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The tumor suppressor gene, TP53, has the highest rate of mutation among all

genes in human cancer. This transcription factor plays an essential role in the

regulation of many cellular processes. Mutations in TP53 result in loss of wild-

type p53 function in a dominant negative manner. Although TP53 is a well-

studied gene, the transcriptome modifications caused by the mutations in this

gene have not yet been explored in a pan-cancer study using both primary and

metastatic samples. In this work, we used a random forest model to stratify

tumor samples based on TP53 mutational status and detected a

p53 transcriptional signature. We hypothesize that the existence of this

transcriptional signature is due to the loss of wild-type p53 function and is

universal across primary and metastatic tumors as well as different tumor types.

Additionally, we showed that the algorithm successfully detected this signature

in samples with apparent silent mutations that affect correct mRNA splicing.

Furthermore, we observed that most of the highly ranked genes contributing to

the classification extracted from the random forest have known associations

with p53 within the literature. We suggest that other genes found in this list

including GPSM2, OR4N2, CTSL2, SPERT, and RPE65 protein coding genes have

yet undiscovered linkages to p53 function. Our analysis of time on different

therapies also revealed that this signature is more effective than the recorded

TP53 status in detecting patients who can benefit from platinum therapies and

taxanes. Our findings delineate a p53 transcriptional signature, expand the

knowledge of p53 biology and further identify genes important in

p53 related pathways.
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Introduction

The most frequently somatically mutated gene in human

cancer is TP53 which encodes the p53 protein, signifying the

importance of its wild-type function in tumor suppression

(Levine and Oren, 2009; Kandoth et al., 2013; Duffy et al.,

2014; Donehower et al., 2019; Thomas et al., 2022). Wild-type

p53 functions as a transcription factor activated in response to

cellular stresses (Giaccia and Kastan, 1998; Prives and Hall, 1999;

Vousden and Lu, 2002; Vousden and Prives, 2009; Duffy et al.,

2014; Thomas et al., 2022). The protein function can be

compromised via various mechanisms (Shvarts et al., 1996;

Kostic et al., 2006; Vassilev, 2007; Duffy et al., 2014), the most

common being missense mutations followed by a loss of

heterozygosity resulting in the complete loss of wild-type

p53 function (Levine and Oren, 2009; Duffy et al., 2014;

Donehower et al., 2019; Mantovani et al., 2019). Mutations in

TP53 are associated with a poor prognosis in many cancers and

germline mutations in this gene cause the Li-Fraumeni syndrome

which increases the susceptibility to diverse cancer types (Malkin

et al., 1979; Srivastava et al., 1990; Kandoth et al., 2013;

Donehower et al., 2019; Mantovani et al., 2019).

Machine learning (ML) approaches have been used to

investigate large and complex data sets, including the

classification of cancer types, the determination of informative

features in cancer diagnosis, and the analysis of TP53 mutations

and their effects (Danziger et al., 2009; Chitrala et al., 2019;

Grewal et al., 2019; Lim et al., 2019; Banerjee and Mitra, 2020;

Yuan et al., 2020). Transcript expression data has been used to

classify primary tumors and breast cancer subtypes based on

TP53mutational status (Benor et al., 2020; Saghaleyni et al., 2021;

Zhang et al., 2021). Subsets of The Cancer Genome Atlas

(TCGA) samples have been successfully stratified based on

aberrant p53 pathway activities (Zhang et al., 2021). In all of

these studies, filtering and data reduction were applied to both

samples and gene sets. To our knowledge, the effects of TP53

mutations on the transcriptome have not been investigated in a

pan-cancer study using both primary and metastatic samples

without applying specific filters on the sample types and the

genes.

In this work, we show how a transcriptional signature for loss

of p53 function can be detected using ML approaches. We

trained a random forest (RF) algorithm using primary tumor

TCGA expression and mutation data (Kandoth et al., 2013;

Weinstein et al., 2013) and metastatic tumor data from the

British Columbia (BC) Cancer Agency Personalized

OncoGenomics (POG) program (Pleasance et al., 2020). In

this pan-cancer analysis, all coding and non-coding genes

identified in both TCGA and POG datasets were included.

We were able to show that our model could predict the TP53

mutational status of tumors accurately and precisely from

transcriptome expression levels alone. The list of genes

contributing most to classification in the model correlated

highly with those genes known to be involved in p53 function

and biology. Additionally, we showed that the model could

correctly categorize the samples with synonymous somatic

mutations at splice sites in TP53 as pathogenic. Our results

also showed that combining all tumor types within the

training set improved the overall accuracy and specificity of

predictions. This indicates that a general transcriptional

signature of p53 functional loss exists, is detectable and is

conserved across tumor types. This signature can aid in

identifying patients who can benefit from different therapies

through recognition of the transcriptional patterns that are

associated with p53 pathways disruptions. Due to variable

response to different drug regimens, side effects, and

resistance, there is a need for personalized therapies (Daly,

2010; Wilke and Dolan, 2011; Gerlinger et al., 2012; Dey

et al., 2017; Hyman et al., 2017) to increase the success of

treatment and improve patient outcomes especially in

metastatic disease (Gerlinger et al., 2012; Dey et al., 2017).

Methods

Expression matrices and mutation data were obtained from

the TCGA and POG studies (Supplementary Material). Non-

primary tumor samples and the samples lacking mutation data

from TCGA were excluded. All genes common to both TCGA

and POG expression matrices were included. Principal

Component Analysis (PCA) plots were generated (Hunter,

2007; Pedregosa et al., 2011; Waskom, 2021). Samples were

divided by mutational status (mutated vs. wild-type), and

further by impact of mutation (impactful vs. non-impactful).

Samples with a mutation of type “silent”, “intron”, “3-prime

UTR”, “5-prime UTR”, “downstream gene”, “upstream gene” or

“splice region” were classified as “non-impactful”.

Random forest performance

For this analysis, only samples with “impactful”mutations or

wild-type p53 copies were included to increase the likelihood of

only pathogenic TP53 driver alterations being used for training.

The main hyperparameters were calibrated using 90% of samples

and the obtained values were validated using the remaining 10%.

The 90–10 split was performed randomly while maintaining the

proportion of TP53 mutant and wild-type samples. The RF

performance was then evaluated across TCGA, POG, and

merged (all TCGA and POG samples with wild-type p53 or

impactful TP53mutations) datasets using 5-fold cross-validation

analyses. Precision, recall, F1-score, area under the precision-

recall curve (AUPRC), and area under the receiver operating

characteristic curve (AUROC) values were found by applying the

scikit-learn library functions (Pedregosa et al., 2011). To compare

the performance on each cancer cohort individually versus the
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pan-cancer set, the accuracy scores were compared to the Out of

Bag scores which were found by training themodel using only the

samples in each cancer type. Additionally, performance metrics

were calculated across cancer types by clustering the samples in

each cohort and their predictions from the previous step and

computing the values using the scikit-learn evaluation functions.

Significant genes in classification

The genes that played a more important role in classification

were extracted based on the Gini importance scores of the RF

model. The threshold for the number of important genes was

found using a permutation-based method (Supplementary

Material). The 67 genes meeting this threshold were extracted

and used to perform a Gene Set Enrichment Analysis (GSEA)

using the Database for Annotation, Visualization, and

Integration Discovery (DAVID) (Huang et al., 2009a; Huang

et al., 2009b). Cellular pathways correlated with these 67 genes

were obtained with a threshold of 0.05 for p-values adjusted using

the Benjamini–Hochberg procedure (Huang et al., 2009b).

Prediction probabilities and outliers

The probabilities associated with the RF predictions were

extracted from the model and were grouped by prediction

correctness, sample source (TCGA and POG), true TP53

status (label), and the TP53 status predicted by the RF.

Using these likelihoods, mispredicted samples with high

prediction probabilities (>0.95) were identified. Two

samples (TCGA-AR-A24T-01 and TCGA-VM-A8CH) that

belonged to relatively balanced cancer cohorts were

investigated. Whole exome sequencing and RNA-seq files

of these samples and RNA-seq files of four other

comparator brain and breast cancer samples (two with

wild-type and two with mutated TP53 copies) were

visualized using the Broad Institute’s Integrative Genomics

Viewer (IGV) (Robinson et al., 2011).

Samples with non-impactful TP53
mutations

To determine the status of the samples with non-impactful

mutations, the merged set was used to train the algorithm, and

the status of the non-impactfully mutated samples were

predicted. The samples with silent mutations assigned to the

p53 mutant category were further investigated, as the expectation

would be to see no change in the p53 protein and therefore

similar behavior to the p53 wild-type category. The RNA-seq

data of these samples was visualized in IGV (Robinson et al.,

2011).

Treatment efficacy in patients with
mutated and wild-type p53

Treatment data from the POG cohort was obtained (Pleasance

et al., 2020), and drugs were grouped by their mechanism of action

and/or target genes or proteins (Antineoplastic Agents, 2012;

Vardanyan et al., 2016; Wishart et al., 2018; NCI, 2022).

Combination therapies were separated into individual drugs, and

data for patients on a double-blind trial where the received treatment

was unknown were filtered out. Total days on therapy was used as a

proxy for treatment response as response data was not available.

Drug groups with <5 patients or only p53 wild-type tumors were

excluded.

Results

Primary tumors from TCGA with available mutation data

and metastatic tumors from POG were collated, and

48,784 overlapping coding and non-coding genes were

identified. The PCA indicated that samples clustered by

cancer type (Supplementary Figures S1A,B) and primary and

metastatic samples also clustered together (Supplementary

Figure S1C). Since there was no distinctive boundary between

TCGA and POG data sets, the samples were merged for

classification.

Out of the 8755 TCGA samples, 3,373 (39%) had a mutation

in TP53 and 5,382 (61%) had only wild-type copies of this gene.

47 (1%) of the samples with a mutated TP53 were classified as

“non-impactful”while the other 3,326 (99%) were placed into the

“impactful” category. Out of 570 POG samples, 229 (40%) had a

mutation in TP53 and 341 (60%) contained wild-type copies.

Among 229 mutated samples, 23 (10%) were categorized as

“non-impactful”, and 206 (90%) as “impactful”.

Random forest performance

The performance of the RF was first optimized by tuning

the hyperparameters for the TCGA, POG, and merged data

sets and then evaluated using 5-fold cross-validation analyses

(Supplementary Table S1 and Supplementary Figures S2–S5).

Over 10 independent tests, merging TCGA and POG resulted

in a mean of 35 more samples (4 TCGA and 31 POG)

successfully classified by the RF, demonstrating benefit in

combining the primary and metastatic samples to train the

algorithm and detect the transcriptional patterns. Overall, the

RF performance was successful with AUROC 0.94 and

AUPRC 0.96 in the merged dataset (Supplementary Table

S2 and Figure 1). Mean accuracy was 0.88, with precision

0.88, recall 0.87, and f1-score 0.87.

Across the TCGA cancer types, the algorithm classified

samples with >0.75 f1-score in most cancer types where the
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minority class to majority class sample number ratio was

greater than 10% (Supplementary Table S3). In highly

imbalanced cancer types, sample classification was less

successful. The prediction accuracy when all the

samples were used for training was better than or very

similar to when training was done on individual

cancer types for 30 out of 33 tumor categories

(Supplementary Figure S6), so it can be concluded that

there is a benefit in combining all cancer types to train

the RF model.

Significant genes in classification

To understand the underlying decision-making process of

the RF algorithm, the genes that played a more important role in

classification were extracted using the built-in feature importance

scores (Gini importance scores). A threshold of 67 genes was

attained using a permutation method (Supplementary Material)

as the cut-off for the list of genes contributing to the classification

of samples based on TP53 mutation status (Supplementary

Figure S7). The importance scores of these genes as well as

FIGURE 1
Plots of area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) for TCGA, POG, and
merged (set of all impactful and wild-type samples) data sets.
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the change in their expression with the loss of wild-type

p53 function and their known link to p53 based on retrieved

literature were obtained (Figure 2 and Supplementary Figure S4).

Over- and under-expression of these genes in the absence of

wild-type p53 function was observed to be entirely aligned with

what is known about the regulation of these genes

(Supplementary Figure S4). For example, the three genes with

the highest importance scores in the classification have all been

shown to be upregulated in the presence of wild-type p53 activity

(Piette et al., 1997; Tanikawa et al., 2010; Xiong et al., 2011;

Donehower et al., 2019; Moyer et al., 2020). The findings from

other studies on p53 targets using experimental approaches

further confirmed the relevance of our gene list. Out of the

27 genes known to be regulated by p53 in our list (targets of

p53 and genes that are in a feedback loop with p53), 10 were

found in the list of 122 p53-regulated genes by Riley et al.

(p-value = 8.9 × 10−16 from a hypergeometric test with N =

18,337 (protein-coding genes in our data), k = 122, n = 27, and

x = 10) (Riley et al., 2008). Additionally, 9 out of the 27 genes

regulated by p53 were found in the list of 46 genes bound by

p53 identified by Nikulenkov et al. (p-value = 7.7 × 10−18 from a

hypergeometric test with N = 18,337, k = 46, n = 27, and x = 9)

(Nikulenkov et al., 2012). Expression of our model’s top 10 genes

(Supplementary Figure S8) confirmed an overall difference in the

transcriptional behavior of these genes between the mutant and

wild-type classes. GSEA revealed these 67 genes were most

enriched in cell cycle pathways (Padj < 8.9 × 10−22), which are

expected to be affected by TP53 mutations (Huang et al., 2009a;

Huang et al., 2009b) (Supplementary Table S5). Lastly, to

recognize the potential role of the TP53 transcript itself in the

classification, the rank of TP53 in the model’s important genes

list was obtained in 100 independent training iterations. This

rank on average was 109 (±6 standard deviation) with a median

of 109 (IQR: 105–114), indicating that the transcriptional level of

the TP53 gene itself did not significantly contribute to the

classification.

Prediction probabilities and outliers

Correctly predicted samples had a higher median prediction

probability, indicating higher confidence compared to mis-

predicted samples (Padj < 1 × 10−4) (Supplementary Figure

S9). Prediction probabilities for TCGA were higher than for

POG, likely due in part to the much larger number of samples

included in training the algorithm. Furthermore, it was noted

that the wild-type samples for p53 had higher probabilities

compared to samples with mutated TP53 genes. This could be

due to the larger number of wild-type p53 samples in the training

set or could indicate that there is a more dominant signature of

wild-type p53 function across different cancer types.

Out of 1,402 samples with a prediction probability of more

than 0.95, 14 (1%) were found to be incorrectly classified

(Supplementary Table S6). The majority of these samples

belonged to highly imbalanced cancer cohorts. However, two

samples belonged to relatively balanced cohorts (TCGA-VM-

A8CH-01, brain lower grade glioma, and TCGA-AR-A24T-01,

breast invasive carcinoma). Inspection of the RNA-seq

FIGURE 2
The bar plot of importance (Gini) scores of top 67 genes extracted from the random forest. Red colour indicates downregulation and blue
colour shows upregulation of the genes with the loss of wild-type p53 function. Genes are grouped based on their known link to p53.
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alignments revealed that the TCGA-VM-A8CH-01 contained a

missense mutation at the 277th amino acid of p53 that changes

cysteine to phenylalanine (p.C277F) (Supplementary Figure

S10A). Whole exome sequencing data showed that both

tumor and normal samples of this patient contained this

single nucleotide variation and thus the mutation was

germline (the sample was initially mislabeled as wild-type due

to lack of a somatic mutation). Based on the TP53 Database

(R20 July 2019: https://tp53.isb-cgc.org) (Bouaoun et al., 2016), it

is believed that p. C277F is a pathogenic, non-functional

mutation (i.e., a loss-of-function mutation). Our findings

confirm the loss of p53 activity and suggest that this mutation

might play a role in cancer predisposition. The label of this lower

grade glioma sample was then changed to p53 mutant, and the

algorithm performance was inspected again. No change was

observed in the performance metrics which shows that the RF

model is already robust to noise.

The whole exome sequencing and RNA-seq data for TCGA-

AR-A24T-01 breast invasive carcinoma confirmed the existence

of a p. R273H mutation in TP53 (Supplementary Figure S10B)

even though it was classified as wild-type tumor by the RF. The

misprediction does not seem to be related to the specific

mutation because out of the 101 TCGA and POG samples

with the p. R273H mutation in our data, 89 (88%) were

correctly assigned to p53 mutant category. The mean of the

prediction probability associated with the 11 mispredicted

samples with p. R273H mutation (excluding TCGA-AR-

A24T-01 sample) was 0.67 (±0.12 sd) which is considerably

lower than the prediction probability of TCGA-AR-A24T

(0.96). To determine if this is related to clonality or tumor

content, we looked at the variant allele frequency (VAF) of all

the samples containing a p. R273H mutation. The average VAF

of the 89 correctly classified samples was 0.56 (±0.20 sd) with a

median of 0.55 (IQR: 0.39–0.71) while the average VAF of the

11 misclassified samples was 0.31 (±0.16 sd) with a median of

0.26 (IQR: 0.19–0.44). The VAF of TCGA-AR-A24T-01 was

approximately 0.30 which is closer to the mean andmedian of the

mispredicted samples. Considering the low VAF, it is possible

that low tumor content in this sample might account for the

incorrect prediction.

Samples with non-impactful TP53
mutations

The samples with non-impactful mutations were excluded from

all the previous analyses due to ambiguity in their pathogenicity. To

discern the effect of non-impactful mutations, the algorithm was

trained on the merged set, and the mutational status of the samples

with non-impactful TP53 mutations was determined by the fully

trained RF (Supplementary Table S7). In most mutation groups,

many of the samples were assigned to the wild-type category as

expected, whereas 30 out of 38 (80%) of the silent mutations were

categorized as p53 mutant. All these silent mutations have been

previously reported in patients with cancer, Li-Fraumeni syndrome,

or other conditions related to cancer based on the NCBI ClinVar

database (Table 1) (Landrum et al., 2018). The c.375G>T,
c.375G>A, and c.375G>C (p.T125T) mutations occur at the last

nucleotide of exon 4 and were shown to disrupt the TP53 mRNA

splicing either through molecular studies or splice site predictive

tools (NM_000546, 2379; NM_000546, 1778; NM_000546a). The

c.672G>A (p.E224E) mutation occurs at the last nucleotide of exon

5 and was shown to lead to aberrant mRNA splicing

(NM_000546b). The c.993G>A (p.Q331Q) mutation is located at

the last nucleotide of exon 8 and is predicted to affect the normal

mRNA splicing (NM_000546, 2886). Supek et al. have also

demonstrated that p. T125T, p. E224E, and p. Q331Q mutations

are enriched in TP53 and suggested that they have a functional role

in cancer (Supek et al., 2014).

The RNA-seq data confirms that the silent mutations which

occur at the end of exons (p.T125T, p. E224E, and p. Q331Q) affect

the mRNA splicing in these samples (Figure 3 and Supplementary

Figure S11). Introns 4, 5, and 8 were not successfully spliced out in

samples bearing p. T125T, p. E224E, and p. Q331Q mutations

respectively. The only exception to the association between these

silent mutations and intron retention was for TCGA-CR-7401-

01 where the p. E224Emutation did not appear in the RNA-seq data

and splicing appeared normal (Supplementary Figure S11C).With a

VAF of 0.14, it may likely be subclonal and the expression not

detected. The RNA-seq data of the sample with p. A69A appeared

indistinguishable from the other lung squamous cell carcinoma

sample with wild-type p53 (Supplementary Figure S11E). This is

consistent with its classification in ClinVar as likely benign

(NM_000546, 2198). Further investigation is needed to

understand why this sample was assigned to the p53 mutant

category by the algorithm.

Treatment efficacy in patients with
mutated and wild-type p53

We sought to explore whether TP53 mutation status was

predictive of therapy response for patients within the POG cohort

for 29 drug groups (Supplementary Table S8). A longer time on

therapy was interpreted to be indicative of ongoing clinical benefit for

the patients (Pleasance et al., 2020). Time on therapy was more

strongly associated with TP53 status predicted by the RF than with

recorded TP53 mutation status for platinum therapies (Bonferroni-

adjusted pvalue 0.001 vs. 0.027) and taxanes (0.041 vs. 0.288), with

longer duration in predicted TP53-mutant cases (Figure 4). The

majority of these therapies (94% of platinums and 77% of taxanes)

were received in combination with other drugs. The reverse

association is true for the drug group Epothilones (represented

only by the drug eribulin), where the recorded TP53 mutation

status was more strongly associated with time on therapy

(Bonferroni-adjusted p-value 0.138 vs. 0.014), with longer
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treatment duration in predicted TP53-wild-type cases (Figure 4). For

the remaining drug categories, the classification of data points by the

recorded TP53 status and the RF predictions were statistically similar

(Supplementary Figure S12).

Discussion

We developed a RF model derived from tumor transcriptomes

which can successfully classify primary andmetastatic tumor samples

based on TP53 aberrations. We hypothesize that a specific

transcriptional signature is associated with the loss of functional

p53 withinmutated tumors regardless of their type or tissue of origin

since the algorithm stratified 88%of themerged set samples correctly,

and the combination of different cancer types as well as the inclusion

of both primary and metastatic sets during training enhanced the

performance of the model. The TCGA primary and POGmetastatic

sets were combined for training to discover potential differences in

p53 biology and the cellular pathways associated with this

transcription factor between the two sets, however, the results

from the merged set showed that the p53 inactivation signature is

universal across all tumors. We used this p53 transcriptional

signature to identify the genes with core roles in p53 processes,

determine the functional relevance of silent mutations, and better

predict response to treatment.

The choice of the RF algorithm for this work is due to its ability

to find complicated patterns in data and improve classification

with less overfitting compared to other models (Breiman, 2001;

Khoshgoftaar et al., 2013; Maurya et al., 2021). RFs have also been

shown to be robust to noise and performbetter on imbalanced data

sets (Breiman, 2001; Khoshgoftaar et al., 2007; Khoshgoftaar et al.,

2013). Even when including highly imbalanced cohorts, the RF

model had better performance metrics than the published

XGBoost model used to classify p53 pathway activity (Zhang

et al., 2021). The RF could additionally identify samples with

germline TP53 mutations and samples with silent mutations that

affect themRNA splicing. These findings confirm the existence of a

p53 transcriptional signature and the power of the RF algorithm to

detect this signature. The RF, combined with drug treatment data,

revealed that the presence of the mutant TP53 signature was

associated with a longer time on therapy for platinum and

taxane therapies. It is important to highlight that most patients

in the POG cohort received combination therapies, and treatment

effectiveness has been shown to be affected by the mode of therapy

(Murray and Mirzayans, 2020; Shu et al., 2022). Moreover, our

treatment data set was relatively small, so further work will be

needed to confirm the treatment efficacy results presented here.

Themajority of significant genes in the classification found in this

work have known links with p53 function. Based on this strong

association, we speculate that many of the other significant transcripts

possess an unappreciated role in p53 biology; these include protein

coding genes GPSM2, OR4N2, CTSL2, SPERT, and RPE65;

pseudogenes RP11-611O2.3, OR4K6P and AC004967.8; long non-

coding RNAs (lncRNAs) RP11-611O2.5, LINC00511, AC068057.1,

RP11-385J1.2, and RP11-305N23.1. There is existing evidence for

roles in tumor biology for many of these genes. GPSM2 has a role in

TABLE 1 Silent mutations classified as p53 mutant, the number of samples containing these mutations, and the reported consequences and
interpretation of them based on ClinVar database (nucleotide variations with * are not present in general population based on ClinVar evidence).

Nucleotide
variation

Amino
acid
variation

Number
of
samples

Exon location Disease ClinVar
pathogenicity

ClinVar record

c.375G>T* p.T125T 20 Last nucleotide of
exon 4

Li-Fraumeni syndrome Likely pathogenic VCV000237948.3
(NM_000546, 2379)

c.375G>A* p.T125T 3 Last nucleotide of
exon 4

Li-Fraumeni syndrome Pathogenic VCV000177825.18
(NM_000546, 1778)Li-Fraumeni-like/Chompret

criteria

Rhabdomyosarcoma

Breast and/or ovarian cancer

Malignant tumour of prostate

c.375G>C p.T125T 1 Last nucleotide of
exon 4

Ependymoma Likely pathogenic VCV000480746.3
(NM_000546a)Early-onset breast cancer

c.672G>A* p.E224E 3 Last nucleotide of
exon 5

Li-Fraumeni syndrome Pathogenic/Likely
pathogenic

VCV000080709.6
(NM_000546b)Chompret criteria

c.993G>A* p.Q331Q 2 Last nucleotide of
exon 8

Adrenocortical carcinoma Likely pathogenic VCV000428868.7
(NM_000546, 2886)Suspected Li-Fraumeni

syndrome

c.207T>C p.A69A 1 Exon 4 Li-Fraumeni syndrome Likely benign VCV000219841.7
(NM_000546, 2198)Hereditary cancer-predisposing

syndromes
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breast cancer cell division and promotes tumor proliferation and

metastasis in hepatic cellular cancer (Blumer et al., 2006; Fukukawa

et al., 2010; He et al., 2017). Additionally, it has been shown that

GPSM2plays an important role inmitosis (Fukukawa et al., 2010) and

our GSEA showed that mitosis and cell division pathways are among

the top pathways found to be significant in classification. OR4N2 was

shown to be mutated on at least two sites in epithelial ovarian cancers

(Zhang et al., 2019). OR4N2 encodes a G protein-coupled receptor

and GPSM2 participates in activation of G proteins (Blumer et al.,

2006; Maßberg and Hatt, 2018). The p53 signaling pathway, which is

the eighth important pathway in our classification, contains several G

protein-coupled interactions which highlights the importance of these

FIGURE 3
RNA-seq data of lung adenocarcinoma (LUAD) samples with p53 silent mutations at threonine 125 with specific nucleotidemodification of G>T.
The last two tracks are from LUAD samples with wild-type p53 copies.
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genes in p53 function (Solyakov et al., 2009). CTSL2 was

demonstrated to be highly expressed in various human cancers

and was speculated to be associated with metastasis (Santamaría

et al., 1998; Liu et al., 2004; Sun et al., 2016). Knockdown of SPERT

was shown to lead to tumor growth suppression and apoptosis (Zheng

and Chen, 2018). RPE65 was demonstrated to be highly

downregulated in melanoma and squamous cell carcinoma of skin

(Hinterhuber et al., 2005; Hassel et al., 2013). We also observed that

RP11-611O2.3 and RP11-611O2.5 are located at the 3’ end of the

MDM2 gene and their low expression in the p53 mutant

tumors is consistent with the observed low MDM2 expression in

such tumors.

TP53 functions as a homo-tetramer and the inclusion of mutant

protein products provides the mechanism by which p53mutants can

function in a dominant negative manner (Ko and Prives, 1996; de

Vries et al., 2002; Donehower et al., 2019; Thomas et al., 2022). For

tumor types where the class size was sufficient to allow robust

training, over 90% of tumors exhibiting a strong

p53 transcriptional signature with a likelihood of >0.75 were

found to have a corresponding TP53 mutation (95, 96, 97, and

91% of tumors respectively for breast invasive carcinoma, colon

adenocarcinoma, brain lower grade glioma and lung

adenocarcinoma). This indicates that there are no other gene

mutations that can generate this signature at a high frequency

even though mutations in other genes within the same pathway

as TP53might have been expected to generate the same DNA repair

defect phenotype and transcriptional signature. This further confirms

the unique role of p53 as a key contributor to human cancer.

FIGURE 4
The number of days on platinum therapies, taxanes, and epothilones divided by TP53 mutation status and the predicted status by the random
forest (the p-values are found in a Mann-Whitney-Wilcoxon two-sided test with Bonferroni correction; p-value annotation guide: ns: 5.00e-02 <
p ≤ 1.00, *: 1.00e-02 < p ≤ 5.00e-2, **: 1.00e-03 < p ≤ 1.00e-02). (A) The boxplots of log10 of the number of days on platinum and taxanes; the
difference between p53 wild-type andmutant sets is statistically more significant when data points are divided by the random forest predictions
(blue) thanwhen they are divided by the true p53 status (red). (B) The boxplots of log10 of the number of days on epothilones (represented only by the
drug eribulin); the difference between p53 wild-type and mutant sets is statistically more significant when data points are divided by the true
p53 status (red) than when they are divided by the random forest predictions (blue).
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The use of ML in this work led to the discovery of complicated

patterns in the transcriptome that otherwise could not be possible to

detect. ML approaches were shown to have the ability to detect

complex relationships in a fast and accurate manner in many

different areas of omics sciences (Wu and Wang, 2018; Smith

et al., 2020; Reel et al., 2021). These algorithms are constantly

being improved and can be easily automated. Furthermore, RF

models have the capability to distinguish different roles that genes

might play in different cells by utilizing them at different depths of

decision trees. It has been demonstrated that some genes might play

different roles based on the cell type or the biological context. For

example, it has been postulated that the function ofMELKmight be

context dependent and can positively or negatively regulate p53 in

different cell types (Seong and Ha, 2012; Gu et al., 2013; Ganguly

et al., 2015). RF models can capture such context-dependent

relationships since they can use the same gene at different depths

of decision trees with different thresholds to split the samples.

In conclusion, we have successfully showed that a RF model can

classify tumor samples based on TP53 status regardless of their type

or tissue of origin using expression data alone. The genes contributing

to the signature provide insight to p53 biology, and the use of this

signature for classification has the potential to aid in treatment

management and identification of the patients who can benefit

from therapies related to TP53 status.
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