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Abstract: Fusarium wilt caused by Fusarium oxysporum f.sp. cubense (Foc) is one of the most
destructive diseases for banana. For their risk assessment and hazard characterization, it is vital to
quickly determine the virulence of Foc isolates. However, this usually takes weeks or months using
banana plant assays, which demands a better approach to speed up the process with reliable results.
Foc produces various mycotoxins, such as fusaric acid (FSA), beauvericin (BEA), and enniatins (ENs)
to facilitate their infection. In this study, we developed a linear regression model to predict Foc
virulence using the production levels of the three mycotoxins. We collected data of 40 Foc isolates
from 20 vegetative compatibility groups (VCGs), including their mycotoxin profiles (LC-MS) and their
plant disease index (PDI) values on Pisang Awak plantlets in greenhouse. A linear regression model
was trained from the collected data using FSA, BEA and ENs as predictor variables and PDI values as
the response variable. Linearity test statistics showed this model meets all linearity assumptions.
We used all data to predict PDI with high fitness of the model (coefficient of determination (R2 = 0.906)
and adjust coefficient (R2

adj = 0.898)) indicating a strong predictive power of the model. In summary,
we developed a linear regression model useful for the prediction of Foc virulence on banana plants
from the quantification of mycotoxins in Foc strains, which will facilitate quick determination of
virulence in newly isolated Foc emerging Fusarium wilt of banana epidemics threatening banana
plantations worldwide.

Keywords: Fusarium oxysporum f.sp. cubense; Fusarium wilt of banana; mycotoxin; prediction model

Key Contribution: A linear regression model was developed which is useful for the prediction of
Foc virulence on banana plants from the quantification of mycotoxins in Foc strains. The model will
facilitate the quick determination of virulence in newly isolated Foc during emerging Fusarium wilt
of banana epidemics threatening banana plantations worldwide.
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1. Introduction

Fusarium oxysporum, a major pathogen of many important crops worldwide, causes vascular wilt
diseases in over 150 plant species [1,2]. Among which, Fusarium wilt of banana, caused by F. oxysporum
f. sp. cubense (Foc), now prevalent in all banana growing regions, is considered the most destructive
disease of banana [3]. Thousands of hectares of plantations have been devastated worldwide and
serious threats have been posed to multi-billion dollar industry and to the stability of millions of
farmers [4–6]. For instance, it was reported that an annual loss of more than 138 million dollars to the
banana industry was caused due to Fusarium wilt in Australia alone [7].

As a typical soil-borne pathogen that produces chlamydospores as a resting propagule, Foc can
persist in soil for a long time before infecting once it perceives the cues from banana roots [8,9].
The control of Fusarium wilt of banana relies on integrated strategies including growing resistant
banana varieties, bio-control agents and crops rotations [8,10,11]. No fungicide is currently available to
efficiently control the disease once plants are infected [12]. A lack of effective resistant plant cultivars
and the absence of fungicides with high activity make the disease control extremely challenging.
Therefore, a quick and reliable determination of pathogen virulence and disease severity is particularly
important to differentiate high virulence isolates from mild or avirulent ones, which is critical to inform
growers in disease management. With an urgent need to know the disease circumstances in real time or
in advance, much efforts were invested to develop disease prediction models [13]. However, until now,
there is still no model that can predict the occurrence and/or virulence of Fusarium wilt of banana
precisely resulting from sampling bias, quality of occurrence data [14].

Research into the mechanisms of Fusarium pathogenicity has led to the identification and
characterization of several secondary metabolites such as mycotoxins that contribute to disease
progression in various plant diseases [15]. Fusarium species produce an extraordinary diversity of
biologically active mycotoxins during the infection process [15]. Mycotoxin is one of the best studied
virulence factors of phytopathogenic fungi [16]. Fusaric acid (FSA), beauvericin (BEA) and enniatins
(ENs) were identified in Foc to contribute to pathogenicity during infection of host plants [17–21].
FSA is a non-host-specific toxin produced by all Fusarium species and plays a direct role in pathogenesis
activity by disturbing the metabolism of the infected plant, leading to the inhibition of defensive
enzymes and the reduction of cell viability of the host plants [22–25]. For Fusarium wilt of banana,
FSA plays a critical role in accelerating the development of this disease by acting as a phytotoxin through
disturbing the leaf water balance and nitrogen metabolism in the host banana plants [18,21]. BEA and
ENs are structurally-related cyclic hexadepsipeptides belonging to the enniatin antibiotic family [26,27].
They are biosynthesized by more than 20 Fusarium species with a wide variety of biological properties
such as insecticidal, antimicrobial, antiviral activities in vitro [28,29] The phytotoxic activities of BEA
and ENs have been identified in different kinds of crops by inducing ascorbate system imbalance,
oxidative stress [30], and depolarized electric potential [31,32]. Therefore, each of these mycotoxins
is positively associated with fungal virulence. The disease severity is usually positively related to
mycotoxin levels. It has been widely accepted that mycotoxins were produced simultaneously with
fungal growth, and the rate of production is proportional to its growth rate. Several studies have already
reported the modelling approach with mycotoxins in winter to predict fungal growth in different crops.
For example, mycotoxins such as deoxynivalenol, zearalenone or aflatoxins were used to predict the
Fusarium head blight in winter wheat [33] and Aspergillus flavus and Aspergillus parasiticus in black
peppercorns [34]. Taken together, the characterization and quantification of the three mycotoxins could
be useful for the prediction of fungal virulence, a major contributor to disease severity.

In this study, we aim to develop a statistical model to reliably predict the virulence of Foc isolates
based on the production of three myctoxins, FSA, BEA and ENs. We first characterized and quantified
in vitro mycotoxin production of 40 different strains of Foc. Next, we developed a linear regression
model using mycotoxins (FSA, BEA and ENs) production as predictor variables and disease index
as response variable. Lastly, we validated the predictive performance of the model by applying the
trained model on new datasets.
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2. Results and Discussion

2.1. Mycotoxin Quantified in Foc Isolates of Different VCGs

The production of three mycotoxins, BEA, FSA and ENs is substantial and could be detected in
the Foc strains of 20 VCGs investigated in this study (Table 1). FSA production of the 40 isolates ranged
from 1.30 ± 0.27 to 189.35 ± 9.76 µg/g. BEA production of the 40 isolates ranged from 1.38 ± 0.34 to
90.78 ± 9.22 µg/g. ENs production of the 40 isolates ranged from 0.58 ± 0.14 to 188.45 ± 28.70 µg/g.
The mycotoxins produced by Foc play vital roles in the pathogenic process and show high frequencies
of occurrence in food and feed. FSA is produced by the genus Fusarium and was reported to be detected
in 85% of the swine feed samples with the highest concentration of 136 mg/kg [35]. It was also reported
to increase the sensitivity of banana leaves and pseudostems to Foc TR4 invasion and acts at the early
stage of the disease development before the appearance of the fungal hyphae in the infected tissues [36].
For BEA, the maximum reported concentrations for BEA in grains and in cereal-based food were
6400 and 844 µg/kg, respectively [37]. Also, ENs production variability in vitro was observed within a
F. avenaceum population isolated from different hosts [38]. Our results are, in general, in agreement with
other recently published studies, confirming that even if the structure of the two types of mycotoxins
was similar, ENs contamination levels were considerably higher than BEA ones [39]. Likewise, a survey
conducted on Italian cereal products and multicereal food showed that the maximum contamination
levels detected were 1100 mg/kg for ENs and 70 mg/kg for BEA [40,41]. In conclusion, the range in
these three mycotoxins production that we observed in our 40 isolates samples has shown to vary
widely. These results coincide with those reported in literature which also showed that the ability of
the different strains from different Fusarium species to produce mycotoxins varied widely [42]. It is
reported that the viability of banana protoplasts was reduced to less than 20% after treatment with
BEA at concentrations of 50 and 200 mM for 48 h and banana pseudostems treated with FSA and BEA
became eroded in vitro in a concentration dependent manner [19]. Besides, simultaneous occurrence of
BEA, FSA and ENs tested in our study is in agreement with other studies reporting co-contaminations
of different mycotoxins [42–44]. For example, metabolites FSA, BEA, fumonisin (FB1) and moniliformin
(MON) were isolated and quantified from rice plants infected with Fusarium proliferatum and among
the four fungal metabolites, the productions of MON and FSA were found to have positive relationship
with bakanae disease symptoms development [44]. Therefore, the pathogenicity of Foc may not be
attributed to a single mycotoxin, but likely was a result of a synergy of several mycotoxins. Mycotoxins
play significant roles in virulence, development, and overall lifestyle of the fungal pathogen. A closer
investigation of the mycotoxin biology will give some practical benefits like understanding the nature
of plant resistance to fungal diseases and will also be essential for the sustainable control of this
important plant pathogen group [45].
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Table 1. Fusarium oxysporum f. sp. Cubense isolates used in this study and their mycotoxin production
in vitro and their ability to cause diseases in Pisang banana plantlets.

Strains a VCGs Race Provider
Fusaric Acid

Concentration
(µg/g) b,c

Beauvericin
Concentration

(µg/g) b,c

Enniatins
Concentration

(µg/g) b,c

Disease
Index

GD-14 0120 STR4 Chunyu Li 164.98 ± 2.23B 24.51 ± 2.53F 2.93 ± 0.73L 3.50
GD-42 0120 STR4 Chunyu Li 17.66 ± 3.66MNO 15.56 ± 3.56HJ 3.41 ± 1.17KL 1.50

GM 0121 TR4 Chunyu Li 189.35 ± 9.76A 2.58 ± 1.41JK 4.47 ± 1.30JKL 3.00
F9130-2 0121 TR4 Randy C. Ploetz 1.94 ± 0.54P 2.43 ± 1.11JK 188.45 ±28.70A 2.73
CAV443 01210 STR4 Altus Viljoen 78.20 ± 0.46HIJ 45.18 ± 4.34D 2.37 ± 0.41L 2.53
CAV632 01210 STR4 Altus Viljoen 135.44 ± 11.03C 2.35 ± 0.57JK 14.93 ± 4.80IJ 2.30
SH3142 01211 STR4 Randy C. Ploetz 23.43 ± 1.28MN 17.27 ± 1.89GH 41.54 ± 4.21FG 2.53

SH3142-3 01211 STR4 Randy C. Ploetz 11.70 ± 1.85OP 24.27 ± 1.96F 37.11 ± 2.28G 2.37
STTNZ1 01212 1 Randy C. Ploetz 1.30 ± 0.27P 2.26 ± 0.76JK 72.44 ± 14.16D 1.80
STNP2-3 01212 1 Randy C. Ploetz 1.42 ± 0.30P 3.53 ± 0.66JK 96.45 ± 6.43B 2.03

GD-06 1213 TR4 Chunyu Li 2.85 ± 1.63P 2.41 ± 1.44JK 0.58 ± 0.14L 1.07
FJ-11 1213 TR4 Chunyu Li 4.73 ± 1.85P 3.82 ± 1.25JK 3.90 ± 1.24KL 1.13
MW2 01214 1 Randy C. Ploetz 118.77 ± 5.78D 1.84 ± 0.26K 2.38 ± 0.37L 2.60

MW40 01214 1 Randy C. Ploetz 86.54 ± 2.15GH 2.40 ± 1.44JK 4.97 ± 0.75JKL 2.30
01215-M 01215 STR4 Chunyu Li 103.44 ± 4.47E 1.38 ± 0.34K 1.14 ± 0.46L 2.13
1215-1 01215 STR4 Chunyu Li 118.66 ± 7.20D 3.40 ± 0.16JK 0.91 ± 0.28L 2.17
GD-13 01216 TR4 Chunyu Li 75.13 ± 10.79IJ 22.11 ± 1.23FG 8.36 ± 3.65JKL 2.83
FJ-12 01216 TR4 Chunyu Li 95.40 ± 5.40EFG 66.21 ± 17.06B 20.33 ± 3.02HI 3.50

MAL10 01217 1 Randy C. Ploetz 84.82 ± 2.82GH 90.78 ± 9.22A 53.67 ± 2.58E 4.53
MAL6 01217 1 Randy C. Ploetz 89.47 ± 3.13FGH 87.70 ± 3.54A 71.44 ± 6.64D 4.80
GX-04 01218 1 Randy C. Ploetz 2.14 ± 1.15P 1.55 ± 0.65K 3.67 ± 6.64KL 0.47

STSUM3 01218 1 Randy C. Ploetz 9.58 ± 0.80OP 2.37 ± 0.22JK 0.95 ± 0.40L 1.37
INDO25-1 01219 STR4 Randy C. Ploetz 13.42 ± 2.07NOP 4.97 ± 0.80JK 6.19 ± 0.78JKL 1.63
INDO25-2 01219 STR4 Randy C. Ploetz 27.66 ± 0.25M 6.85 ± 0.50JK 1.22 ± 0.56L 2.07

PW6 0122 STR4 Randy C. Ploetz 72.80 ± 7.14J 31.15 ± 3.14E 6.12 ± 1.16JKL 2.93
PW7 0122 STR4 Randy C. Ploetz 88.98 ± 4.34FGH 43.49 ± 2.22D 7.37 ± 1.17JKL 2.87

GD-15 01220 1 Chunyu Li 1.68 ± 0.50P 2.47 ± 1.19JK 3.58 ± 0.37KL 0.43
HN-03 01220 1 Chunyu Li 2.87 ± 0.47P 7.52 ± 1.75JK 6.97 ± 0.82JKL 1.13
HN-11 0123 1 Chunyu Li 119.99 ± 8.50D 31.88 ± 9.10E 1.35 ± 0.22L 3.43
GX-02 0123 1 Chunyu Li 173.00 ± 26.15B 22.86 ± 1.84FG 4.14 ± 1.15JKL 3.50
GD-37 0124 1 Chunyu Li 5.63 ± 0.41P 61.44 ± 0.78B 26.70 ± 1.29H 2.37
HN-13 0124 1 Chunyu Li 11.66 ± 1.64OP 2.32 ± 0.62JK 2.53 ± 0.48L 1.53

CAV941 0125 1 Altus Viljoen 119.55 ± 2.14D 2.84 ± 0.62JK 10.50 ± 1.95IJKL 3.23
CAV125 0125 1 Altus Viljoen 100.28 ± 5.39EF 9.59 ± 0.31IJ 1.22 ± 0.19L 3.00
GD-18 0126 STR4 Chunyu Li 4.29 ± 0.59P 54.43 ± 1.46C 27.48 ± 2.52H 2.03
GD-26 0126 STR4 Chunyu Li 92.61 ± 3.75EFG 4.20 ± 0.84JK 47.87 ± 2.50EF 2.43
GX-03 0128 1 Cavendish 90.06 ± 13.47FG 4.69 ± 0.24JK 4.59 ± 1.26JKL 2.33

CAV 567 0128 1 Altus Viljoen 4.56 ± 0.48P 1.67 ± 0.43K 67.18 ± 2.89D 1.97
CAV186 0129 STR4 Altus Viljoen 46.50 ± 1.01L 2.67 ± 1.33JK 85.79 ± 3.87C 3.47
CAV 438 0129 STR4 Altus Viljoen 58.17 ± 1.67K 47.67 ± 4.68D 14.34 ± 1.27IJK 3.03

Control 1 d 0 0 0 0
Control 2 e 0 0 0 0

a The Foc isolates were maintained at Agricultural Culture Collection of China (ACCC); b Data are expressed as
mean ± standard error (mean ± SEM); c Mean values in the same column followed by the different capital letter are
significantly different by Fisher’s protected least significant difference test (p < 0.05); d Control 1 is sterilized PDA
medium; e Control 2 is sterilized deionized water.

2.2. Developing a Linear Regression Model for Prediction Foc virulence on Banana

All three mycotoxins have phytotoxic activity and all tested isolates proved to be producers and
this made us to suspect their involvement in the expression of symptoms on banana plant. Therefore,
the plant disease index (PDI) values of the same isolates were determined in Pisang Awak banana
plantlets along with the mycotoxin productions being quantified in the isolates. As shown in Table 1,
all the tested Foc isolates were able to infect banana plants and cause typical symptoms of Fusarium wilt
of banana (Figure 1). Data showed that the disease severities and mycotoxin levels strongly differed
between the Foc isolates. Xu suggested that there is a significant relationship between mycotoxins
and the amount of FHB pathogen F. graminearum [46]. Likewise, Isolates MAL6, MAL10 and FJ-12
were highly virulent and caused the highest disease virulence to Pisang Awak with the PDI values
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of 4.80, 4.53 and 3.50. Isolates GD-15, GX-04 and GD-06 exhibited the lowest disease virulence on
Cavendish banana plants with the PDI value of 0.43, 0.47 and 1.07, respectively. A good correlation
between the PDI value and mycotoxin contents was found, that is, when a plant is severely infected,
it is also heavily contaminated with mycotoxins. Thus, the in vitro assay is a useful tool to predict the
possible mycotoxin contamination under field and greenhouse conditions [47]. What about the other
way around? Could mycotoxin production levels of a Foc isolate be used to predict the virulence of the
pathogen? A linear model for the prediction of disease virulence was developed in R programming
language [48] based on mycotoxin and disease index (PDI) measurement of Foc isolates (Table 1).
In this model, PDI value reflective of fungal virulence under controlled condition in lab was used
as response variable, and the three mycotoxins FSA, BEA and ENs were used as predictor variables
(Figure 2). The graphical residual analysis was performed, and it was found that the distribution
between PDI and FSA, instead of BEA and ENs, are closer to logarithmic rather than linear distribution
(Supplementary Figure S1). Hence, in order to improve calibration curve fit, a logarithmic conversion
of the FSA variable was employed in this model (Figure 2B). The log transformation would decrease
the distance between the lowest and highest point in the calibration range, thus leading to a more
compressed regression line [49].
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In building the model, we also consider the importance of mycotoxin toxicity in addition to its
concentration, since it is not uncommon that a highly toxic compound is not necessarily produced in a
high amount in vitro or in planta. Therefore, in order to generate a robust calibration model, the banana
cell suspension EC50 (60 µM for FSA, 15 µM for BEA and 20 µM for ENs) was taken into account in the
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model by adjusting each variable with the EC50: log (CFSA/EC50FSA), CBEA/EC50BEA and CENs/EC50ENs.
The resulting equation of the linear model is as follows:

PDI = 0.23260×
CBEA

EC50BEA
+ 0.45392× log

(
CFSA

EC50FSA

)
+ 0.24794×

CENs

EC50ENs
+ 2.19782 (1)

The EC50 values indicated that all three kinds mycotoxins of were toxic to banana protoplast. This is in
line with previous reports in which BEA caused white and dried up in the pseudostems, and black
eroded upper tissue of banana plants, and at the same time, BEA is significantly more toxic than
FSA [19]. It also confirmed that fungal metabolites possess vital role in disease development [18,19,21].
Moreover, mycotoxins are simultaneously produced by Foc in banana, and it is important that their
additive and synergistic effects in the pathogenic process need to be further investigated in future.

2.3. Evaluating the Model Performance in PDI Prediction

Among the statistical models, linear regression models have shown promising results for
its reasonable accuracy and relatively simple implementation [50]. A robust regression model is
the foundation for accurate and reproducible quantification over the whole calibration range [49].
The coefficient of determination (R2) is one of the most important evaluation criteria of the quality
for fiting the linear model to a given set of observed data. All the three variables had high coefficient
(R2 = 0.9029) and adjusted coefficient (R2

adj = 0.8948), suggesting that the model explains more than
89.48% of the variability of the observations. A p-value of 2.2× 10−16 for F-statistic implies that the linear
relationship is statistically significant, and the model fits the data significantly better than the mean.
Besides, a global test of the linear model assumption was performed by using the gvlma tool (package
in R) to verify all the statistical constrains required by the linear model, including assumptions on
skewness and kurtosis of the residual distribution, link function (linear model statistically significant)
and heteroscedasticity (the variance of the residuals is dependent on the independent variable) [51].
The results from the global test (gvlma) confirm that the linear model assumptions are all satisfied
with p value higher than > 0.05 (Table 2).

Table 2. Summary of linear model hypothesis test.

Test Value p-Value Decision

Global Stat 1.3483097 0.8531 Assumptions met
Skewness 0.0004423 0.9832 Assumptions met
Kurtosis 0.6439081 0.4223 Assumptions met

Link Function 0.5084728 0.4758 Assumptions met
Heteroscedasticity 0.1954865 0.6584 Assumptions met

Quantile-quantile (Q-Q) plot is also used to evaluate the normal assumption of the residuals
which compares the observed residual distribution to theoretical one by plotting their quantile against
each other [52,53]. As suggested in Figure 3A, the error terms can generally be considered as normally
distributed and the absolute studentized residual plot (Figure 3B) showed that the differences between
predicted and observed data in initial datasets are in a range of −2–2, except one point, indicating that
all data follow a normal distribution.
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Finally, to evaluate the performance of this linear model in prediction, it was used to predict the
PDI using an input of new dataset collected from Pathogenicity assay on Pisang Awak cv ‘Guangfen
#1’ (ABB) banana plantlets, which include both mycotoxin contents in the diseased plantlets and the
PDI values. As shown in Table 3, the differences between predicted and observed PDI are in a range of
−0.3–0.6 which proves that our model performed well.

Table 3. Additional dataset used as input for predicting PDI with the linear model.

Strains
FSA

Concentration
(µg/g) a

BEA
Concentration

(µg/g) a

ENs
Concentration

(µg/g) a
Disease Index Predicted

Disease Index

GD30 4.65 ± 0.38 3.83 ± 0.19 2.22 ± 0.30 0.57 1.13
GD19 56.12 ± 4.33 4.46 ± 1.22 1.46 ± 0.45 2.03 2.26
GD20 5.49 ± 0.92 1.75 ± 0.55 2.16 ± 0.38 0.73 1.05
GD05 3.55 ± 0.53 2.62 ± 0.12 2.27 ± 0.26 0.60 0.94
GX01 100.57 ± 1.80 17.68 ± 1.98 2.59 ± 0.56 3.00 2.72
HN04 11.72 ± 1.71 6.48 ± 0.56 1.63 ± 0.45 1.57 1.62
FJ10 13.39 ± 1.29 4.64 ± 0.46 4.49 ± 0.55 1.20 1.60
YN6 9.14 ± 0.67 4.72 ± 0.58 2.37 ± 0.27 1.37 1.43

Control b 0 0 0 0 0
a Data are expressed as mean ± standard error (mean ± SEM); b The control in this experiment was the healthy
Pisang Awak cv ‘Guangfen #1’ (ABB) banana plantlets treated with sterilized deionized water.

Certainly, this model also has uncertainties resulting from sampling bias and the data quality.
Due to the limited size of the data points used to fit the model, the obtained results are contextual.
Plant disease outcome is dependent on various factors such as pathogen virulence, host resistance,
environmental factors including temperature, humidity and microbiomes. Given such a complex nature
of plant disease development, it is extremely challenging to accurately predict the disease occurrence
and severity in field conditions. Our work does not attempt to predict plant disease epidemics
in the field, which requires a more sophisticated model of many variables, probably non-linear or
nonparametric nature. Instead, we focus on developing a simple yet powerful model allowing a quick
determination of fungal virulence in Foc, the causal agent of Fusarium wilt of banana, to facilitate the
risk assessment and help implementing disease control strategies. By taking the advantage of positive
correlation of mycotoxin production to disease index, we trained a linear regression model using
training data from 40 Foc isolates including mycotoxin and disease index measurement. Applying the
model to testing data demonstrates the predictive power of such model. Admittedly, the model is
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simple taking into account only three variables, and probably could be improved by incorporating
more variables such as fungal effectors, more mycotoxins etc. However, this would require additional
inputs such as quantification of more toxins or genotyping of the strains in more loci, a process that
would risk overfitting the model or slow down the report of prediction results. Therefore, the current
model gives a reliable prediction of Foc virulence in a short time within a couple of weeks. With a
better knowledge of the fungal virulence through experimental analysis of genes or genetic pathways,
it is conceivable that the model can be further improved to use factors so that it either requires even
less data collection time or gives higher accuracy of prediction.

3. Conclusions

In this study, the levels of mycotoxins were used to develop a model to predict fungal virulence,
which can be used as a tool for assessing the risk of newly isolated Foc strains from environment.
Fusarium wilt of banana epidemics are usually tightly linked to the Foc inoculum and its ability to
produce Foc mycotoxins. The results reported here extended our knowledge of suitable indicators of
Foc infection and mycotoxin production. The current model is quite simple and primitive, only the
production ability of three mycotoxins known to contribute to virulence in Foc is taken into account.
Nevertheless, this study provides preliminary information that might be useful for future risk analysis.
With more mycotoxins or effectors contributing to fungal virulence identified in the future, the model
can be improved by incorporating more variables representing these virulence factors. However,
we believe a predictive model is sorely needed now to help differentiate highly virulent Foc strains
from only mild or avirulent ones, so that risks of newly emerged Foc strains can be assessed, and quick
and timely actions can be taken for disease control.

4. Materials and Methods

4.1. Chemicals and Reagents

Analytical standards FSA, BEA and ENs with purities ≥97% were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Acetonitrile (ACN), methanol (MeOH), methanoic acid and other organic solvent
(chromatographic-grade) were obtained from Fisher Scientific (Fair Lawn, NJ, USA). Stock solutions of
these mycotoxins (1 mg/mL) were prepared in methanol and maintained at −20 ◦C. Final concentrations
of mycotoxins in the assay were achieved by their dilution in the culture medium and the final
concentration of methanol in the medium was 0.5% (v/v). Water was purified successively by a
Millipore Milli-Q system (Millipore, Bedford, MA, USA) with a conductivity < 18.2 MΩ.cm at 25 ◦C.

4.2. Fungal Strain and Plant Material

Foc monoconidial isolates (VCGs 0120–01220) used for the mycotoxin production in this study are
all maintained in PDA (potato dextrose agar medium, Guangdong Huankai Microbial SCI. & Tech.
Co. LTD., Guangzhou, China) with 15% glycerol at −80 ◦C at the Agricultural Culture Collection of
China (ACCC) and confirmed by pathogenicity tests on banana Baxi (Musa AAA Cavendish) and
Guangfen No.1 (Musa ABB Pisang Awak) (Table 1). The fungal strains were routinely inoculated
onto the center of 90 mm plates and were incubated at 28 ◦C for 7 days. These fresh cultures were
used to prepare inoculum for mycotoxin production analysis. Banana cultivars (Baxi (Musa AAA
Cavendish) and Guangfen No.1 (Musa ABB PisangAwak)) with 5–6 leaves used in the experiments
were provided by the Banana Tissue Culture Center, Institute of Fruit Tree Research, Guangdong
Academy of Agriculture Science.

4.3. Extraction of Mycotoxin Produced by Foc In Vitro

Foc isolates were inoculated onto PDA plates and cultured in the dark at 28 ◦C. After 15 days,
the mycelia were harvested, sonicated and the metabolites were extracted with methanol. The extracts
were analyzed by high performance liquid chromatography-tandem mass spectrometry (HPLC-ESI-MS;
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LCQDECA XP PLUS; Thermo Finnigan, Thermo Corp., Rockford, IL, USA). Detailed protocols for
chemical extraction, instrumental conditions, and quality assurance/quality control (QA/QC) were
provided in the Supplementary Materials. Mycotoxins used as standards included FSA, BEA, ENs.

4.4. Toxicity of Mycotoxin to Banana

Banana protoplasts were employed in this study to determine the toxic effects of mycotoxins
produced by Foc to banana. The banana protoplasts used in this study were obtained from embryogenic
cell suspensions (ECS) of the cultivar ‘Dongguan Dajiao’ (ABB) as described previously (Table S1) [19,54].
Brief protocols for the ECS initiation and maintenance are provided in Supplementary Materials.
The viable protoplasts were isolated from the ECS at a yield of 1.2 × 107 protoplasts/mL packed cell
volume (PCV) and suspended in 20 mL of pre-plasmolysis buffer (25 mM Tris–Mes, 0.6 M sorbitol,
0.5% BSA and 0.5% CaCl2, pH 7.4) and exposed to different concentrations of FSA, BEA and ENs (0, 2,
10, 20 50, 100 and 200 µM, n = 3). The toxicity effects of the three mycotoxins to banana protoplasts
were conducted after 3 days’ culture using the Alamar Blue assay according to manufacturers’
recommendations (Biotium, Hayward, CA, USA). Briefly, the reactions were performed in 96-well
plate (Costar, Cambridge, MA, USA) with 2 × 104 cells contained (in 200 µL culture medium) in each
well and 20 µL Alamar Blue (10% v/v) was added and the cells were further incubated for another 4 h
in an incubator at 37 ◦C. Then the fluorescence was measured (excitation 530 nm, emission 590 nm)
with a Spectra Max i3 plate reader (Molecular Devices, Sunnyvale, CA, USA). At least triplicate wells
were analyzed for each experiment.

4.5. Pathogenicity Assays

In order to study the relationship between mycotoxin biosynthesis and pathogenicity, 8 VCGs
(Table 1) were randomly selected to conduct the virulence assay on Pisang Awak cv ‘Guangfen #1’
(ABB) banana plantlets at the 5- to 6-leaf stage in the sterilized planting medium (six parts vermiculite,
two parts peat, and one part coconut coir) for pathogenicity studies. The plants were inoculated with
spore suspensions of the 8 VCGs at a concentration of 105 conidia/g sterilized planting medium and
all the inoculated plants were kept in a greenhouse with the temperature ranging from 25–28 ◦C and
the humidity was set at 40%, with the soil moisture maintained at about 60%. Observations on the
virulence of wilt disease on banana plantlets were scored after 30 days inoculation with a disease index
based on a 1–5 scale [55]. The percent disease index (PDI) was calculated as follows: Disease index =∑

(rating × number of plants rated/Total number of plants). And at the same time, a group with no Foc
treatment served as control. Treatments were replicated three times in completely randomized block
design with each replication consisted of 10 plantlets (20 g). Plant tissues were collected and subjected
to homogenization with the blender (Ultra-Turrax T18, IKA, Germany) for 3 min and subjected to
mycotoxin extraction per the methods described in Section 4.3.

4.6. Development and Validation of Prediction Model for Fusarium Wilt of Banana

A predictive linear model regarding the risk of Foc pathogenicity was developed using R
packages [48], gvlma [51] and car [56]. The contents of three mycotoxins (FSA, BEA and ENs) measured
in the 40 Foc strains and the PDI values obtained from pathogenicity assays were selected for the model
development (Table 1). A linearity test was used between each mycotoxin and PDI value to guarantee
the accuracy of the model. Since EC50 is an important index to assess the virulence, the ratio between
each mycotoxin concentration and its EC50 was used as predictor variables in the linear model and at
the same time the PDI value as response variable. The graphical residual analysis was performed for
each mycotoxin and logarithmic transformations were applied on FSA variable because the distribution
between FSA and PDI are closer to logarithmic rather than linear distribution. The model contains
the following general equation for the prediction of PDI of Fusarium wilt of banana is established as
follow:

y = a + b × log(CFSA/EC50FSA) + d × CBEA/EC50BEA + e × CENs/EC50ENs (2)
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where a, b, d, and e are the parameters to be estimated, and CFSA, CBEA and CENs stand for the
concentrations of FSA, BEA, and ENs. In addition, EC50FSA, EC50BEA, and EC50ENs stand for the
phytotoxicity of FSA, BEA, and ENs respectively.

4.7. Statistical Analysis and Data Processing

All statistical analyses of the data were performed in the statistical program package SPSS 20.0
(SPSS, Chicago, IL, USA). Data were initially verified for normality and homogeneity of variance
by using the Kolmogorov-Smirnov and Levene’s tests, respectively. All data were reported as
means ± standard error of the mean (SEM). Differences between the control and each exposure group
were evaluated by one-way analysis of variance (ANOVA) followed by Tukey’s test. If ANOVA
revealed significant effects of treatments, the data were subjected to Tukey’s post-hoc test for statistical
significance (p < 0.05).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/12/4/254/s1,
Table S1: The ingredient list for M1 and M2 medium, Figure S1: The component plus residual plots of each
independent variable. The more fitted the purple and blue dotted lines, the more linear. And if a plot is non-linear,
it means insufficient functional modeling of predictors and may do some transform.

Author Contributions: Conceptualization, C.S. and C.L.; methodology, C.S. and D.X.; software, H.W.; validation,
L.G. and S.L.; formal analysis, C.S., D.X., H.W.; investigation, L.G., H.W., S.L.; resources, L.G. and C.L.; data curation,
D.X.; writing-original draft preparation, D.X.; writing-review and editing, C.L. and L.G.; supervision, C.L. and
S.L.; project administration, G.Y.; funding acquisition, G.Y. and C.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by National Key Research and Development Program of China
(2018YFD1000307), R&D Projects in Key Areas of Guangdong Province (2019B020216001), Presidential Foundation
of the Guangdong Academy of Agricultural Sciences (202007), Guangdong Provincial Special Fund for Modern
Agriculture Industry Technology Innovation Teams and 948 Project of the Department of Agriculture (2011-G16).
Foundation of Director of Institute of Fruit Tree Research (201906), National Natural Science Foundation of China
(31701739).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Natalia, K.; Ma Gorzata, R.O.; Stanis, A.B. Diversity of laccase-coding genes in Fusarium oxysporum genomes.
Front. Microbiol. 2015, 6, 933.

2. Zheng, Z.; Zhang, Y.; Wu, X.; Yang, H.; Ma, L.; Zhou, M. FoMyo5 motor domain substitutions (Val 151 to Ala
and Ser 418 to Thr) cause natural resistance to fungicide phenamacril in Fusarium oxysporum. Pestic. Biochem.
Phys. 2018, 147, 119–126. [CrossRef] [PubMed]

3. Butler, D. Fungus threatens top banana. Nature 2013, 04, 195. [CrossRef] [PubMed]
4. Li, B.; Du, J.; Lan, C.; Liu, P.; Weng, Q.; Chen, Q. Development of a loop-mediated isothermal amplification

assay for rapid and sensitive detection of Fusarium oxysporum f. sp. cubense race 4. Eur. J. Plant Pathol. 2013,
135, 903–911. [CrossRef]

5. Ghag, S.B.; Shekhawat, U.K.S.; Ganapathi, T.R. Fusarium wilt of banana: Biology, epidemiology and
management. PANS Pest Artic. News Summ. 2015, 61, 250–263. [CrossRef]

6. Ploetz, R.C. Management of Fusarium wilt of banana: A review with special reference to tropical race 4.
Crop Prot. 2015, 73, 7–15. [CrossRef]

7. Cook, D.C.; Taylor, A.S.; Meldrum, R.A.; Drenth, A. Potential economic impact of Panama disease (tropical
race 4) on the Australian banana industry. J. Plant Dis. Prot. 2015, 122, 229–237. [CrossRef]

8. Momma, N.; Momma, M.; Kobara, Y. Biological soil disinfestation using ethanol: Effect on Fusarium oxysporum
f. sp. lycopersici and soil microorganisms. J. Gen. Plant Pathol. 2010, 76, 336–344. [CrossRef]

9. Guo, L.; Han, L.; Yang, L.; Zeng, H.; Fan, D.; Zhu, Y.; Feng, Y.; Wang, G.; Peng, C.; Jiang, X.; et al. Genome and
transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. cubense causing banana vascular
wilt disease. PLoS ONE 2015, 10, e117621. [CrossRef]

10. Alabouvette, C.; Olivain, C.; Migheli, Q.; Steinberg, C. Microbiological control of soil-borne phytopathogenic
fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol. 2009, 184, 529–544. [CrossRef]

http://www.mdpi.com/2072-6651/12/4/254/s1
http://dx.doi.org/10.1016/j.pestbp.2017.12.007
http://www.ncbi.nlm.nih.gov/pubmed/29933981
http://dx.doi.org/10.1038/504195a
http://www.ncbi.nlm.nih.gov/pubmed/24336262
http://dx.doi.org/10.1007/s10658-012-0136-9
http://dx.doi.org/10.1080/09670874.2015.1043972
http://dx.doi.org/10.1016/j.cropro.2015.01.007
http://dx.doi.org/10.1007/BF03356557
http://dx.doi.org/10.1007/s10327-010-0252-3
http://dx.doi.org/10.1371/journal.pone.0095543
http://dx.doi.org/10.1111/j.1469-8137.2009.03014.x


Toxins 2020, 12, 254 11 of 13

11. Wen, T.; Huang, X.; Zhang, J.; Zhu, T.; Meng, L.; Cai, Z. Effects of water regime, crop residues, and application
rates on control of Fusarium oxysporum f. sp. cubense. J. Environ. Sci. 2015, 1, 30–37. [CrossRef] [PubMed]

12. Dita, M.; Barquero, M.; Heck, D.; Mizubuti, E.S.G.; Staver, C.P. Fusarium Wilt of Banana: Current knowledge
on epidemiology and research needs toward sustainable disease management. Front. Plant Sci. 2018, 9, 1468.
[CrossRef] [PubMed]

13. Juroszek, P.; Von Tiedemann, A. Linking plant disease models to climate change scenarios to project future
risks of crop diseases: A review. J. Plant Dis. Prot. 2015, 122, 3–15. [CrossRef]

14. Salvacion, A.R.; Solpot, T.C.; Cumagun, C.J.R.; Pangga, I.B.; Magcale-Macandog, D.B.; Cruz, P.C.S.;
Saludes, R.B.; Aguilar, E.A. Exploring environmental determinants of Fusarium wilt occurrence on banana
in South Central Mindanao, Philippines. Hell. Plant Prot. J. 2019, 12, 78–90. [CrossRef]

15. Desjardins, A.E.; Proctor, R.H. Molecular biology of Fusarium mycotoxins. Int. J. Food Microbiol. 2007, 119,
47–50. [CrossRef]

16. Portal, N.; Soler, A.; Alphonsine, P.A.M.; Borras-Hidalgo, O.; Portieles, R.; Peña-Rodriguez, L.M.; Yanes, E.;
Herrera, L.; Solano, J.; Ribadeneira, C.; et al. Nonspecific toxins as components of a host-specific culture
filtrate from Fusarium oxysporum f. sp. cubense race 1. Plant Pathol. 2018, 67, 467–476. [CrossRef]

17. Jestoi, M. Emerging Fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin—A review.
Crit. Rev. Food Sci. 2008, 48, 21–49. [CrossRef]

18. Dong, X.; Ling, N.; Wang, M.; Shen, Q.; Guo, S. Fusaric acid is a crucial factor in the disturbance of leaf water
imbalance in Fusarium-infected banana plants. Plant Physiol. Biochem. 2012, 60, 171–179. [CrossRef]

19. Li, C.; Zuo, C.; Deng, G.; Kuang, R.; Yang, Q.; Hu, C.; Sheng, O.; Zhang, S.; Ma, L.; Wei, Y.; et al. Contamination
of bananas with beauvericin and fusaric acid produced by Fusarium oxysporum f. sp. cubense. PLoS ONE
2013, 8, e70226. [CrossRef]

20. Ding, Z.; Li, M.; Sun, F.; Xi, P.; Sun, L.; Zhang, L.; Jiang, Z. Mitogen-activated protein kinases are associated
with the regulation of physiological traits and virulence in Fusarium oxysporum f. sp. cubense. PLoS ONE
2015, 10, e122634. [CrossRef]

21. Ding, Z.; Yang, L.; Wang, G.; Guo, L.; Liu, L.; Wang, J.; Huang, J. Fusaric acid is a virulence factor of Fusarium
oxysporum f. sp. cubense on banana plantlets. Trop. Plant Pathol. 2018, 43, 297–305. [CrossRef]

22. Bouizgarne, B.; El-Maarouf-Bouteau, H.; Frankart, C.; Reboutier, D.; Madiona, K.; Pennarun, A.M.;
Monestiez, M.; Trouverie, J.; Amiar, Z.; Briand, J.; et al. Early physiological responses of arabidopsis
thaliana cells to fusaric acid: Toxic and signalling effects. New Phytol. 2006, 169, 209–218. [CrossRef]

23. Marrè, M.T.; Vergani, P.; Albergoni, F.G. Relationship between fusaric acid uptake and its binding to
cell structures by leaves of egeria densa and its toxic effects on membrane permeability and respiration.
Physiol. Mol. Plant Pathol. 1993, 42, 141–157. [CrossRef]

24. Kuzniak, E. Effects of fusaric acid on reactive oxygen species and antioxidants in tomato cell cultures.
J. Phytopathol. 2001, 149, 575–582. [CrossRef]

25. D’Alton, A.; Etherton, B. Effects of fusaric acid on tomato root hair membrane potentials and ATP levels.
Plant Physiol. 1984, 74, 39–42. [CrossRef] [PubMed]

26. Fraeyman, S.; Meyer, E.; Devreese, M.; Antonissen, G.; Demeyere, K.; Haesebrouck, F.; Croubels, S.
Comparative in vitro cytotoxicity of the emerging Fusarium mycotoxins beauvericin and enniatins to porcine
intestinal epithelial cells. Food Chem. Toxicol. 2018, 121, 566–572. [CrossRef]

27. Han, X.; Xu, W.; Zhang, J.; Xu, J.; Li, F. Natural occurrence of beauvericin and enniatins in corn- and
wheat-based samples harvested in 2017 collected from Shandong Province, China. Toxins 2019, 11, 9.
[CrossRef]

28. Sy-Cordero, A.A.; Pearce, C.J.; Oberlies, N.H. Revisiting the enniatins: A review of their isolation, biosynthesis,
structure determination and biological activities. J. Antibiot. 2012, 65, 541–549. [CrossRef]

29. Liuzzi, V.C.; Mirabelli, V.; Cimmarusti, M.T.; Haidukowski, M.; Leslie, J.F.; Logrieco, A.F.; Caliandro, R.;
Fanelli, F.; Mulè, G. Enniatin and beauvericin biosynthesis in Fusarium species: Production profiles and
structural determinant prediction. Toxins 2017, 9, 45. [CrossRef]

30. Paciolla, C.; Dipierro, S.; Dipierro, N.; Mulè, G.; Logrieco, A. The mycotoxins beauvericin and T-2 induce cell
death and alteration to the ascorbate metabolism in tomato protoplasts. Physiol. Mol. Plant Pathol. 2004, 65,
49–56. [CrossRef]

http://dx.doi.org/10.1016/j.jes.2014.11.007
http://www.ncbi.nlm.nih.gov/pubmed/25968255
http://dx.doi.org/10.3389/fpls.2018.01468
http://www.ncbi.nlm.nih.gov/pubmed/30405651
http://dx.doi.org/10.1007/BF03356525
http://dx.doi.org/10.2478/hppj-2019-0008
http://dx.doi.org/10.1016/j.ijfoodmicro.2007.07.024
http://dx.doi.org/10.1111/ppa.12736
http://dx.doi.org/10.1080/10408390601062021
http://dx.doi.org/10.1016/j.plaphy.2012.08.004
http://dx.doi.org/10.1371/journal.pone.0070226
http://dx.doi.org/10.1371/journal.pone.0122634
http://dx.doi.org/10.1007/s40858-018-0230-4
http://dx.doi.org/10.1111/j.1469-8137.2005.01561.x
http://dx.doi.org/10.1006/pmpp.1993.1012
http://dx.doi.org/10.1046/j.1439-0434.2001.00682.x
http://dx.doi.org/10.1104/pp.74.1.39
http://www.ncbi.nlm.nih.gov/pubmed/16663382
http://dx.doi.org/10.1016/j.fct.2018.09.053
http://dx.doi.org/10.3390/toxins11010009
http://dx.doi.org/10.1038/ja.2012.71
http://dx.doi.org/10.3390/toxins9020045
http://dx.doi.org/10.1016/j.pmpp.2004.07.006


Toxins 2020, 12, 254 12 of 13

31. Pavlovkin, J.; Mistríková, I.; Jašková, K.; Tamás, L. Impact of beauvericin on membrane properties of
young initial leaves of maize with different susceptibility to Fusarium. Plant Soil Environ. 2012, 58, 205–210.
[CrossRef]

32. Pavlovkin, J.; Mistríková, I.; Luxová, M.; Mistrík, I. Effects of beauvericin on root cell transmembrane electric
potential, electrolyte leakage and respiration of maize roots with different susceptibility to Fusarium. Plant Soil
Environ. 2011, 52, 492–498. [CrossRef]

33. Pitt, R.E. A descriptive model of mold growth and aflatoxin formation as affected by environmental conditions.
J. Food Prot. 1993, 56, 139–146. [CrossRef] [PubMed]

34. Garcia, D.; Ramos, A.J.; Sanchis, V.; Marín, S. Modeling kinetics of aflatoxin production by aspergillus flavus
in maize-based medium and maize grain. Int. J. Food Microbiol. 2013, 162, 182–189. [CrossRef] [PubMed]

35. Smith, T.K.; Sousadias, M.G. Fusaric acid content of swine feedstuffs. J. Agric. Food Chem. 1993, 41, 2296–2298.
[CrossRef]

36. Liu, S.; Li, J.; Zhang, Y.; Liu, N.; Viljoen, A.; Mostert, D.; Zuo, C.; Hu, C.; Bi, F.; Gao, H.; et al. Fusaric acid
instigates the invasion of banana by Fusarium oxysporum f. sp. cubense TR4. New Phytol. 2020, 225, 913–929.
[CrossRef]

37. Streit, E.; Schwab, C.; Sulyok, M.; Naehrer, K.; Schatzmayr, G. Multi-Mycotoxin Screening Reveals the
Occurrence of 139 Different Secondary Metabolites in Feed and Feed Ingredients. Toxins 2013, 5, 504–523.
[CrossRef]
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