review.
enia.

Tendency in
sarcopaenia

Related pathways

ic inflammation [

y cytokine and an anti-
kine

[ STAT3; MEK1; p38
MAPK; AMPK; PI3K

y cytokine [ NF-kB; JAK/STAT5
tes the growth and
skeletal muscles

Y Akt/mTOR; Akt/GSK

cytokine [

ation of NK cells and T Y

owth factors; IL Z interlukin; mTOR, mammalian target of rapa-
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Moreover, as sarcopaenia is a multifactorial disease, other
important factors, including ageing, exercise, diet and their
interactions, were not discussed in depth to avoid
complication.

Conclusion

This review summarises the current evidence about
inflammation and age-associated deterioration of skeletal
muscle. CRP, IL-6, and TNF-a are crucial inflammatory cy-
tokines associated with sarcopaenia. All of which showed
higher expression in elderly individuals. In conclusion, the
cytokines produced during inflammatory processes related
to ageing may influence their respective related pathways,
thus leading to age-related muscle deterioration.
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