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Abstract

Objective: To construct a diagnostic signature to distinguish lung adenocarcinoma from lung

squamous cell carcinoma and a prognostic signature to predict the risk of death for patients with

nonsmall-cell lung cancer, with satisfactory predictive performances, good stabilities, small sizes

and meaningful biological implications.

Methods: Pathway-based feature selection methods utilize pathway information as a priori to

provide insightful clues on potential biomarkers from the biological perspective, and such incor-

poration may be realized by adding weights to test statistics or gene expression values. In this

study, weighted gene expression profiles were generated using the GeneRank method and then

the LASSO method was used to identify discriminative and prognostic genes.

Results: The five-gene diagnostic signature including keratin 5 (KRT5), mucin 1 (MUC1), trigger-

ing receptor expressed on myeloid cells 1 (TREM1), complement C3 (C3) and transmembrane

serine protease 2 (TMPRSS2) achieved a predictive error of 12.8% and a Generalized Brier Score

of 0.108, while the five-gene prognostic signature including alcohol dehydrogenase 1C (class I),

gamma polypeptide (ADH1C), alpha-2-glycoprotein 1, zinc-binding (AZGP1), clusterin (CLU), cyclin

dependent kinase 1 (CDK1) and paternally expressed 10 (PEG10) obtained a log-rank P-value of

0.03 and a C-index of 0.622 on the test set.
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Conclusions: Besides good predictive capacity, model parsimony and stability, the identified

diagnostic and prognostic genes were highly relevant to lung cancer. A large-sized prospective

study to explore the utilization of these genes in a clinical setting is warranted.
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Introduction

Nonsmall-cell lung cancer (NSCLC) is any
type of epithelial lung cancer (LC) other
than small-cell lung carcinoma (SCLC) and
it accounts for approximately 85% of all LC
cases.1 Compared with SCLC, patients with
NSCLC are relatively less sensitive to chemo-
therapy.2–4 In contrast to NSCLC, SCLC
has a shorter doubling time, higher growth
fraction and earlier development of metasta-
ses.4,5 Furthermore, NSCLC can be classified
into three major histological subtypes: lung
adenocarcinoma (AC), lung squamous cell
carcinoma (SCC) and large cell lung cancer
(LCLC);1 accounting for approximately 4/5
of all LC cases when combined together.6

Since the choice of chemotherapy and tar-
geted therapies depends on histological sub-
types, the discrimination and separation of
NSCLC subtypes are of essential importance
in the clinical setting.7 Likewise, the success-
ful prediction of which patients with NSCLC
have a high risk for recurrence and death is
of primary importance with regard to the
provision of more individualized and precise
medical interventions.

A gene signature is a list of genes with a
unique pattern of gene expression that
results from an altered biological process
and/or a medical condition.8,9 According
to the type of outcomes, a gene signature
can be classified into either a diagnostic sig-
nature or a prognostic one. A diagnostic

gene signature might provide valuable

clues on biomarkers that distinguish the

patients with a specific disease from the

healthy controls; or different diseases with

phenotypically similar medical condi-

tions.10 In contrast, a prognostic signature

may offer insights into the course of a dis-

ease, the prediction of survival rates and the

response to a specific treatment. 10,11 As far

as NSCLC is concerned, many diagnostic sig-

natures12–15 and prognostic signatures16–20

have been identified. For example, a

recent study used 183 AC and 80 SCC

patients as a training set and obtained a

42-gene signature to discriminate these

two subtypes.12 Furthermore, a 72-gene

prognostic signature was shown to predict

the risk of recurrence for early-stage

NSCLC patients.21

Identification of a gene signature is usu-

ally accomplished with the aid of a feature

selection process. Feature selection has the

advantages of simplifying the final models,

shortening the training time, alleviating the

over-fitting problem and thus improving

generalization and having a better biologi-

cal interpretation. Different from the con-

ventional feature selection methods that

ignore biological pathway information or

the underlying correlation or intrinsic

grouping structure among genes, there

exist many feature selection methods that

incorporate such information to guide

2 Journal of International Medical Research



which genes should be selected. These meth-
ods branch out as a novel type of feature
selection, dubbed as the pathway-based fea-
ture/gene selection.22,23

Previous studies have demonstrated
that taking informative pathway knowledge
into account, the pathway-based feature
selection algorithms outperform the classic
methods.22,24–26 Consequently, such meth-
ods tend to replace the classic methods as
the first choice of statistical methods in
many real-world applications. So far, a
majority of identified gene signatures for
NSCLC were obtained by utilizing classic
feature selection methods (e.g. a Cox
model or a logistic model plus a LASSO
penalty) that consider no pathway informa-
tion.27,28 To develop more pathway-based
feature selection methods and then use
them to construct better-performed gene
signatures for NSCLC is highly desirable.

The GeneRank method29 modified
Google’s PageRank algorithm30 to specifi-
cally handle biological data. This method
calculates a rank (i.e. GeneRank) for each
gene and balances between the mean expres-
sion value or the fold change among pheno-
types and the connectivity level of a gene
within a network. GeneRank prioritizes
a gene that is highly connected to other
genes within the network. Previously, the
GeneRank method was utilized to rearrange
genes accordingly to their GeneRanks and
restrict the search space (i.e. the number
of genes under consideration) to those top-
ranked genes. Then the corresponding
P-values of Cox-filter models were adjusted
according to a specific gene’s correlation
magnitudes with other genes involved in
this search space, in order to eliminate
redundant genes as much as possible.

The weighting methods are one major
category of pathway-based feature selection
methods,13,22 but they have been underutil-
ized since weight estimation is always
subject to bias. In this current study, the
GeneRank method29 was applied to the

expression values of genes to obtain weight-
ed gene expression profiles and then the
LASSO method31 was used to select rele-
vant genes, with the objective of identifying
a diagnostic gene signature for subtype
segmentation and a prognostic gene signa-
ture to predict overall survival rate. The
resulting weighted gene expression profiles
(i.e. the GeneRanks) bypassed the step of
estimating pathway-based weights and
thus provided an alternative strategy of
weighting.

Notably, even though the GeneRank
method was used in both this current
study and our previous study,32 the pur-
poses of its implementation (to provide
the rankings for genes versus to generate
weighted expression profiles) and the
feature selection methods used (the Cox-
filter method versus the LASSO method)
in both studies differ dramatically. Lastly,
the objectives of these two studies were dif-
ferent. While our previous study focused on
identifying subtype-specific prognostic
genes, the current study aimed at a diagnos-
tic gene signature to separate AC from SCC
and a prognostic gene signature that works
well for both subtypes.

Materials and methods

Experimental data

The data from three microarray experi-
ments were used in this study. The accession
numbers of the three microarray experi-
ments in the Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/)
repository are GSE30219, GSE37745 and
GSE50081. The RNA-Seq data of TCGA
LUAD (for the AC subtype) and LUSC
(for the SCC subtype) cohorts were used
as an independent set to validate the perfor-
mance of the resulting gene signatures.
Since the three microarray datasets and
the RNA-Seq dataset had been used by us
previously,32 the descriptions of them are
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not shown here. Since the same pre-processing

procedures in that study were used, no

description of the pre-processing procedures

is given here. The readers are referred to our

previous study for those details.32

The interaction/connection information

of protein-coding genes was retrieved from

the Human Protein Reference Database

(HPRD),33 Release 9 (http://www.hprd.

org). There were 8023 unique genes com-

monly annotated by the R Hgu133plus2.

db package, the RNA-seq data and the

HPRD database, upon which the proposed

procedure was applied.

Statistical analyses

GeneRank. The GeneRank method29 calcu-

lates a rank for each gene that balances

between its expression value and its impor-

tance within a gene-to-gene interaction net-

work. Detailed descriptions of this method

have been provided previously.29,32

Lasso. In order to be consistent with our

previous study on the weighting methods,13

the LASSO method was used to carry out

the feature selection.31 For two-class classi-

fication analysis, the corresponding log like-

lihood function and the final objective

function were given in that previous arti-

cle.13 Here, the detailed description of the

LASSO method for survival analysis was

given, in which the following log partial

likelihood function was used:

log
�
plðbÞ

�
¼

Xn
i¼1

di
�
bTXi

� log
�X

k2ri
expðbTXkÞ

��

Where di is an event indicator, taking the

value of 1 if the event happened, 0 if other-

wise. If di¼1, ti corresponds to the survival

time (time free of the event) of subject i,

otherwise ti corresponds to the censoring

time. Then, ri indexes the risk set of patients
for deaths at the moment of ti. Xi¼(Xi1, . . .,
Xip) represent the expression measures of
subject i for all genes under consideration.

Then the LASSO penalty term multi-
plied with a tuning parameter k, i.e., k|b|1
is added to the negative log partial likeli-
hood function to generate the final objec-
tive function, given as shown below:

�log
�
plðbÞ

�
þ k

Xp

j¼1

jbjj

Here, k controls the sparseness of the final
model, with a larger k imposing heavy penal-
ization on these b coefficients and a value of
0 corresponds to no penalty at all. The cyclic
coordinate descent method implemented by
the R glmnet package was used to optimize
the final objective functions.34

Proposed procedure. The current study used
the expression profiles of an individual
directly to calculate the GeneRanks, which
are viewed as patients’ weighted gene expres-
sion profiles. Subsequently, the LASSO
method was applied to select genes associat-
ed with subtype segmentation or with overall
survival time upon the resulting weighted
gene expression values, respectively. Based
on the characteristics of the proposed proce-
dure, it belongs to the weighting category
described previously.22 In that previous
study,22 a weighting method was defined to
generate weights according to pathway
information and then to combine those
weights with either test statistics or expres-
sion values directly to accomplish the selec-
tion of relevant genes. Since the proposed
procedure bypasses the step of estimating
pathway-based weights, it provides an effi-
cient alternative of weighting.

Performance statistics. For the classification,
two metrics, the Generalized Brier Score
(GBS) and the misclassification error rate,
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were used to evaluate the performance of a
resulting gene signature. Detailed descrip-
tions of these two metrics have been pre-
sented in a previous study.22 In short, the
closer to 0 these two statistics are the better
a model performs.

Another two metrics were used to evalu-
ate the performance of the resulting prog-
nostic signatures. The log-rank P-value was
the first metric. Briefly, the patients were
stratified into two groups according to the
mean of their risk scores: the low risk of
death group and the high risk of death
group. The survival curves of these two
groups were plotted using the Kaplan–
Meier method and compared by carrying
out log-rank tests. The smaller a log-rank
P-value was the more significantly these
two survival curves differ. The second
metric used was the censoring-adjusted
C-statistic described previously.35 For this
metric, a value closer to 1 corresponds to
a better performance.

In addition to the predictive performance
of a gene signature, model stability and bio-
logical implication are also of crucial impor-
tance. If a specific statistical model identifies
different gene lists on different data, its
stability is low. If so, the application of
resulting signatures in the clinical setting is
impossible. The stability of a gene signature
was evaluated using the bagging method.36

Specifically, 100 bootstrapped replicates
were generated by randomly sampling 4/5
of patients without replacements and then
the percentages of the selected genes being
inside these bagging signatures were calcu-
lated. The genes with low stability were dis-
carded and the performance statistics were
recalculated. Statistical analyses were per-
formed using the R language (www.r-proj
ect.org) version 3.3.

Results

Using the weighted expression profiles gen-
erated by the GeneRank method, a 14-gene

list was identified for the segmentation
between AC and SCC. The estimated coef-
ficients and their frequencies of being select-
ed over the 100 bootstrapped datasets are
given in Table 1, along with their biological
relevance on the basis of the GeneCards
database search.37 The performance statis-
tics of this 14-gene signature are listed in
Table 2. Restricting the bagging frequencies
of genes being selected to above 80%, the
resulting five-gene list including keratin 5
(KRT5), mucin 1 (MUC1), triggering recep-
tor expressed on myeloid cells 1 (TREM1),
complement C3 (C3) and transmembrane
serine protease 2 (TMPRSS2) obtained an
error rate of 12.8% and a GBS of 0.108 on
the test set.

Restricting further on the genes directly
related to lung cancer, KRT5, MUC1
and TREM1 were kept. Interestingly, the

Table 1. The discriminative gene list to discrimi-
nate lung adenocarcinoma from lung squamous cell
carcinoma.

Gene

symbols b
Percentage

(%)

Biological

relevance

ADH7 0.8913 53 I

C3 –1.1502 87 I

CALML3 0.4041 37 I

CHGA 0.0822 31 D

EGFR –1.3647 73 D

GGH 1.0274 63 D

ISL1 2.4164 54 I

KRT5 9.6217 100 D

MSLN –0.2808 51 D

MUC1 –3.2149 93 D

S100A7 0.4458 53 D

SFTPB –0.2771 59 D

TMPRSS2 –2.3844 90 I

TREM1 –3.0412 99 D

b is the estimated coefficient for the specific gene (the

magnitude of association with the outcome) using the

LASSO model; percentage (%) is the frequency of being

identified as a non-zero b over 100 replicates.

I, indirectly related to nonsmall-cell lung cancer according

to the GeneCards database; D, directly related to non-

small-cell lung cancer according to the GeneCards

database.
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bagging frequencies of these three genes
were above 90% and their estimated associ-
ation magnitudes (bs) were very large, while
this three-gene list achieved a predictive
error of 15.2% and a GBS of 0.101 on
the test set. The scatterplots of the three-
gene list are presented in Figure 1, upon
which it was observed that AC and SCC
patients were well separated into two clusters
with only a small proportion of misclassifi-
cations for both the training set and the test
set. In order to further validate the resulting

signature, three sets of 1000 randomly-
chosen gene lists were generated: one list
included 14 genes; one included five genes
with bagging frequencies> 80%; and the
last list included three genes with bagging
frequencies> 90%. Among 1000 randomly-
chosen lists, none of them had better per-
formances than the corresponding gene
lists selected by the proposed procedure
regarding error rates and GBS.

Using the weighted expression profiles
generated by the GeneRank method,

Table 2. Performance statistics for both discriminative and prognostic gene signatures.

Classification (AC versus SCC) Prognosis (AC & SCC)

Error

rate (%) GBS

P-value

(log-rank) C-index

Training set (integrated microarray data) 6.49 0.056 8.05� 10–9 0.667

Test set (RNA-seq data) 14.4 0.109 0.252 0.577

Using bagging to eliminate the genes with low frequencies*

Training set (integrated microarray data) 11.50 0.076 3.01� 10–5 0.630

Test set (RNA-seq data) 12.80 0.108 0.03

*For the classification problem the genes with frequencies of> 80% were kept; and for the prognosis problem the genes

with frequencies of> 50% were kept.

AC, lung adenocarcinoma; SCC, lung squamous cell carcinoma.; GBS, Generalized Brier Score.

Figure 1. Scatterplots of the discriminative gene signature. (a) The training set (integrated microarray
data). (b) The test set (RNA-Seq data). The three genes under consideration are keratin 5 (KRT5), mucin 1
(MUC1) and triggering receptor expressed on myeloid cells 1 (TREM1) that not only have high stability (the
frequencies of being selected are> 80%) but also are directly related to nonsmall-cell lung cancer. From
these two plots, the AC patients (blue dots) and the SCC patients (red dots) were observed to be well
separated using these three genes. The weighted gene expression values for KRT5 are given on the x-axis, for
MUC1 on the y-axis and for TREM1 on the z-axis. AC, lung adenocarcinoma; SCC, lung squamous cell
carcinoma. The colour version of this figure is available at: http://imr.sagepub.com.
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another 14 genes were deemed to have

prognostic values for NSCLC. The perfor-

mance statistics of this prognostic gene

signature are presented in Table 2. The esti-

mated coefficients and their frequencies of

being selected across 100 bootstrapped

datasets are given in Table 3.
Using the weighted expression profiled

by the GeneRank method both perfor-

mance statistics of the resulting prognostic

gene signature after eliminating the genes

with low stability (i.e. a five-gene signature

consisting of alcohol dehydrogenase 1C

[class I], gamma polypeptide [ADH1C],

alpha-2-glycoprotein 1, zinc-binding

[AZGP1], clusterin [CLU], cyclin dependent

kinase 1 [CDK1] and paternally expressed

10 [PEG10]) achieved satisfactory levels,

namely, a C-index of 0.622 and a log-rank

P-value of 0.03 on the test set. This result

has two implications. First, the values of

these two metrics are comparable with those

on the training set, indicating no over-fitting

occurs in this study and the learning model is

well behaved. Secondly, a gene signature

obtained from one platform such as microar-

ray may be even generalized to another plat-

form such as RNA-Seq.
In addition, a comparison was undertak-

en between the three-gene diagnostic signa-

ture and the gene lists given by two previous

studies.38,39 By fitting an extra support

vector machine model using the identified

genes of those two studies as covariates,

the corresponding error rate and GBS on

the test set were calculated, respectively.

For the model using KRT5, RAR related

orphan receptor C (RORC) and MAGE

family member A4 (MAGEA4) as covari-

ates, the corresponding error rate and

GBS were 15.2% and 0.122 on the test

set, respectively. In contrast, the corre-

sponding values were 17.6% and 0.154 for

the model using only KRT5 as a covariate.

Likewise, the 14-gene prognostic signature

was compared with the prognostic gene sets

given by two other previous studies.40,41

The previous 13-gene list achieved a log-

rank P-value of 0.09 and a C-index of

0.624 on the test set. On the other hand,

the previous 15-gene list only obtained a

log-rank P-value of 0.45 and a C-index

of 0.514.
The Kaplan–Meier plots are presented in

Figure 2. In order to compare with a

random set of genes, two sets of 1000

randomly-chosen gene lists were generated

(one included 14 genes and one included

five genes with bagging frequencies> 50%).

Among 1000 randomly-chosen 14-gene

lists, none had more significant log-rank

P-values and better C-indexes than the

14-gene list identified by the proposed pro-

cedure. For 1000 randomly-selected five-

gene lists, 15 and 30 had more significant

log-rank P-values and better C-indexes

Table 3. The prognostic gene list for nonsmall-cell
lung cancer.

Gene

symbols b
Percentage

(%)

Biological

relevance

ADH1C –0.3811 89 D

AZGP1 –0.7664 87 I

CD79A –0.4586 46 I

CDK1 0.8026 65 D

CLU –1.1324 66 D

COL10A1 –0.7247 47 I

GFRA3 –0.9063 49 I

GJB2 0.4625 44 D

MAOA –0.3124 50 D

PEG10 0.5301 56 D

S100A7 0.0574 31 D

SCGB3A2 –0.089 45 I

SMAD9 –0.1602 44 D

TFF3 –0.013 35 I

b is the estimated coefficient for the specific gene (the

magnitude of association with the outcome) using the

LASSO model; percentage (%) is the frequency of being

identified as a non-zero b over 100 replicates.

D, directly related to nonsmall-cell lung cancer according

to the GeneCards database; I, indirectly related to non-

small-cell lung cancer according to the GeneCards

database.

Wu et al. 7



than the five-gene list identified by the pro-
posed procedure, respectively.

The interactions between the five-gene
diagnostic signature and the five-gene

prognostic signature were queried using
the String database.42 The corresponding
network was plotted using the Cytoscape
software (Figure 3).43

Figure 2. Kaplan–Meier plots for the five-gene prognostic signature. (a) The training set (the integrated
microarray dataset). (b) The test set (the RNA-Seq dataset). Using the mean of risk scores as a cutoff, the
patients were divided into two groups, i.e. the high-risk group (red solid line) and the low-risk group (blue
solid line) and then a log-rank test was conducted to test if the survival curves of these two groups differed.
P-value is the corresponding log-rank P-value. The colour version of this figure is available at: http://imr.
sagepub.com.

Figure 3. Interaction network on the basis of five prognostic genes and five diagnostic genes. In this graph,
the isolated genes were excluded. The identified diagnostic genes (i.e. keratin 5 [KRT5], mucin 1 [MUC1] and
complement C3 [C3]) were highlighted in yellow and the prognostic ones (i.e. alpha-2-glycoprotein 1, zinc-
binding [AZGP1], clusterin [CLU] and cyclin dependent kinase 1 [CDK1]) in pink. The colour version of this
figure is available at: http://imr.sagepub.com.
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Discussion

The KRT5 gene was identified as a discrim-
inative gene for AC/SCC segmentation. Of
note, it was selected by all bootstrapped
replicates; and it has been consistently iden-
tified as a relevant gene to classify AC
and SCC in previous studies even though
different training sets/test sets and learning
models were used.13,32,38,39,44,45 Currently,
KRT5 is used as an immunohistochemical
marker for diagnostic assays in the clinical
setting.46

Two previous studies suggested that with
only one or several genes, the AC/SCC
segmentation can be successfully accom-
plished.38,39 Therefore, this current study
made a comparison between this three-
gene list and the gene lists given by those
two studies. To conclude, the current five-
gene or three-gene diagnostic signature out-
performs these two gene lists. Likewise, for
the prognostic gene signature, a comparison
between the identified five-gene list and two
existing prognostic gene signatures in the
literature was made.40,41 Of note, for these
two signatures some genes were outside our
search space (i.e. 8023 genes under consid-
eration) and thus had been deleted. Again,
the current prognostic gene list performs
the best.

Among the five genes with both high
stability (frequency of being selected
> 50%), four of them were indicated by
the GeneCards database to be directly asso-
ciated with NSCLC,37 thus being of scien-
tific significance. For example, upregulation
of PEG10 has been reported to be associated
with several malignancies such as hepatocel-
lular carcinoma47 and B-cell lymphocytic
leukaemia.48 A recent study concluded that
the expression levels of PEG10 were highly
correlated with the TNM staging and surviv-
al time of the patients with lung cancer.49

In Figure 3, the interactions between the
five-gene diagnostic signature and the five-
gene prognostic signature are given.42,43

Specifically, four of these 10 genes were iso-

lated (thus being deleted). In the network

plot, there exist three sub-networks, includ-

ing two extremely-small-sized ones in which

all nodes are internal to the identified signa-

tures and one small-sized network in which

all nodes are looped together with only

CDK1 being a prognostic gene. Overall, the

identified genes are independent factors to

associate with their respective outcomes.
In conclusion, this current study used the

GeneRank method to generate weighted

gene expression profiles directly. Upon

the resulting weighted expression values,

the LASSO method was used to identify

the relevant genes for the AC/SCC subtype

segmentation and for the prognosis of

NSCLC patients. The results showed that

both diagnostic and prognostic gene signa-

tures identified by the proposed procedure

had a satisfactory performance, good sta-

bility, small size and meaningful biological

interpretation. The identified prognostic

gene signature might provide a very prom-

ising kit to predict the risk of death for AC

and SCC patients as a whole. Nevertheless,

a large-sized prospective study is warranted

to further investigate the clinical practica-

bility of this five-gene signature.
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