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Emodin inhibits viability, proliferation 
and promotes apoptosis of hypoxic human 
pulmonary artery smooth muscle cells 
via targeting miR-244-5p/DEGS1 axis
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Abstract 

Objective: This study aimed to determine the effects of emodin on the viability, proliferation and apoptosis of 
human pulmonary artery smooth muscle cells (PASMCs) under hypoxia and to explore the underling molecular 
mechanisms.

Methods: PASMCs were cultured in a hypoxic environment (1% oxygen) and then treated with emodin. Cell viabil-
ity, proliferation and apoptosis were evaluated using CCK-8 assay, EdU staining assay, western blot and Mito-tracker 
red CMXRos and Annexin V-FITC apoptosis detection assay. The microRNA (miRNA)/mRNA and protein expression 
levels were assessed by quantitative real-time PCR and western blotting, respectively. Based on transcriptomics and 
proteomics were used to identify potential signaling pathways. Luciferase reporter assay was utilized to examine the 
interaction between miR-244-5p and DEGS1.

Results: Emodin at 40 and 160 µM concentration-dependently suppressed cell viability, proliferation and migration, 
but enhanced cell apoptosis of PASMCs under hypoxia. Transcriptomic and proteomic analysis revealed that emodin 
could attenuate the activity of PI3K/Akt signaling in PASMCs under hypoxia. In addition, delta 4-desaturase, sphin-
golipid 1 (DEGS1) was found to be a direct target of miR-244-5p. Emodin could significantly up-regulated miR-244-5p 
expression and down-regulated DEGS1 expression in PASMCs under hypoxia. Furthermore, emodin-mediated effects 
on cell viability, migration, apoptosis and PI3K/Akt signaling activity of PASMCs under hypoxia were significantly 
attenuated by miR-244-5p knockdown.

Conclusions: Our results indicated that emodin suppressed cell viability, proliferation and migration, promoted cell 
apoptosis of PASMCs under hypoxia via modulating miR-244-5p-mediated DEGS1/PI3K/Akt signaling pathway. MiR-
244-5p/DEGS1 axis was initially investigated in this current study, which is expected to further the understanding of 
the etiology of pulmonary arterial hypertension.
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Introduction
Patients with pulmonary arterial hypertension (PAH) 
mainly present with shortness of breath and progressive 
right heart failure. Multiple factors are involved in the 
etiology of this disease, including toxins and congenital 
cardiomyopathy [1]. Regardless of the causes, patients 
with PAH may suffer from hypoxia to some degree, par-
ticularly those who have underlying lung diseases [2]. 
Despite of the attempts in current pharmacotherapy 
which targets several signaling pathways including nitric 
oxide, endothelin and prostacyclin [3], PAH is a devastat-
ing and lethal cardio-pulmonary disease without effective 
treatment [4].

It has been revealed by histopathologic observations 
that in patients with PAH, the proliferation of pulmonary 
artery smooth muscle cells (PASMCs) were promoted, 
which were refractory to routine treatments [5]. The bio-
logical behaviors of these smooth muscle cells resemble 
those of cancerous cells in terms of increased Warburg 
metabolism, mitochondrial dynamics, and calcium-
sensing receptor (CaSR) mediated cellular proliferation 
[6]. In addition, studies have demonstrated that protein 
expression of hypoxia-inducible factors (HIF) including 
HIF-1α and HIF-2α in PASMCs were up-regulated in 
PAH patients [7–9]. The hyperproliferation of PASMCs 
is recognized as a promising target for intervention in 
PAH-related vascular remodeling, therefore, it is of great 
scientific significance to explore the molecular mecha-
nisms underlying PASMC hyperproliferation, in order to 
develop potential new therapies for PAH treatment.

Emodin, a chemical compound, of the anthraquinone 
family, is extracted from polygonum cuspidatum and 
polygonum multiflorum [10]. Studies have revealed that 
emodin exerted the inhibitory effects on cell survival and 
cycle progression [11–13]. Moreover, emodin could sup-
press the proliferation of aortic vascular smooth muscle 
cells by regulating microRNAs (miRNAs) expression [14]. 
The phosphatidylinositol 3-kinase (PI3K)/Akt (PI3K/Akt) 
signaling pathway is a classical signaling pathway in cells, 
and has always been a focus of interest in various diseases 
including cancers [15], diabetes [16], PAH [17], due to its 
role in cell growth, cell proliferation, cell migration and 
deregulated apoptosis. Previous studies also emphasized 
the effects of PI3K/Akt on survival of PASMCs [18] and 
the Warburg effects in PASMCs [19]. All the above evi-
dence reveals the adverse effects of the PI3K/Akt path-
way on PAH treatment. Therefore, adjusting PI3K/Akt 
may be an effective strategy for vascular remodeling in 

PAH [20]. It is noteworthy that emodin could suppress 
the activity of PI3K/Akt signaling [21–23]. These findings 
suggested that potential ability of emodin in regulating 
PAH via PI3K/ Akt pathway.

MicroRNAs (miRNAs) are small (~ 22 nucleotide long) 
non-coding RNAs that negatively regulate gene expres-
sion at the posttranscriptional level [24]. Previous studies 
showed that miRNAs also regulated the PAH pathogene-
sis, and could be regarded as biomarkers and therapeutic 
targets of PAH [25, 26]. The related miRNAs involved in 
PAH include miR-143 [27], miR-124 [28], miR-138, miR-
25 [29], and so son. It is also indicated that miRNAs can 
regulated PAH via PI3K/Akt pathway [30], as well as the 
role of emodin in adjusting miRNAs [31].

In the present study, we for the first time demonstrated 
that emodin exerted the potential therapeutic efficiency 
on PAH, by inducing cellular apoptosis and inhibiting 
the viability proliferation of PASMCs under hypoxia con-
dition. This effect was achieved by up-regulating miR-
224-5p. This study indicated that treatment with emodin 
may achieve therapeutic effect by targeting the miR-
244-5p/delta 4-desaturase, sphingolipid 1 (DEGS1) axis, 
so as to inhibit cell viability and proliferation, and pro-
mote cell apoptosis of PASMCs, therefore introducing a 
new potential approach to treat PAH.

Materials and methods
Cell culture
Human PASMCs were obtained from the American Type 
Culture Collection (ATCC, Manassas, USA). Cells were 
cultured in Dulbecco’s modified Eagle medium/Ham’s 
F-12 medium (DMEM/F-12, Thermo Fischer Scientific, 
Waltham, USA) supplemented with 10 % fetal bovine 
serum (FBS; Gibco, Thermo Fischer Scientific). The cells 
were cultured in a 5 %  CO2 incubator at 37 °C.

Drug treatment and cell transfections
Human PASMCs were exposed to hypoxia conditions 
(1%  O2, 5%  CO2, 94%  N2) [32, 33] or normoxic condi-
tion (21%  O2, 5%  CO2, 74%  N2) for 24  h. Other experi-
ments were performed after corresponding treatments. 
Emodin (purity ≥ 98.0%) was purchased from MedChem-
Express (Shanghai, China). Emodin was dissolved at a 
concentration of 320 mM in dimethyl sulfoxide (DMSO, 
purity ≥ 99.5.0%, Sigma) as stock solution, stored at − 20 
°C. Stock solutions of emodin in DMSO were diluted 
into the corresponding working solution using cell cul-
ture medium before each experiment, and the final 
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concentration of DMSO was less than 0.1%. Human 
PASMCs were pre-treated with emodin solution at dif-
ferent concentrations (0, 10, 40 and 160 µM) for 1 h, and 
then incubated in hypoxia condition or normoxic condi-
tion for 24 h, respectively (Additional file 1: Figure. S1).

The miR-224-5p mimic, miR-224-5p mimic nega-
tive control (NC) (NC mimics), miR-224-5p inhibi-
tor and miR-224-5p inhibitor negative control (NC 
inhibitor) were purchased from GenePharma (Suzhou, 
China). Small hairpin RNA (shRNA) silencing DEGS1 
(DEGS1 shRNA), the negative control shRNA (sh-NC), 
DEGS1 overexpressing vector (pcDNA3.1-DEGS1) and 
pcDNA3.1 were obtained from GenePharma. For the 
cell transfections, 1 ×  106 cells were cultured in 24-well 
plates with 1 mL complete medium for 24  h until they 
were 90% confluence, and cells were transfected using 
Lipofectamine 3000 reagents (Invitrogen, Carlsbad, USA) 
according to the manufacturer’s protocol.

Quantitative real‑time PCR (qRT‑PCR)
Total RNA was isolated from the cells by using Trizol 
reagent (TaKaRa, Japan). MicroRNAs were extracted 
using Molpure Cell/Tissue miRNA Kit (Yeasen, Shang-
hai, China). The mRNA was reversely transcribed using 
SuperScript IV Reverse Transcriptase kit (Invitrogen), 
and miRNAs were reversely transcribed using TaqMan 
MicroRNA Reverse Transcription Kit (Invitrogen). The 
mRNA and miRNA expression levels of related genes 
were measured by using SYBR Premix Ex TaqII kit (Tli 
RNaseH Plus) (, Japan) on in an ABI PRISM® 7900HT 
System (TaKaRa). U6 small nucleolar RNA was used as 
an endogenous control for miR-244-5p detection, while 
β-actin was used as the endogenous control to detect 
other mRNA expression levels. The primer sequences of 
these genes used in this study were listed in Table 1.

Western blotting assay
Cells were lysed with radio immune-precipitation assay 
(RIPA) lysis buffer and extraction buffer containing pro-
tease inhibitors (Sigma-Aldrich, USA) at 4  °C, and the 
concentrations of extracted protein samples were deter-
mined by BCA protein assay kit (Sigma-Aldrich) [34]. 
Equal amounts of protein samples (40  µg) were loaded 
on 10% sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) gel (Beyotechnology, Shang-
hai, China) and resolved by gel electrophoresis. The 
resolved proteins were then transferred onto polyvi-
nylidene fluoride (PVDF) membranes (Millipore, USA) 
followed by incubating with 2% bovine serum albumin 
at room temperature for 1 h. After that, the membranes 
were incubated with primary antibodies including anti-
cleaved-caspase-3 (1:1000 dilution; #9662 Cell Signaling 
Technology, USA), anti-Ki-67 (1:1000 dilution, #ab15580, 

Abcam, UK), anti-Akt (1:1000 dilution, #4685, Cell Sign-
aling Technology, USA), anti-phospho-Akt (Ser473) 
(1:1000 dilution, #4060, Cell Signaling Technology), anti-
PI3K-gamma (1:1000 dilution, # ab32089, Abcam), anti-
phospho-PI3K (1:1000 dilution, #4228, Cell Signaling 
Technology), anti-DEGS1 (1:1000 dilution, #ab124798, 
Abcam), anti-PNCA (1:1000 dilution, #ab29, Abcam), 
anti-Bax (1:1000 dilution, #ab32503, Abcam), anti-Bcl-2 
(1:1,000 dilution, # ab32124, Abcam, UK) and anti-β-
actin (1:1000 dilution, #ab8226, Abcam) at 4  °C over-
night. On the next day, these membranes were incubated 
with the horseradish conjugated secondary antibodies at 
room temperature for 1 h. The protein bands were visu-
alized using High-sig ECL Western Blotting Substrate 
(Tenon, Shanghai, China). β-actin was used as the inter-
nal control (Additional file 2).

Cell viability and proliferation analysis
Cell viability and proliferation was measured by using 
Cell Counting Kit-8 (CCK-8) assay and EdU staining 
assay, respectively [35]. For CCK-8 assay, cells with dif-
ferent treatments were seeded into the 96-well plates at 
a density of approximately 4 ×  104 cells/well. Next, 10 µL 
of CCK-8 solution (MedChemExpress, USA) was added 
into each well and then were incubated at 37 °C for 1 h, 
then the absorbance of each sample was determined at 
450 nm by using a microplate reader (Thermo Fisher Sci-
entific). EdU staining assay was performed using Beyo-
Click™ EdU-488 Cell proliferation kit (Beyotime, China) 
according to the manufacturer’s instructions. Briefly, 
cells with different treatments were incubated with Edu 
working solution for 2  h and then fixed with 4 % para-
formaldehyde (PFA) for 15  min at room temperature. 
After permeabilized with 0.3 % TritonX-100 for 15mim at 
room temperature, the cells cultured with 500 µL Click 
Additive Solution for 30mim at darkness. Subsequently, 
cell nucleus was counterstained with DAPI for 10mim. 
Finally, the EdU-positive cells were then observed under 
the fluorescence microscope, and the percentage of 

Table 1 The sequences of primers used for RT-qPCR

Gene Primer sequences 5’→3’

MiR-224-5p F: GCG CGC AAG TCA CTA GTG G

R:GTC GTA TCC AGT GCA GGG TCC GAG GT
ATT CGC ACT GGA TAC GAC AAC GGA A

DEGS1 F: GCA TCT TTA CTT GGC CTG GGTT 

R: ACT CCA GCA CCA TCT CTC CTT 

β-actin F: CAT GTA CGT TGC TAT CCA GGC 

R: CTC CTT AAT GTC ACG CAC GAT 

U6 F: CTC GCT TCG GCA GCA CAT ATACT 

R: ACG CTT CAC GAA TTT GCG TGTC 
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EdU-positive cells was calculated as the cell proliferation 
rate.

Mitochondrial membrane potential and cell apoptosis 
assay
Cellular apoptosis was detected using Mitochondrial 
Membrane Potential and Apoptosis Detection Kit with 
Mito-Tracker Red CMXRos and Annexin V-FITC Apop-
tosis Detection Kit (Beyotechnology, Shanghai, China). 
Briefly, 2 µL of Mito-Tracker Red CMXRos solution and 
5 µL of Annexin V-FITC solution were added into each 
well of 6-well plates and the plates were shaken gen-
tly. After that, the samples were incubated at 24 °C for 
30  min. Then, the human PASMCs were visualized by 
fluorescence microscope (Nikon’s MicroscopyU, Tokyo, 
Japan). Living cells were negative for green fluorescence, 
while positive for red fluorescence. The apoptotic cells 
were positive in green fluorescence, while the red fluores-
cence was significantly reduced or negative.

Wound healing assay
Wound healing assay was performed to assess cell migra-
tion [36]. After the cells received different treatments for 
24  h, the culture medium was removed and phosphate 
buffer saline (Sigma-Aldrich, USA) was used to wash 
the cells, which was followed by scratch wound assay 
through applying a scratch on the plates with a sterile 
pipette. Then, the photographs of the wounds were taken 
immediately at 48 h by light microscope (Nikon), respec-
tively. The closure area of wound was calculated as fol-
lows: migration area (%) =  (A0 −  An)/A0 × 100, where  A0 
represents the area of initial wound area, and A repre-
sents the remaining area of wound at the metering point.

Transcriptome sequencing and analysis
After RNA was extracted by utilizing Trizol reagent, tran-
scriptome sequencing was carried out using the method 
as previously reported [37]. Genes with a false-discovery 
rate (FDR) value of < 0.05 and fold change value > 2 were 
defined as differentially expressed genes (DEGs). DEGs 
were further analyzed by exploring the network of Kyoto 
Encyclopedia of Genes and Genomes (KEGG, https:// 
www. kegg. jp/).

Proteomics and bioinformatic analysis
Proteins were obtained by using RIPA reagent mixed with 
protease inhibitor cocktail at 4 °C for 30 min. After that, 
the cell lysates were harvested, digested and fractionated 
as previously described [38]. Raw data was acquired and 
analyzed using the proteomics data analysis platform of 
MaxQuant (v1.6.17.0, Max-Planck-Institute of Biochem-
istry, Germany) for genes with FDR value of < 0.05 and 
the absolute value of fold change of > 2 [39]. In this way, 

DEGs were identified, and then the functional enrich-
ment analysis of DEGs was performed on KEGG.

Cell transfection and dual luciferase reporter assays
The binding sites between miR-224-5p and DEGS1 3’ 
untranslated region (3’UTR) were predicted by TargetS-
can. The DEGS1 3’UTR was amplified from genomic 
DNA and was subcloned into the pGL3 luciferase 
reporter vector (Promega, Madison, USA) to construct 
the wild type (WT) luciferase reporter vector, DEGS1-
3’UTR-WT. The mutant (MUT) luciferase reporter vec-
tor, DEGS1-3’UTR-MUT, was generated by Site-Directed 
Mutagenesis kit (Thermo Fisher Scientific). For the lucif-
erase reporter assay, human PASMCs were cultured in 
96-well plates. When the cell confluence reached approx-
imately 60 %, the cells were co-transfected with DEGS1-
3’UTR-WT (or DEGS1-3’UTR-MUT), miR-224-5p 
mimic, miR-224-5p mimic NC, miR-224-5p inhibitor and 
miR-224-5p inhibitor negative control (NC inhibitor), 
respectively. After 48 h, the luciferase activity was meas-
ured by Dual-Luciferase Reporter Assay kit (Promega) 
according to the manufacturer’s instruction.

Statistical analysis
All the data analysis was performed using GraphPad 
Prism 8.0 (GraphPad Software, La Jolla, USA), and the 
data were presented as mean ± standard deviation. The 
statistical significance between comparisons was evalu-
ated using Student’s t-test or one-way analysis of variance 
followed by Dunnett’s multiple comparison tests. P < 0.05 
was considered statistically significant.

Results
Emodin inhibited the viability, proliferation and promoted 
apoptosis of PASMCs under hypoxia
As shown in Additional file  1: Fig. S2, the CCK-8 assay 
results demonstrated that hypoxia treatment increased 
the cell viability of PASMCs notably at 24 h when com-
pared with the normoxic treatment. In the setting of 
hypoxia, 40 µM of emodin decreased cell viability con-
siderably, while in normoxic condition, it had no effects 
on cell viability and LDH release of PASMCs (Fig.  1  a 
and Additional file 1: Fig. S3-S4). To further confirm the 
inhibitory effect emodin on PASMCs proliferation, EdU 
staining assay and western blot assay were performed 
to detect cell proliferation. The results of EdU staining 
assay showed that the hypoxia treatment significantly 
increased the percentage of EdU-positive cells than 
normoxia treatment, while emodin treatment could sig-
nificantly reduce the percentage of EdU-positive cells in 
hypoxic condition (Fig.  2). The results of western blot 
revealed that hypoxia up-regulated the protein expres-
sion levels of Ki-67 and proliferative cell nuclear antigen 

https://www.kegg.jp/
https://www.kegg.jp/
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(PNCA), (Fig.  1b, c), which was significantly attenuated 
by the treatment with emodin (40 and 160 µM). Moreo-
ver, protein expression levels of cleaved caspase-3, Bax 
and Bcl-2 were measured by western blot assay. The 
results showed that hypoxia up-regulated the protein 
expression levels of Bcl-2 but decreased the protein lev-
els of Bax and cleaved caspase-3 (Fig. 1b, c), which was 
significantly attenuated by the treatment with emodin 
(40 and 160 µM). In addition, the PASMCs were stained 
with Mito-Tracker Red CMXRos and Annexin V-FITC 
to detect cellular apoptosis (Fig. 1d). Compared with the 
normoxia group, the hypoxia/emodin (40 µM) co-treat-
ment group showed a considerable increase in apoptosis. 
In contrast, 40 µM emodin failed to enhance cell apop-
tosis of PASMCs under normoxic condition (Additional 
file 1: Fig. S5). Therefore, 40 µM of emodin were used for 
further research. Besides, we also evaluated the effects of 
emodin on pulmonary artery endothelial cells (HPAECs) 
and the cell viability was determined. Emodin at 40 µM 
had no effects on cell viability of HPAECs (Additional 
file  1: Fig. S6). The above results indicated that under 
hypoxia, 40 µM emodin could suppress the viability, 
proliferation and promote apoptosis of PASMC under 
hypoxic conditions.

Emodin inhibited the migration of PASMC under hypoxia
The migratory potential of PASMCs was assessed by 
wound healing assay. Emodin at 40 and 160 µM inhib-
ited the migration of PASMCs under hypoxia (Fig.  3a, 
b). It was also noteworthy that cell migration of PASMCs 
was slightly increased after hypoxia treatment (Fig.  3b). 
Therefore, the results indicated that emodin exerted 
inhibitory effects on the migration of PASMCs migration 
in the setting of hypoxia.

Emodin targeted PI3K/AKT signaling pathway 
under hypoxia
Transcriptomic analysis was performed after human 
PASMCs were treated with 40 µM emodin and hypoxia 
for 24 h, in order unveil the underlying mechanism. The 
heatmap of enriched KEGG pathways of DEGs were 
displayed in Fig.  4  a, and the DEGs were enriched in 
the PI3K/Akt signaling pathway. To confirm this, prot-
eomic analysis was carried out, and the results suggested 
that PI3K/Akt signaling pathway was activated when 
these cells were subjected to both emodin and hypoxia 

treatments (Fig. 4b). The western blot assay showed that 
under the condition of hypoxia, the ratios of p-Akt/Akt 
and p-PI3K/PI3K were higher when compared to those 
of the normoxia group, which was partially reversed by 
emodin treatment (Fig.  4c). Collectively, these resulted 
implied that emodin inhibited the activation of PI3K/Akt 
signaling pathway in PASMCs under hypoxia.

Emodin downregulated DEGS1 expression in PASMCs 
under hypoxia exposure
Differential transcriptomic and proteomic analysis were 
compared and integrated, in order to further understand 
the mechanisms of action of emodin in regulating the 
PI3K/Akt signaling pathway. As shown in Fig.  5a, the 
Venn diagram identified common 19 DEGs between tran-
scriptome and proteome analysis. There was a linear cor-
relation between the differential expression of these 19 
genes (Fig.  5b). Furthermore, a protein-protein interac-
tion (PPI) network of these 19 genes was built, and a link 
between DEGS1 and heme oxygenase 2 (HMOX2) was 
revealed (Fig. 5c). To validate this finding, protein expres-
sion level of DEGS1 was measured (Fig. 5d). DEGS1 has 
been found to be essential to the synthesis of lipids. In 
this study, it was discovered that protein expression 
level of DEGS1 was upregulated in PAMSCs subjected 
to hypoxia, in contrast to the normoxia group (Fig. 5d). 
It is worth mentioning that in the setting of hypoxia, 
the protein expression level of DEGS1 decreased after 
PASMCs were treated with 40 µM emodin, as compared 
to the hypoxia group. Taken together, it was concluded 
that emodin inhibited the activity of PI3K/Akt pathway 
in PASMCs possibly via targeting DEGS1.

MiR‑244‑5p could target DEGS1 in PASMCs
Based on the exploration of the microRNA databases 
(miRmap, microT and miRanda), three miRNAs, 
namely the miR-244-5p, miR-143-3p and miR-875-5p 
were predicted to interact with DEGS1, and their cor-
relations with DEGS1 were displayed in Fig.  6a. Sub-
sequently, expression levels of these three miRNAs 
were quantified by qRT-PCR. As shown in Fig.  6b, 
the expression level of miR-244-5p in the hypoxia and 
emodin (40 µM) co-treatment group was the highest as 
compared to the other two miRNAs. Therefore, it was 
speculated that miR-244-5p could be a potential tar-
get of DEGS1. To verify this assumption, the luciferase 

Fig. 1 Emodin inhibited cell viability and promoted apoptosis in human PASMCs under hypoxia. a CCK-8 assay was performed to determine 
PASMC’s viability after the cells with emodin at different concentrations (0, 10, 40 and 160 µM) for 24 h. b, c Typical western blotting and quantitative 
analysis of Ki-67, PNCA, Bax, Bcl-2 and cleaved caspase-3 in PASMCs. d Assays of Mitochondrial Membrane Potential and Apoptosis Detection Kit 
with Mito-Tracker Red CMXRos and Annexin V-FITC was performed to determine cellular apoptosis; scale bar = 100 μm. N = 3. Dunnett’s multiple 
comparisons test, *P < 0.05 and **P < 0.01 versus normoxia but 0 µM emodin group; #P < 0.05 and ##P < 0.01 versus hypoxia but 0 µM emodin group

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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reporter constructs, namely the DEGS1-3’UTR-WT 
and DEGS1-3’UTR-MUT, were generated. In the wild-
type group, miR-224-5p mimic and its negative con-
trol were used to transfect PASMCs respectively, and 
the luciferase activities were measured. As shown in 
Fig. 6c, the luciferase activity of the miR-224-5p mimic 
group was considerably decreased, in contrast to the 
negative control group. Meanwhile, PASMCs were co-
transfected with DEGS1-3’UTR-MUT and miR-224-5p 
mimic or miR-224-5p negative control, respectively, 
followed by measurement of luciferase activity. In the 
mutant luciferase reporter constructs, the luciferase 
activity of the miR-224-5p mimic group was almost 
equivalent to that of the negative control group. More-
over, the miR-224-5p mimic increased the expression of 
miR-224-5p, which could be inhibited by miR-224-5p 
inhibitor (Fig.  6d). The overexpression of miR-224-5p 
inhibited the protein expression of DEGS1, and miR-
224-5p knockdown promoted the expression of DEGS1 
(Fig. 6e). Based on these findings, it was assumed that 
DEGS1 was one of the direct target gene of miR-224-5p.

Emodin decreased DEGS1 expression by upregulating 
miR‑244‑5p in PASMCs under hypoxia
To determine whether miR-224-5p was involved in 
emodin-induced DEGS1 downregulation, PASMCs 
were cultured in a hypoxic environment and treated 
with 40 µM emodin, miR-244-5p inhibitor and the neg-
ative control, respectively, followed by measurement 
of the expression of miR-244-5p. In the hypoxia and 
emodin co-treatment group, the miR-244-5p expres-
sion level was increased moderately, compared with 
the hypoxia control group (Fig.  7a). Next, the mRNA 
expression level of DEGS1 was quantified by RT-
qPCR. In the setting of hypoxia, treatment of PASMCs 
with emodin resulted in a substantial decrease in the 
mRNA expression level of DEGS1, whereas cells in 
the emodin and miR-244-5p inhibitor co-treatment 
group showed an increase in mRNA expression level 
of DEGS1 (Fig.  7b). Furthermore, the interaction 
between DEGS1 and PI3K/Akt signaling pathway was 
explored at a protein level. In Fig.  6c, it was shown 
that under hypoxia, PASMCs treated with emodin led 
to decreased expression level of DEGS1 and the activ-
ity of PI3K/Akt signaling pathway was downregulated 
significantly, as compared with the hypoxia control 
group. However, in a hypoxic environment, the addi-
tion of emodin to PASMCs transfected with miR-
244-5p inhibitor upregulated DEGS1 expression and 
activated PI3K/Akt signaling pathway, as compared 
to the hypoxia and emodin co-treatment group. We 
also determined whether DEGS1 regulated cell viabil-
ity, apoptosis and migration. As shown in Additional 
file  1: Fig. S7A-S7D, the PASMCs with overexpres-
sion of DEGS1 showed higher ability of viability and 
migration, and lower expression of cleavage caspase 
3. Overexpression of DEGS1 also promoted PI3K/Akt 
activation (Additional file  1: Fig. S7E). However, after 
knockdown of DEGS1, these phenomena above were 
inhibited. These results indicated that in a hypoxic 
environment, emodin could upregulate miR-244-5p 
expression, which in turn inhibited DEGS1 expression. 
And then, the downregulated DEGS1 suppressed cell 
viability, promoted cell apoptosis, and inhibited cell 
migration, as well as decreased PI3K/Akt activation in 
PASMCs.

Emodin suppressed PASMC’s viability and induced 
apoptosis by upregulating miR‑244‑5p/DEGS1 axis
After treatment of emodin at 40 µM, a moderate 
decrease in cellular activity of hypoxic PASMCs (Fig. 8a) 
and protein expression level of Ki-67 (Fig.  8b) were 
observed. Yet, in a hypoxic environment, emodin treat-
ment of PASMCs that were transfected with miR-244-5p 

Fig. 2 Emodin inhibited human PASMC proliferation under 
hypoxia. a Emodin’s effect of reducing hypoxia-treated PASMC 
proliferation as assessed by EdU staining assay; scale bar = 50 μm. 
b Quantitative analysis of proliferation properties. N = 3. Dunnett’s 
multiple comparisons test, **P < 0.001 versus normoxia but 0 µM 
emodin group; ###P < 0.001 versus hypoxia but 0 µM emodin group
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inhibitor increased cell viability (Fig. 8a) and upregulated 
Ki-67 protein expression level (Fig.  8b), as compared 
to the emodin/hypoxia co-treatment group. To deter-
mine apoptosis, cells were stained with Mito-Tracker 
Red CMXRos and Annexin V-FITC dyes (Fig.  8c) and 
the protein expression level of cleaved caspase-3 was 
measured (Fig.  8d). The results showed that in the set-
ting of hypoxia, silencing miR-244-5p in emodin-treated 

HPASMCs reduced apoptosis rate, in contrast to the 
hypoxia/emodin co-treatment group. We also validated 
whether DEGS1/PI3K/Akt axis was involved in the 
effects of emodin. Over expression of DEGS1 reversed 
the effects of emodin on cell viability, apoptosis and 
migration (Additional file  1: Fig. S8A-S8C). Similarly, 
after activation of PI3K/Akt signaling by 740Y-P, the 
effects of emodin were also blocked (Additional file  1: 

Fig. 3 Emodin inhibited human PASMC migration under hypoxia. a Emodin’s effect of reducing hypoxia-treated PASMC migration as assessed by 
wound healing assay; scale bar = 100 μm. b Quantitative analysis of migration properties. N = 3. Dunnett’s multiple comparisons test, *P < 0.05 and 
**P < 0.01 versus normoxia but 0 µM emodin group; #P < 0.05 and ##P < 0.01 versus hypoxia but 0 µM emodin group

(See figure on next page.)
Fig. 4 Emodin inhibited PI3K/Akt signaling pathway in human PASMCs under hypoxia exposure. a Transcriptomic analysis of human PASMCs 
co-treated with 40 µM emodin and hypoxia. The left panels show the heatmap displaying a subset of differentially expressed genes of PASMCs 
treated with emodin for 24 h (absolute FC > 2, P < 0.05) and the right panels show that the most enriched pathways of differentially expressed 
genes. b Proteomic analysis of human PASMCs co-treated with 40 µM emodin and hypoxia. The left panels show the heatmap displaying a subset of 
differentially expressed proteins of human PASMCs treated with emodin for 24 h (absolute FC value > 1, P < 0.05) and the right panels show the most 
enriched pathway of proteins differentially expressed. c Western blotting and quantitative analysis of p-PI3K/PI3K ratio and p-Akt/Akt ratio. N = 3. 
Dunnett’s multiple comparisons test, β-actin was used as the internal control. *P < 0.05 and **P < 0.01 versus normoxia but 0 µM emodin group; 
#P < 0.05 and ##P < 0.01 versus hypoxia but 0 µM emodin group
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Fig. 4 (See legend on previous page.)
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Fig. S8D-S8F). Based on these findings, it was concluded 
that emodin could suppress the viability of PASMCs and 
induce cellular apoptosis via upregulating miR-244-5p/
DEGS1/PI3K/Akt axis.

Discussion
Emodin has been reported to be effective in treating vari-
ous diseases such as malignant diseases and severe acute 
respiratory syndrome [13]. Previous studies had seldom 
explored whether this Chinese herb could be effective 

Fig. 5 Emodin downregulated DEGS1 expression in human PASMCs under hypoxia. a Comparison and integration analysis of differential 
transcriptomic and proteomic analysis. Venn diagram revealed 19 genes expressed differentially at both mRNA and protein levels. b Analysis of 
Pearson correlation coefficient showed that differential expression of these 19 genes was significantly correlated (R = 0.76, P < 0.001). c Differential 
expression of these 19 genes were used to construct PPI network to screen key genes. d Western blots and quantitative analysis of DEGS1. N = 3. 
Dunnett’s multiple comparisons test, *P < 0.05 and **P < 0.01 versus normoxia but 0 µM emodin group; #P < 0.05 and ##P < 0.01 versus hypoxia but 0 
µM emodin group

(See figure on next page.)
Fig. 6 DEGS1 is a direct target of miR-244-5p human PASMCs. a Bioinformatic analysis was used to predict the potential miRNAs targeting DEGS1. 
b Human PASMCs were treated with emodin for 24 h, and then the relative expression levels of miR-244-5p, miR-143-3p and miR-875-5p were 
detected using RT-qPCR. c Schematic diagram of a predicted binding site of miR-244-5p in the 3’UTR-wild type of DEGS1 mRNA (3’UTR-WT) and 
the 3’UTR-mutant of DEGS1 mRNA (3’UTR-MUT); the luciferase activity was determined using the dual luciferase reporter system. d The expression 
of miR-224-5p were determined by RT-qPCR in PASMCs transfected with miR-224-5p mimics or inhibitor. e The protein expression of DEGS1 were 
determined by western blot in PASMCs transfected with miR-224-5p mimics or inhibitor. N = 3. **P < 0.01 versus negative control (NC) mimic groups



Page 11 of 16Yi et al. BMC Pulm Med          (2021) 21:252  

Fig. 6 (See legend on previous page.)
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against PAH. In this current study, we found that under 
a hypoxic condition, emodin exhibited inhibitory effects 
on the migration of PASMCs as well as induced cellular 
apoptosis. Based on the results of bioinformatics analysis, 
it was discovered that emodin upregulated the expres-
sion of miR-244-5p under hypoxia and that miR-244-5p 
inhibited the activation of PI3K/Akt pathway via target-
ing and regulating the expression of DEGS1.

Numerous studies have revealed that hypoxia could 
accelerate the progression of PAH in different ways. 
For instance, hypoxia suppresses the activity of cyc-
lin-dependent kinase inhibitors through upregulating 

miRNAs, thus allowing vascular smooth muscles to pro-
liferate [40, 41], which may lead to decreased compliance 
of pulmonary arteries and aggravate right heart failure. In 
addition, hypoxia acts as a stimulus in mediating inflam-
mation by increasing NF-κB activity, and the expression 
of various proinflammatory cytokines, particularly IL-6, 
will be increased [42]. Proinflammatory cytokines, such 
as IL-6, IL-1β and IL-33, can accelerate the proliferation 
of vascular smooth muscle cells [43–45]. Previous studies 
discover the important role of PI3K/Akt pathway in PAH 
pathology and targeting PI3K/Akt pathway can attenu-
ates hypoxia-induced PAH efficiently. For example, the 

Fig. 7 Emodin inhibited DEGS1 expression via upregulating miR-244-5p expression in human PASMCs under hypoxia. a The relative expression 
levels of miR-244-5p were detected by RT-qPCR. b The relative mRNA expression levels of DEGS1 were detected by RT-qPCR. c Typical western 
blotting and quantitative analysis of DEGS1, p-Akt, Akt, p-PI3K and PI3K normalized to β-actin. N = 3. *P < 0.05 and**P < 0.01 versus hypoxia + NC 
inhibitor group; #P < 0.05 and ##P < 0.01 versus hypoxia + emodin + NC inhibitor group
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dioscin and baicalin, the natural compounds extracted 
from traditional Chinese medicine, can attenuates PAH 
via inhibiting PI3K/Akt [20, 46]. In this current study, 
emodin suppressed the activity of PI3K/Akt signaling 
pathway. It has been reported that hypoxia could activate 
this signaling pathway, and that the deposition of some 

extracellular matrices (ECMs), such as collagen I, col-
lagen II and laminin, maintained the activation of this 
signaling pathway so as to promote the proliferation and 
migration of vascular smooth muscles [47]. Moreover, 
this pathway is associated with NF-κB signaling path-
way to allow more calcium influx into cells, which results 

Fig. 8 Emodin regulated human PASMC viability and apoptosis under hypoxia exposure by upregulating miR-244-5p. a CCK-8 assay was 
performed to determine human PASMC viability. b Typical western blotting and quantitative analysis for Ki-67 protein normalized to β-actin. c 
The Mitochondrial Membrane Potential and Apoptosis Detection Kit with Mito-Tracker Red CMXRos and Annexin V-FITC assay was performed to 
determine apoptosis of human PASMCs; scale bar = 100 μm. d Typical western blotting and quantitative analysis of cleaved caspase-3 normalized 
to β-actin. N = 3. *P < 0.05 and **P < 0.01 versus hypoxia + NC inhibitor group; #P < 0.05 and ##P < 0.01 versus hypoxia + emodin + NC inhibitor group
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in progressive calcification of pulmonary arteries [48]. 
As emodin boasts the potential to downregulate PI3K/
Akt signaling pathway, it is likely that these risks may be 
eliminated by this Chinese herb. In addition, it has been 
shown that emodin could alleviate inflammation via 
inhibiting the activity of NF-κB, thus it was considered as 
a novel adenosine monophosphate (AMP)-activated pro-
tein kinase (AMPK) activator which would exert protec-
tive effects on cardiovascular system [49–51]. Although 
a large number of literatures have demonstrated the 
important role of PI3K/Akt in PAH, as well as its corre-
lation with other signaling pathways and inflammatory 
factors, these associations still need to be repeatedly veri-
fied in our future studies to confirm their specific role in 
emodin. Our results indicated that PI3K/Akt activation 
reversed the effects of emodin, suggesting that PI3K/Akt 
acted as the downstream factor of emodin.

Besides, our results also revealed the interaction 
between miRNA-mRNA and its role play in PASMCs 
under hypoxia after emodin treatment. Our results 
verified that miR-244-5p targeting DEGS1 and regulat-
ing PI3K/Akt. In the previous experiment, we screened 
miRNAs in PASMCs after emodin treatment, and found 
that miR-244-5p significantly increased. Although miR-
NAs usually have multiple targets, the downregulation 
of DEGS1 was particularly significant after the silencing 
of miR-244-5p. Based on these changes, our study dem-
onstrated the key role of miR-244-5p/DEGS1 in inhibi-
tory effects of emodin on PASMCs. In addition, DEGS1 
has been found to be involved in the metabolism of 
sphingolipid and adipocyte differentiation [52, 53], be 
associated with many degenerative neurologic disorders 
such as leukodystrophy [54] and play a role in the self-
renewal of hematopoietic stem cells [55]. However, stud-
ies on DEGS1 and miR-244-5p in PAH have rarely been 
reported. Therefore, our study might have found a new 
target for the treatment of PAH, but its specific mecha-
nism needs to be further explored.

Our results showed that hypoxia treatment increased 
the cell viability of human PASMCs as determined by the 
CCK-8 assay, which was consistent with previous stud-
ies [56, 57]. Although 40 µM emodin suppressed the cell 
viability significantly in hypoxia condition, the cell viabil-
ity of PASMCs in normoxic condition was stable after 
treatment with 40 µM emodin for 0, 12, 24 and 48 h. The 
LDH release and caspase activation were not induced 
by emodin in normoxic PASMCs. It suggested the low 
toxicity on normoxic PASMCs. On the other hand, it 
suggested that 40 µM emodin was effective in PASMCs 
while 160 µM was too high to induce cytotoxicity. There-
fore, 40 µM emodin was more proper to be used. In addi-
tion, this study mainly investigated the effect of emodin 
on PAH model in vitro under hypoxic conditions, so no 

in-depth study was conducted on the toxicity of emodin 
in animals. The toxicity and protection of emodin will be 
fully considered in the follow-up work, so as to facilitate 
rational drug administration.

Despite of all the findings, inherent defects exist in this 
study. Firstly, the human PASMCs we used in the study 
may differ with those of patients diagnosed with PAH in 
terms of biologic behaviors. Rodent PAH models should 
have been constructed and the PASMCs should be har-
vested from these rodents for subsequent studies to 
improve the robustness of the study results. Secondly, 
although emodin has been proved to be effective against 
cancer, diabetes and inflammatory diseases, its adverse 
effects should not be neglected. For example, it may be 
toxic to liver, kidney and reproductive organs. Hence, 
how to eliminate these unfavorable side effects should 
become a major concern if emodin were to be applied in 
clinical practice. Thirdly, the current investigation is lim-
ited to the in vitro functional studies, and future in vivo 
studies are warranted to decipher the potential action of 
emodin in PAH.

Conclusions
In conclusion, our results indicated that emodin sup-
pressed cell viability, proliferation and migration, pro-
moted cell apoptosis of PASMCs under hypoxia via 
modulating miR-244-5p-mediated DEGS1/PI3K/Akt 
signaling pathway. MiR-244-5p/DEGS1 axis was initially 
investigated in this current study, which is expected to 
further the understanding of the etiology of PAH.
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