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Neuronal XRN1 is required for maintenance
of whole-body metabolic homeostasis

Shohei Takaoka,1 Akiko Yanagiya,1,* Haytham Mohamed Aly Mohamed,1,4,* Rei Higa,1,2 Takaya Abe,3

Ken-ichi Inoue,3 Akinori Takahashi,1 Patrick Stoney,1 and Tadashi Yamamoto1,5,*

SUMMARY

Control of mRNA stability and degradation is essential for appropriate gene
expression, and its dysregulation causes various disorders, including cancer,
neurodegenerative diseases, diabetes, and obesity. The 50–30 exoribonuclease
XRN1 executes the last step of RNA decay, but its physiological impact is not
well understood. To address this, forebrain-specific Xrn1 conditional knockout
mice (Xrn1-cKO) were generated, as Xrn1 null mice were embryonic lethal.
Xrn1-cKO mice exhibited obesity with leptin resistance, hyperglycemia, hyper-
phagia, and decreased energy expenditure. Obesity resulted from dysregulated
communication between the central nervous system and peripheral tissues.
Moreover, expression of mRNAs encoding proteins that regulate appetite and
energy expenditure was dysregulated in the hypothalamus of Xrn1-cKO mice.
Therefore, we propose that XRN1 function in the hypothalamus is critical for
maintenance of metabolic homeostasis.

INTRODUCTION

Obesity is an increasingly serious global health issue and it is associated with many metabolic disorders,

such as type 2 diabetes and cardiovascular disease. Therefore, understanding the molecular pathology

of obesity is critical. Obesity is caused by an imbalance between energy intake and energy expenditure.

Whole-body energy metabolism is controlled by communication between the central nervous system

and peripheral metabolic tissues, including adipose tissue, liver, pancreas, and skeletal muscle (Myers

and Olson, 2012). The hypothalamus integrates inputs from various peripheral tissues and regulates

feeding and energy expenditure (Timper and Brüning, 2017). Therefore, various studies have sought to

identify hypothalamic nuclei and neuropeptides involved in eating and regulation of energy metabolism.

The importance of post-transcriptional regulation, including mRNA degradation, for proper gene expres-

sion is increasingly appreciated, because changes in mRNA decay affect transcript levels and subsequent

protein abundance (Chen and Shyu, 2011; Garneau et al., 2007). Moreover, alterations of mRNA stability

have been reported in cancer, neurodegenerative disease, diabetes, and obesity (Audic and Hartley,

2004; Linder et al., 2015; Mang et al., 2015). Eukaryotic mRNAs have two characteristic structures, a 7-methyl

guanosine cap (m7G cap) at the 50 end and a poly(A) tail at the 30 end, which provide effective protection

against exoribonucleases and contribute to mRNA stability (Chen and Shyu, 2011; Garneau et al., 2007). In

normal mRNA degradation, the first step is shortening of the 30 poly(A) tail, a process called deadenylation,

regulated by the CCR4-NOT complex and PAN2-PAN3 (Chen and Shyu, 2011; Garneau et al., 2007). After

deadenylation, the m7G cap structure is removed from the deadenylated mRNA by the DCP1-DCP2 de-

capping complex. Finally, deadenylated and decapped mRNAs are degraded by the major cytoplasmic

50–30 exoribonuclease XRN1 (Garneau et al., 2007).

These mRNA degradation factors serve multiple functions in gene expression and are responsible for various

physiological processes. Not surprisingly, deletion of mRNA degradationmachinery leads to various physiolog-

ical defects in animal models. For example, mutations in CCR4-NOT subunits in mouse cause defects in energy

metabolism, adipocyte and heart function, andmaturation of the liver and pancreatic b-cells (Morita et al., 2011;

Mostafa et al., 2020; Suzuki et al., 2019; Takahashi et al., 2015, 2019, 2020; Yamaguchi et al., 2018).

Compared to the well-investigated CCR4-NOT deadenylation complex, physiological studies of 50–30 exo-
nucleases in vertebrates are few. In yeast, disruption of the 50-to-30 exoribonuclease, Xrn1, causes severe
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Figure 1. Camk2a-Cre-mediated deletion of Xrn1 in brain causes obesity and hyperphagia

(A) XRN1, a-Tubulin, and GAPDH in brain lysates from 12-week-old Xrn1-cKO and control (Xrn1flox/+) mice are shown by

western blotting.

(B) XRN1 expression (green) in the hypothalamus of 5-week-old male Xrn1flox/flox and Xrn1-cKO mice is shown by

immunofluorescence staining. Nuclei were shown by DAPI staining (blue).

(C) 12-week-old male Xrn1flox/flox and Xrn1-cKO littermates are shown.

(D) Body lengths (nose-to-anus) of male 12-week-old Xrn1flox/flox (white, n = 7) and Xrn1-cKO mice (red, n = 6).

(E–J) Growth curve of Xrn1flox/flox (white circle, n = 10),Camk2a-Cre (white square, n = 10) and Xrn1-cKOmale (red triangle,

n = 10) (E) and female (H) mice from 3 to 12 weeks old. Data represent meansG SD. One-way ANOVA between Xrn1flox/flox
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growth defects (Larimer and Stevens, 1990). siRNA-mediated knockdown of Xrn1 in C. elegans causes em-

bryonic lethality due to failure of ventral epithelial enclosure during embryogenesis (Newbury and Wool-

lard, 2004). Interestingly, hypomorphic mutations in Pacman, the Drosophila homolog of Xrn1, also cause

defects in dorsal/thorax closure and epithelial sheet sealing that participates in ventral epithelial enclosure

in C. elegans (Grima et al., 2008; Jones et al., 2012). Pacman is required for both male and female fertility in

Drosophila, as mutations cause defects in spermatogenesis and oogenesis (Lin et al., 2008; Zabolotskaya

et al., 2008). These studies in invertebrates clearly indicate the importance of XRN1, but little is known

about its physiological role in mammals.

In this study, we established a knockout mouse model to investigate the physiological function of XRN1.

We provide evidence that a lack of XRN1 in neurons leads to obesity accompanied by leptin resistance,

hyperglycemia, hyperinsulinemia, hyperleptinemia, hyperphagia, and decreased energy expenditure in

mice. XRN1 depletion leads to aberrant expression of hypothalamic genes associated with regulation of

appetite and energy homeostasis. Our study demonstrates that XRN1 in the brain is required for mainte-

nance of whole-body energy homeostasis.

RESULTS

Forebrain-specific disruption of Xrn1 causes severe obesity associated with hyperphagia

Little is known about the physiological functions of XRN1, due in part to a lack of knockout (KO) mice. To

investigate the physiological functions of XRN1, floxed mice were generated (Xrn1flox/flox mice) with loxP

sites flanking exons 2 to 6 of the Xrn1 gene (Figure S1A). The resulting Xrn1flox/+ mice were crossed with

CAG-Cre mice to establish whole-body Xrn1-KO mice. Whole-body Xrn1-KO mice were embryonic lethal

at around E10.5, whereas Xrn1+/�mice were viable and fertile without obvious defects (Figure S1B). Whole-

body Xrn1-KO embryos exhibit poor growth with incomplete neural tube closure (Figure S1B). Defects in

epithelial closure are also observed in Drosophila and C. elegans with XRN1 mutations (Grima et al., 2008;

Newbury and Woollard, 2004), suggesting a conserved role in these processes between species.

XRN1 regulates synaptic activity by forming postsynaptic XRN1 bodies (SX-bodies), which contribute to

suppression of protein synthesis in response to N-methyl-D-aspartate receptor (NMDAR) stimulation in

cultured hippocampal neurons (Luchelli et al., 2015), suggesting that XRN1 contributes to neural function.

To investigate the requirement of XRN1 in the brain, we generated conditional Xrn1 knockout mice.

Xrn1flox/floxmice were crossed with Camk2a-Cremice, which express Cre in a large population of excitatory

neurons in the forebrain (Casanova et al., 2001). XRN1 protein levels were reduced in the cerebral cortex,

hippocampus and hypothalamus of forebrain-specific Xrn1 conditional knockout (Xrn1-cKO) mice (Fig-

ure 1A). Immunofluorescence staining using XRN1 antibody revealed reduced XRN1 expression in the hy-

pothalamus of Xrn1-cKO mice compared to Xrn1flox/flox mice (Figure 1B). Notably, 12-week-old Xrn1-cKO

mice exhibited longer body lengths than those of control mice (Figures 1C and 1D). Around weaning at

3–4 weeks old, the body weight of male Xrn1-cKO mice was significantly lower than that of control mice,

whereas the body weight of female Xrn1-cKOmice did not differ from that of control mice at this age. How-

ever, Xrn1-cKOmice rapidly gained weight after 5 weeks old, and the body weight of both male and female

Xrn1-cKO mice increased significantly after 6 weeks old (Figures 1E and 1H). Next, we examined daily food

intake in both young (6-week) and adult (12-week) mice. Mice were individually housed and daily food

intake was measured. Food intake of Xrn1-cKO mice was significantly higher in both male and female

mice that are older than 6 weeks (Figures 1F, 1G, 1I, and 1J). Therefore, depletion of XRN1 in forebrain neu-

rons causes obesity associated with hyperphagia in both male and female mice.

Depletion of XRN1 in mouse brain leads to severe adiposity and fatty liver

To confirm that deletion of XRN1 in Xrn1-cKO mice was specific to the brain, we examined XRN1 protein

expression in peripheral tissues associated with metabolic homeostasis. XRN1 protein expression was un-

changed in thymus, inguinal white adipose tissue (iWAT), pancreas, and muscle (Figure 2A). In Xrn1-cKO

mice, weights of iWAT, epididymal white adipose tissue (eWAT), brown adipose tissue (BAT), and liver

Figure 1. Continued

and Xrn1-cKO mice *p < 0.05; **p < 0.01; and ***p < 0.001. (F, G, I and J) Average daily food intake of male Xrn1flox/flox

(white, n = 10), Camk2a-Cre (gray, n = 10) and Xrn1-cKO (red, n = 10) male (F and G) and female (I and J) mice at 6 weeks

old (F and I) or 12 weeks old (G and J). Data represent mean G SD. One-way ANOVA, Tukey post hoc test, *p < 0.05;

**p < 0.01; and ***p < 0.001.
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Figure 2. Xrn1-cKO mice exhibit aberrant adiposity and liver steatosis

(A) Immunoblotting for XRN1, a-Tubulin, and GAPDH in peripheral tissue lysates from Xrn1-cKO and control (Xrn1flox/+)

mice at 12 weeks old.
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mass were increased, whereas brain mass was less than that of control littermates (Figures 2B and 2C). He-

matoxylin and eosin (HE) staining revealed that adipocytes in iWAT and eWAT from 23-week-old Xrn1-cKO

mice were drastically enlarged compared to those of Xrn1flox/flox mice. Aberrant lipids accumulated in ad-

ipocytes in BAT from 23-week-old Xrn1-cKO mice, demonstrating disruption of lipid metabolism (Figures

2D, 2E, and 2F). Oil red O staining revealed that lipids accumulated in livers of Xrn1-cKOmice compared to

those of Xrn1flox/flox mice, suggesting aberrant lipid metabolism in liver (Figure 2G) and systematic dysre-

gulation of metabolism in Xrn1-cKO mice. Finally, immunohistochemistry of brown adipose tissue (BAT)

from Xrn1-cKO mice suggested that uncoupling protein 1 (UCP1) was reduced compared to that in

Xrn1flox/flox mice (Figure 2H) and this reduction was confirmed by western blotting (Figures 2I and 2J).

UCP1 regulates the thermogenic capacity of adipocytes and contributes to regulation of energy expendi-

ture and its decrease implies impaired lipid metabolism in Xrn1-cKO mice.

Peripheral metabolism is altered before the onset of obesity in Xrn1-cKO mice

Because Xrn1-cKO mice exhibit hyperphagia, increased body weight, and fat accumulation, we hypothe-

sized that communication between the central nervous system including the hypothalamus and peripheral

metabolic tissues was impaired because of the lack of XRN1. To investigate the mediator of inter-organ

communication, blood glucose, serum insulin, and serum leptin were monitored, since a prolonged in-

crease of these metabolites is associated with development of obesity. To determine whether increased

leptin, insulin, or glucose are a cause or consequence of obesity in Xrn1-cKO mice, these parameters

were measured in 5-week-old mice before the onset of obesity. Serum leptin was already significantly

increased in 5-week-old Xrn1-cKOmice compared to control mice, suggesting that alteration of peripheral

metabolic signals had already developed before the onset of obesity (Figure 3A). Although serum insulin

varied between individual Xrn1-cKO mice, there was a tendency toward increased insulin at 6 weeks old

(p = 0.0501; Figure S2A).

Blood glucose (measured at 13 weeks old), serum insulin (14 weeks old), and serum leptin (15 weeks old) were

significantly higher in adult Xrn1-cKO mice than in control mice (Figure S2B). Because blood glucose in 5-week

and 6-week-old Xrn1-cKO mice was not significantly different from that of control mice, an increase of insulin

and leptinoccursfirst,whichmaydrive the subsequent hyperglycemiaobserved inadultXrn1-cKOmice.Notably,

Xrn1-cKOmice are hyperphagic despite elevated serum leptin, implying leptin resistance in the hypothalamus.

Leptin sensitivitywas assessed inXrn1-cKOmiceand their control (Xrn1flox/flox) littermates at 5weeksof age,when

Xrn1-cKO mice do not exhibit obesity. Mice were treated daily with leptin via intraperitoneal (IP) injection, and

body weight and food intake were measured each day. Before leptin treatment, food intake of 5-week-old

Xrn1-cKO mice was increased compared to control littermates (Figure S3C). Body weight and food intake

were suppressed by leptin in Xrn1flox/flox mice, but not in Xrn1-cKO littermates (Figures 3B and 3C), revealing

that Xrn1-cKO mice developed leptin resistance before the onset of obesity.

To investigate the onset of hyperglycemia in Xrn1-cKO mice, fed and fasting blood glucose were moni-

tored at 5, 7 and 9 weeks old. Both fed and fasting blood glucose were significantly increased in

9-week-old Xrn1-cKO mice compared to control mice (p < 0.05 and p < 0.001, respectively) (Figure 3D).

Moreover, glucose tolerance was impaired in 5-week-old Xrn1-cKO mice compared to control mice (Fig-

ure 3E), indicating that glucose metabolism is dysregulated in Xrn1-cKO mice. Furthermore, 5-week-old

Xrn1-cKO mice exhibited insulin resistance (Figure 3F), suggesting that insulin sensitivity is impaired in

Figure 2. Continued

(B) White adipose tissues (eWAT and iWAT), BAT, liver and brain from male 12-week-old Xrn1flox/flox (left) and Xrn1-cKO

(right) littermates.

(C) Tissue weights of Xrn1flox/flox (white, n = 5–8) and Xrn1-cKO (red, n = 3–7) mice at 12 weeks old. Data represent

means G SD. Unpaired Student’s t test, **p < 0.01; ***p < 0.001.

(D) HE-stained paraffin sections of iWAT, eWAT, BAT and liver from 23-week Xrn1flox/flox (left) and Xrn1-cKO (right) mice.

Black scale bars represent 50 mm.

(E and F) Histograms of adipocyte size in iWAT (E) and eWAT (F) of Xrn1flox/flox (black) and Xrn1-cKO (red) mice are shown.

(G) Lipid accumulation in the liver of Xrn1-cKO compared to that of Xrn1flox/flox mice by Oil Red O staining.

(H) Decreased UCP1 expression in BAT of Xrn1-cKO compared to that in Xrn1flox/flox mice by immunohistochemistry.

(I) Protein expression of UCP1 and b-actin in BAT of Camk2a-Cre, Xrn1flox/flox and Xrn1-cKO mice (n = 3) is shown by

western blotting. An arrow and an asterisk indicate UCP1 and non-specific bands, respectively.

(J) Band intensities in Figure 2I were measured using NIH ImageJ. Average values from Camk2a-Cre mice were set as 1.

Data represent means G SEM. Unpaired Student’s t test, *p < 0.05; **p < 0.01; and ***p < 0.001.
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Figure 3. Xrn1-cKO mice exhibit metabolic disorders with hyperglycemia, hyperinsulinemia, and

hyperleptinemia

(A) Levels of circulating blood glucose (left), serum insulin (middle) and serum leptin (right) in 5-week male control (white,

n = 5–8) and Xrn1-cKO (red, n = 5–6) mice.

(B and C) (C) To test leptin sensitivity, 5-week-old Xrn1flox/flox (black, n = 5) and Xrn1-cKO (red, n = 5) mice were

intraperitoneally administered with leptin (5 mg/g body weight) every day for 5 days (blue arrows), daily body weight (B)

and food intake (C) were measured for 11 days. Dbody weight (%) is shown as the percentage of daily weight gain

normalized by daily body weight.
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Xrn1-cKOmice. Weight gain, food intake and metabolic dysregulation such as impaired glucose tolerance

and insulin resistance developed as early as 5 weeks old in Xrn1-cKO mice, before the onset of increased

body weight.

Forebrain-specific disruption of Xrn1 causes a metabolic shift and affects basal metabolism

To investigate whether the obese phenotype is caused by alterations in energy intake and/or energy

expenditure, whole-body basal metabolism was examined by indirect calorimetry. Intriguingly, loss of

XRN1 in the brain (central nervous system) caused an increase in respiratory exchange ratio (RER, VCO2/

VO2; p < 0.01; Figure 4A), but little change in overall energy expenditure (kcal/kg/h; Figure 4B) at 6 weeks

old, which corresponds to the onset of obesity. The value of the RER indicates the energy source: an RER of

1.0 indicates that only carbohydrates are used as an energy source, but if fat is the sole energy source the

RER is 0.7 (Speakman, 2013). In control mice, RER oscillated during the day, with lower RER during the day

indicating increased fat usage. In Xrn1-cKO mice, RER remained constant at around 1.0, indicating that

these mice use only carbohydrates and suggesting that disruption of XRN1 function in neurons impairs

the use of fat as an energy source in these mice. The RER was constant day and night in both 6-week-

old and 12-week-old Xrn1-cKO mice, which is after the onset of obesity (Figure 4C). Nonetheless, energy

expenditure was significantly decreased in these obesemice at 12 weeks old (day, p < 0.01; night, p < 0.001)

(Figure 4D). To investigate whether reduced physical activity contributes to the decreased energy expen-

diture observed in Xrn1-cKOmice, locomotor activity was examined using a home-cage activity monitoring

system. There was no difference in nocturnal activity, but diurnal activity appeared to decrease in Xrn1-cKO

mice (Figure S4E). In summary, Xrn1-cKO mice do not exhibit the diurnal switch from carbohydrate to fat

usage and expend less energy expenditure at 12 weeks old.

Xrn1-cKO mice exhibited upregulated expression of hypothalamic appetite and energy

homeostasis-related genes in the hypothalamus

The hypothalamus regulates glucose homeostasis, leptin signaling, and energy expenditure by sensing

hormones such as insulin and leptin, and by integrating and coordinating neurophysiological responses

to regulate whole-body metabolism. To investigate the underlying cause of dysregulation of appetite

and energy homeostasis in Xrn1-cKO mice, hypothalamic gene expression was examined by quantitative

PCR (qPCR). Expression of mRNAs relevant to appetite and energy homeostasis was increased in the hy-

pothalamus of Xrn1-cKO mice compared to control mice. These include mRNAs encoding Agrp and the

inhibitors of the JAK-STAT and PI3K-AKT signaling pathways Socs3, Ptp1b, and Tcptp (Figure 5A).

As an exoribonuclease, XRN1 degrades mRNA and therefore XRN1 deletion could increase mRNA either

directly, via reduced mRNA degradation, or indirectly via increased transcription. To clarify the effect of

transcription, pre-mRNA expression was measured by qPCR. Socs3 pre-mRNA was elevated in Xrn1-

cKO hypothalamus, suggesting that transcription is increased. There was little change in Agrp, Ptp1b,

and Tcptp pre-mRNAs, implying that the increase in these mRNAs in the Xrn1-cKO hypothalamus results

from decreased mRNA degradation (Figure 5B). Western blotting revealed that protein expression of in-

sulin receptor (INSR), SOCS3, PTP1B, and TCPTP were not altered in hypothalamus of 12-week-old Xrn1-

cKO mice, whereas leptin receptor (LEPR) was significantly increased (Figures 5C and 5D), implying that

dysregulated metabolism in Xrn1-cKO mice is not caused by changes of these genes. Since neither

LEPR nor INSR was decreased in Xrn1-cKO hypothalamus, leptin resistance and insulin resistance in

Xrn1-cKO mice were not caused by a lack of LEPR or INSR. Moreover, immunohistochemistry showed an

increase in AgRP protein in the arcuate nucleus of the hypothalamus (ARC) of Xrn1-cKO mice compared

to control mice (Figures 5E and 5F). Increased AgRP in Xrn1-cKO hypothalamus could contribute to the

obese phenotype with elevated appetite, leptin resistance, decreased energy expenditure, hyperglyce-

mia, and insulin resistance (Figure 6).

Figure 3. Continued

(D) Fed (left) and fasting (right) blood glucose levels in 5-, 7- and 9-week-old control (black, n = 5) and Xrn1-cKO (red, n = 5)

mice are shown.

(E) Intraperitoneal glucose tolerance test (IPGTT) using 5-week-old control (black, n = 5) and Xrn1-cKO (red, n = 5) mice.

Areas under the curves (AUC) of IPGTT are shown on the right side.

(F) Insulin tolerance test (ITT) using 5-week-old control (black, n = 5) and Xrn1-cKO (red, n = 5) mice. Values at 0 min are set

as 100%. Areas under the curves (AUC) of ITT are shown on the right side. Data represent meansG SEM. Two-way ANOVA

followed by Bonferroni post hoc test for fed and fasting blood glucose, IPGTT and ITT. Unpaired Student’s t test for AUC,

*p < 0.05; **p < 0.01; and ***p < 0.001. ns represents ‘‘not significant.’’
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DISCUSSION

In eukaryotes, XRN1 catalyzes the last step of mRNA degradation after deadenylation and decapping.

Regulation of mRNA turnover is crucial for development and homeostasis in various mammalian tissues.

Mice that lack components of the mRNA degradation machinery exhibit different types of physiological

dysregulation, such as metabolic disorders and male infertility (Morita et al., 2011; Takahashi et al., 2015;

A

B

C

D

Figure 4. Xrn1-cKO mice displayed increased VCO2 and energy expenditure and constant RER, indicating an

inability to utilize fat as an energy source

(A and B) (A) respiratory exchange ratio (RER) and (B) energy expenditure of male 6-week-old Xrn1flox/flox mice (black,

n = 5) and Xrn1-cKO mice (red, n = 6) were measured. RER is calculated by VCO2/VO2. An RER of 1.0 means that

carbohydrates are the dominant energy source; 0.7 indicates that fat is the dominant energy source.

(C and D) (C) Respiratory exchange ratio (RER) and (D) energy expenditure of male 12-week-old Xrn1flox/flox mice (black,

n = 8) and Xrn1-cKO mice (red, n = 8) were measured. Average values of each parameter in Xrn1flox/flox mice (white) and

Xrn1-cKO mice (red) during light and dark are shown on the right sides.
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Figure 5. Xrn1-cKO mice exhibit upregulated appetite and energy homeostasis-related genes in the

hypothalamus

(A) Quantitative PCR (qPCR) analysis of the indicated mRNA levels in the hypothalamus of 10- to 14-week-old control

(Xrn1flox/flox: white, n = 5;Camk2a-Cre: gray, n = 10) and Xrn1-cKOmice (red, n = 5). The value of the average of Xrn1flox/flox

mice was set as 1. Data represent means G SEM. One-way ANOVA, Tukey post hoc test, *p < 0.05; **p < 0.01; and

***p < 0.001.

(B) qPCR analysis of the indicated pre-mRNAs in the hypothalamus of 10- to 14-week-old control (Xrn1flox/flox: white, n = 5;

Camk2a-Cre: gray, n = 10) and Xrn1-cKO mice (red, n = 5). The average value of Xrn1flox/flox mice was set as 1. Data

represent means G SEM. One-way ANOVA, Tukey post hoc test, *p < 0.05; **p < 0.01; and ***p < 0.001.
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Nakamura et al., 2004). Those studies focused on regulation of deadenylation by the CCR4-NOT complex

at the 30 end of mRNA, which is an early step of mRNA degradation. This study is the first to reveal the phys-

iological function of XRN1, a 50–30 exoribonuclease, using conditional knockout mice that exhibit obesity

with hyperphagia. XRN1 protein expression is increased in 20-week-old wild-type mice fed with a high-

fat diet for 12 weeks (Figures S6A and S6B). Based on our study, increased XRN1 may be expected to

reduce feeding and increase the use of fat as an energy source. Moreover, Xrn1 mRNA was also increased

by fasting in 10-week-old control (Xrn1flox/flox) mice (Figure S6C). Therefore, XRN1 expression is responsive

to perturbations to food intake and energy balance, which may contribute to the regulation of these pro-

cesses to maintain metabolic homeostasis. Expression of metabolic genes in the hypothalamus of Xrn1-

cKO mice is altered, implying that RNA degradation is critical not only in peripheral tissues, but also in

the central nervous system to maintain homeostasis of metabolism-related gene expression.

Our unpublished data using Camk2a-Cre conditional KO mice demonstrate that forebrain-specific

knockout of Cnot1 or Cnot3, encoding a scaffold protein and a regulatory subunit of the CCR4-NOT com-

plex, respectively, is embryonic lethal, implying that regulation of mRNA degradation by the CCR4-NOT

complex in embryonic neurons is essential. On the other hand, Xrn1-cKO mice are viable, suggesting

that the last step of mRNA degradation by XRN1 in neurons is less critical during embryogenesis. This

attenuated phenotype caused by the lack of XRN1might also be because of the fact that XRN1 targets spe-

cific transcripts, rather than bulk mRNAs (Souret et al., 2004; Rymarquis et al., 2011). Further studies should

identify transcripts specifically targeted by XRN1 that are essential for embryogenesis and neuronal

functions.

The ribonuclease Dicer processes miRNA precursors into functional miRNAs, and conditional Dicer

knockout mice in anorexigenic pro-opiomelanocortin (POMC) neurons exhibit obesity with hyperphagia,

steatosis, impaired glucose metabolism, and hyperleptinemia (Schneeberger et al., 2012), demonstrating

the importance of miRNA-mediated gene expression in regulation of whole-body metabolic homeostasis.

XRN1 is also thought to participate in miRNA-mediated decay (Zangari et al., 2017). Our current study dem-

onstrates that mRNAs that contribute to metabolism are regulated by XRN1 in the hypothalamus (Fig-

ure 5A), and this could be mediated by miRNAs. We provide evidence that forebrain-specific knockout

of the 50–30 exoribonuclease XRN1 causes obesity with hyperphagia, which results in hyperglycemia, hyper-

insulinemia and hyperleptinemia. Taken together, these findings revealed the importance of XRN1-medi-

ated mRNA degradation in regulating gene expression in the leptin signaling pathway.

Hyperleptinemia is often observed in obese mouse models. Under normal conditions, increased adiposity

leads to more leptin production. Increased circulating leptin levels are detected by the hypothalamus and

cause metabolic shifts to achieve energy homeostasis. However, obese individuals are less sensitive to lep-

tin, and resistant to anorexigenic effects of leptin, a state called ‘‘leptin resistance’’ (St-Pierre and Tremblay,

2012). Previous studies have shown that leptin resistance is caused by various mechanisms, such as ER

stress, inflammation, and attenuation of leptin signaling by SOCS3 and protein tyrosine phosphatases

such as PTP1B and TCPTP (Bjørbæk et al., 1998; Loh et al., 2011; St-Pierre and Tremblay, 2012; Tanti

et al., 2013; White et al., 2009; Zhang et al., 2008). Xrn1-cKO mice are obese with high serum leptin levels

(Figures 3A, S2A, and S2B). In addition, Xrn1-cKO mice develop leptin resistance before the onset of

obesity (Figures 3B and 3C), which may be caused by increased Socs3, Ptp1b and Tcptp mRNAs in Xrn1-

cKO hypothalamus (Figure 5A). It is also possible that upregulation of leptin resistance mRNAs may be a

consequence of obesity, rather than its cause. For instance, Socs3 overexpression in leptin receptor-ex-

pressing neurons results in a lean phenotype rather than obesity (Reed et al., 2010). In addition, AgRP

neuron-specific Socs3 overexpression does not cause obesity, but instead leads to a phenotype similar

to that caused by short-term consumption of a high-fat diet (Olofsson et al., 2013). POMC neuron-specific

Figure 5. Continued

(C) Protein expression of XRN1, LERP, INSR, STAT3, FOXO1, SOCS3, PTP1B, TCPTP, and a-Tubulin in 12-week-old control

(Xrn1flox/flox: white, n = 3; Camk2a-Cre: gray, n = 3) and Xrn1-cKO mice (red, n = 3).

(D) Quantitative analysis of protein bands in panel 5C. Band intensities were measured using NIH ImageJ. Values of the

average of Xrn1flox/floxmice were set as 1. Data represent meansG SEM. One-way ANOVA, Tukey post hoc test, *p < 0.05;

**p < 0.01; and ***p < 0.001.

(E) Immunofluorescence analysis of AgRP (red) and nuclei by counterstaining with DAPI (blue) in the ARC of Xrn1-cKO and

control (Xrn1flox/flox) mice at 12 weeks old.

(F) Quantification of the AgRP signal in the ARC of Xrn1-cKO (red) and control (white) mice.
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Socs3 overexpression causes obesity without severe weight gain and hyperphagia (Reed et al., 2010).

Therefore, upregulation of Socs3 mRNA is unlikely to be the primary cause of the phenotypes observed

in Xrn1-cKO mice.

Xrn1-cKO mice are not only obese, but their bodies are longer than those of littermates (Figures 1C and

1D). Interestingly, ob/ob and db/db mice do not exhibit increased body length. Instead, they are shorter

than their littermates (Dubuc, 1976; Graham et al., 1997). On the other hand, Agrp-overexpressing mutant

mice, Pomc-knockout mice,Mc4r-knockout mice, andMC4R-deficient human patients exhibit longer body

length (Farooqi et al., 2003; Graham et al., 1997; Huszar et al., 1997; Ollmann et al., 1997; Yaswen et al.,

1999), which could indicate that phenotypes of Xrn1-cKO mice are related to hyperactive melanocortin

signaling.

RER in Xrn1flox/flox mice is lower during the day and higher at night, reflecting the diurnal metabolic shift

from fat to carbohydrate usage. In contrast, Xrn1-cKO mice exhibited constant RER during both day and

night, indicating that carbohydrates are the dominant source of energy throughout the day (Figures 4A

and 4C). A recent study revealed that activation of AgRP neurons affects substrate utilization in favor of car-

bohydrate use over lipid use (Cavalcanti-de-Albuquerque et al., 2019), demonstrating that AgRP neurons

regulate lipogenesis and glycolysis in white adipose tissue via sympathetic signaling. In consequence,

activation of AgRP neurons leads to an increase in RER. We hypothesize that the loss of XRN1 may lead

to activation of AgRP neurons in Xrn1-cKO mice, as the phenotype is similar to Agrp-overexpressing

mice (Graham et al., 1997). Because leptin acts primarily via AgRP neurons to regulate body weight and

Figure 6. A lack of XRN1 in neurons causes increased appetite, decreased energy expenditure, hyperglycemia,

and dysfunctions of metabolic hormones

Appetite circuits in the hypothalamus and consequent metabolic functions in peripheral tissues such as adipose tissue,

pancreas, and liver. The diagram indicates dysregulation of metabolic homeostasis by activated AgRP neurons in Xrn1-

cKO hypothalamus. EE: Energy expenditure.
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food intake (Xu et al., 2018), it is feasible that leptin resistance in Xrn1-cKO mice might originate from acti-

vated AgRP neurons. It is unlikely that the increase in Agrp mRNA in Xrn1-cKO mice results directly from a

loss of XRN1 since AgRP neurons are GABAergic (Horvath et al., 1997), and Camk2a-Cre expression is

almost exclusively restricted to glutamatergic neurons (Wang et al., 2013). AgRP neurons are directly acti-

vated by excitatory glutamatergic TRH-/PACAP-positive neurons located in the paraventricular nucleus of

the hypothalamus (PVH) (Krashes et al., 2014). This neuronal pathway drives feeding and if these neurons

are overactive in Xrn1-cKO brain, it provides a possible mechanism by which loss of XRN1 in glutamatergic

neurons could lead to activation of GABAergic AgRP neurons. Activation of AgRP neurons via this pathway

was able to drive feeding even in sated mice and therefore it could override satiety signals such as

increased leptin and lead to leptin resistance.

Previous studies have shown that XRN1 regulates target gene expression by controlling mRNA stability,

transcription, and translation (Braun and Young, 2014; Luchelli et al., 2015). Therefore, further comprehen-

sive analyses are required to fully clarify mechanisms of activated AgRP neurons in Xrn1-cKOmice. Commu-

nication between the central nervous system and peripheral metabolic tissues is important to determine

whole-body energy metabolism (Myers and Olson, 2012). Further analyses of peripheral tissues are

required to determine whether themetabolic alterations in Xrn1-cKOmice are due to dysregulation of lipo-

genesis and glycolysis.

RNA modifications such as N6-methyladenosine (m6A) are increasingly recognized as being important in

gene expression. XRN1 interacts with YT521-B homology domain-containing 2 (YTHDC2), an m6A reader

that recognizes internal RNA modifications in mRNAs and is indispensable for male and female fertility

(Wojtas et al., 2017; Hsu et al., 2017). N6-adenosine methylation in RNA is mediated by YTH domain fam-

ily proteins (YTHDF1, YTHDF2, and YTHDF3) and YTH domain-containing proteins (YTHDC1 and

YTHDC2), each of which serves a distinctive physiological function. YTHDF1 and YTHDF3 contribute to

mRNA translation, whereas YTHDF2 enhances mRNA decay in processing bodies via recruitment of

the CCR4-NOT complex (Du et al., 2016). Although YTHDC1 regulates pre-mRNA splicing, little is known

about the physiological function of YTHDC2, beyond its RNA helicase activity. The physiological rele-

vance of the interaction between XRN1 and YTHDC2 is not clear. YTHDC2 is ubiquitously expressed

in various tissues, including the hypothalamus. Aberrant recognition of RNA modifications, because of

the lack of association between XRN1 and YTHDC2 in the hypothalamus of Xrn1-cKO mice may

contribute to metabolic disorders. Further study is required to determine the role of XRN1 in gene regu-

lation by RNA modification.

In conclusion, we demonstrated that forebrain-specific Xrn1 knockout causes defects in energy homeosta-

sis and leads to obesity and hyperphagia. Although XRN1 is thought to degrade bulk mRNAs in principle,

Xrn1-cKO mice exhibit very specific phenotypes, implying that XRN1 targets specific mRNAs under certain

circumstances. Moreover, gene expression of appetite and energy homeostasis-related genes in the hypo-

thalamus of Xrn1-cKOmice suggests that either 50–30 decay targets particular mRNAs or the majority of the

50–30 decay targets are degraded by different decay pathways, such as 30-50 decay in Xrn1-cKO mice. In

summary, understanding the molecular mechanisms of obesity and energy homeostasis regulated by

XRN1 may enable development of novel therapeutic strategies for metabolic disorders such as obesity

and diabetes.

Limitations of the study

Camk2a-Cre mice were used for our study; hence we could not conclude which specific neural cells are

responsible for the dysregulated appetite in Xrn1-cKOmice. Targeting specific populations of neurons us-

ing, for example, Pomc-Cre, Agrp-Cre, PACAP-Cre, and/or TRH-Cre mice to generate Xrn1-cKO mice

would clarify in which neurons the dysregulated gene expression caused by the deletion of Xrn1 contrib-

utes to aberrant appetite.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-XRN1 Bethyl Laboratories Cat#A300-443A; RRID: AB_2219047

Rabbit monoclonal anti-Leptin Receptor Abcam Cat#ab177469

Rabbit monoclonal anti-Insulin Receptor Cell Signaling Cat#3025; RRID: AB_2280448

Rabbit monoclonal anti-Stat3 (79D7) Cell Signaling Cat#4904; RRID: AB_331269

Rabbit monoclonal anti-FoxO1 (C29H4) Cell Signaling Cat#2880; RRID: AB_2106495

Rabbit polyclonal anti-SOCS3 Cell Signaling Cat#2923; RRID: AB_2255132

Rabbit polyclonal anti-PTP1B Proteintech Cat# 11334-1-AP; RRID: AB_10642566

Rabbit monoclonal anti-TCPTP (TC45) (D7T7D) Cell Signaling Cat#58935; RRID: AB_2799550

Rabbit polyclonal anti-UCP1 Abcam Cat#ab10983; RRID: AB_2241462

Rabbit polyclonal anti-AgRP Phoenix Pharmaceuticals Cat# H-003-57; RRID: AB_2313909

Mouse monoclonal anti-CNOT1, Bio Matrix,

#1012

This paper N/A

Rabbit monoclonal anti-CNOT2 Cell Signaling Cat#34214; RRID: AB_2799049

Mouse monoclonal anti-CNOT3, Bio Matrix,

#54

This paper N/A

Mouse monoclonal anti-CNOT7 Abnova Cat#H00029883-M01; RRID: AB_606077

Rabbit monoclonal anti-a-tubulin Sigma-Aldrich Cat#T9026; RRID: AB_477593

Rabbit monoclonal anti-GAPDH (14C10) Cell Signaling Cat# 2118; RRID: AB_561053

Rabbit monoclonal anti-b-Actin (13E5) Cell Signaling Cat# 4970; RRID: AB_2223172

Sheep monoclonal anti-Mouse IgG -

Horseradish Peroxidase antibody

GE Healthcare Cat#NA931; RRID: AB_772210

Donkey anti-Rabbit IgG, Whole Ab ECL

Antibody, HRP Conjugated

GE Healthcare Cat#NA934; RRID: AB_772206

Goat polyclonal anti-Rabbit IgG H&L (Alexa

Fluor 555)

Abcam Cat#ab150078; RRID: AB_2722519

Chemicals, peptides, and recombinant proteins

Leptin R&D Systems Cat#498-OB

Insulin Eli Lilly Cat#Humalog

Critical commercial assays

Mouse Leptin ELISA kit Abcam Cat#ab199082

Mouse Insulin ELISA kit Mercodia Cat#10-1247-01

VECTASTAIN ABC HRP Kit (Peroxidase, Rabbit

IgG )

Vector Laboratories PK-4001

Experimental models: Organisms/strains

Mouse: Xrn1 flox/+ This paper NA

Mouse: B6.FVB-Tg(Camk2a-cre)2Gsc/Cnrm Casanova et al. (2001) EM:01153 at EMMA; https://www.infrafrontier.

eu/

Mouse: C57BL/6J CLEA Japan Cat#C57BL/6JJcl

Oligonucleotides

Primers for gRNA and ssODN to generate

Xrn1flox/+ mice, see Table S1

This paper N/A

Primers for genotyping, see Table S2 This paper N/A

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Tadashi Yamamoto (tadashi.yamamoto@oist.jp).

Materials availability

Mouse line (Xrn1flox/+) generated in this study has been deposited to the Laboratory for Animal Resources

and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research.

Data and code availability

d All data reported in this paper will be shared by the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice

Xrn1flox/+ mice were generated by single-strand oligodeoxynucleotide (ssODN)-mediated knock-in with

CRISPR-Cas system using C57BL/6N zygotes, in which loxP sites flank exons 2 and 6 of the Xrn1 gene

(accession no. CDB0007E: http://www2.clst.riken.jp/arg/micelist.html) (Figure S1A). Two guide RNAs

(gRNAs) and ssODN targeting introns 1 and 6 of the Xrn1 gene and Cas9 were injected into wild-type zy-

gotes. gRNA and ssODN sequences are listed in Table S1. The loxP insertion in cis orientation was

confirmed by genotyping in F1 offspring. Primers used for detection of wild-type and floxed alleles are

listed in Table S2. CAG-Cremice, which express the Cre recombinase gene under control of the cytomeg-

alovirus immediate early enhancer-chicken beta-actin hybrid (CAG) promoter (Sakai and Miyazaki, 1997),

were used to generate whole-body knockout mice of Xrn1. To generate whole-body knockout mice of

Xrn1, we crossed Xrn1flox/flox mice with CAG-Crecre/+ mice. Primers used for detection of wild-type, floxed,

and knockout alleles are listed in Table S2.

Camk2a-Cre mice (B6.FVB-Tg(Camk2a-cre)2Gsc/Cnrm), which express the Cre recombinase gene under

control of the promoter of mouse calcium/calmodulin-dependent protein kinase II alpha (Camk2a)

gene, were used to generate forebrain-specific knockout mice of Xrn1 (Casanova et al., 2001). To generate

Xrn1-cKOmice, we crossed Xrn1flox/floxmice with Camk2a-Cre+/-mice. Primers used for genotyping of wild-

type and floxed alleles are listed in Table S2. All mice were maintained under a 12-hr light/12-hr dark cycle

in a temperature-controlled (22�C) barrier facility with free access to water and normal rodent chow (NCD,

CA1- 1, CLEA Japan). For diet-induced obesity experiments, 8-week-old mice were fed with high-fat diet

(HFD32, CLEA Japan) for 12 weeks. For fasting experiment, mice were fasted for 24 hours. Genders and

ages of mice used for experiments are indicated in figure legends. Mouse experiments were approved

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Primers for qPCR, see Table S3 This paper N/A

Primers for qPCR to detect pre-mRNAs, see

Table S4

This paper N/A

Software and algorithms

ImageJ Schneider et al. (2012) https://imagej.nih.gov/ij/

R software The R foundation R version 3.6.1

GraphPad Prism GraphPad Software, Inc Versions 8.0.2

Other

High fat diet CLEA Japan Cat#HFD32

Normal diet CLEA Japan Cat#NCD, CA1
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by the respective Institutional Animal Care and Use Committees of Okinawa Institute of Science and Tech-

nology Graduate University (OIST) and RIKEN Kobe branch.

METHOD DETAILS

Daily food intake analysis

Prior to measuring daily food intake, animals were caged individually and kept under a normal 12-hours

light-dark cycle. After at least one day of acclimation, the mass of food intake for 24 hours of Xrn1flox/flox

(n=10), Camk2a-Cre (n=10) and Xrn1-cKO (n=10) mice was measured. The daily food intake was deter-

mined by subtracting the mass of food remaining after 24 hours from that supplied at the beginning.

Histochemistry

Mouse inguinal white adipose tissue (iWAT), epididymal white adipose tissue (eWAT), brown adipose tis-

sue (BAT) and livers from 23-week-old Xrn1flox/flox and Xrn1-cKOmice were fixed in 4% paraformaldehyde in

phosphate buffer for 24 hours and embedded in paraffin. Paraffin sections (3 mm thick) were stained with

hematoxylin and eosin (HE), and histological images of mouse tissues were acquired using a Keyence

BZ-x710 at magnifications of 20X (iWAT, eWAT and liver) and 40X (BAT). Adipocyte size in iWAT and

eWAT was determined by quantifying bright field images using the hybrid cell count software (Keyence)

according to the manufacturer’s instructions. Paraffin sections for immunohistochemistry were rehydrated

and incubated with 3% H2O2 for 10 minutes at room temperature. Slides were boiled for 5 minutes with

0.01 M citrate buffer (pH 6.0) and incubated with blocking buffer (PBS containing 10% goat serum, 0.1%

Triton X-100, and 5% BSA fraction V) for 30 minutes at room temperature. Slides were then incubated

with blocking buffer containing the antibody against UCP1 (#ab10983; Abcam) overnight at 4�C. After
washing in PBS, slides were incubated with biotinylated goat anti-rabbit IgG and subsequently with

VECTASTAIN ABC HRP Kit (PK-4001; Vector Laboratories) according to the manufacturer’s instructions.

UCP1 was detected with DAB Peroxidase Substrate Kit (SK-4100; Vector Laboratories) according to the

manufacturer’s instructions and then counterstained with hematoxylin (GHS316; SIGMA).

Leptin administration

To test leptin sensitivity, 5-week-old mice were intraperitoneally injected with leptin (5 mg/g body weight)

every day for 5 days (from 4th to 8th day). Daily body weight and food intake were measured. Daily weight

gain was normalized by daily body weight.

Blood analysis

Random blood glucose was measured from tail vein blood using a glucometer (Glutest Neo alpha Sensor,

Sanwa Kagaku Kenkyusho). Mice used for serum collection were euthanized with isoflurane, and blood was

taken from the inferior vena cava. Whole blood was kept at room temperature until it clotted. Then it was

centrifuged at 2,000 g for 10 minutes to separate serum. Concentrations of serum insulin and serum leptin

were measured with a Mouse Insulin ELISA kit (10-1247-01, Mercodia) and a Mouse Leptin ELISA kit

(ab199082, Abcam).

IPGTT and ITT

To test glucose tolerance, mice were fasted for 16 hours. Mice were intraperitoneally injected with glucose

(1 g/kg body weight), and blood glucose levels were measured at 0, 15, 30, 60, 90 and 120 minutes using a

glucometer. To test insulin tolerance, fed mice were intraperitoneally injected insulin (1 U/kg body weight).

Blood glucose levels were measured at 0, 15, 30, 60, 90 and 120 minutes using a glucometer.

Metabolic analysis

Whole-body energy metabolism measurements were performed using a Comprehensive Laboratory Ani-

mal Monitoring System (CLAMS) equipped with an Oxymax Open Circuit Calorimeter System (Columbus

Instruments, Columbus, OH, USA). Mouse weights weremeasured andmice were acclimated for 3 days in a

metabolic chamber with food and water under a normal 12-hours light-dark cycle. Oxygen consumption

(VO2) and carbon dioxide production (VCO2) were monitored for 24 hours. The VO2 and VCO2 values

were used to calculate the respiratory exchange ratio (RER). RER was used to assess energy source utiliza-

tion and energy expenditure (EE) normalized by body weight. Data were analyzed using the CLAX software

from Columbus Instruments and visualized using an Excel.
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Locomotor activity in home cage

Locomotor activity monitoring in home cage was performed with a system that automatically analyzes the

locomotor activity of mice in their home cage (O’Hara & Co., Ltd). The system contains a home cage with a

lid harboring a CCD camera and a white and IR LED unit. Mice were housed individually under a normal 12

hours light-dark cycle with free access to both water and food. After a day acclimation, the distance trav-

eled every minute was measured for 24 hours. Images from each cage were captured at a rate of two frames

per second and automatically analyzed using a modified ImageJ software from O’Hara & Co., Ltd. Data

(Schneider et al., 2012) were exported and visualized using GraphPad Prism.

Immunoblotting

For protein expression analysis, mice were euthanized with isoflurane and perfused with PBS. Tissue was

frozen in liquid nitrogen immediately after excision and kept at -80�C until use. Tissue was homogenized

in TNE buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 2 mM EDTA, 1% NP40, EDTA-free Protease Inhibitor

Cocktail (Nacalai Tesque), 1 mM PMSF, 1mM b-Glycerophosphate, 1 mMNa2VO3, and 1 mMNaF) by pass-

ing the tissue in lysis buffer 10 times through a 24-gauge needle, followed by incubation for 30 minutes on

ice. Lysates were clarified by centrifugation at 16,000 g for 10 minutes at 4�C. Protein concentrations in ly-

sates weremeasured using a Pierce BCA protein assay Kit (Thermo Fisher Scientific) and dissolved in 1xSDS

sample buffer (containing 3% SDS, 10% glycerol, and 5% b-mercaptoethanol). Proteins in lysates were then

reduced at 95�C for 5 minutes before being separated by SDS-polyacrylamide gel (SDS-PAGE) electropho-

resis. Proteins transferred onto 0.45mm polyvinylidene difluoride membranes (PVDF, Millipore cat no.

IPVH00010) using a wet transfer system (Nihon Eido, Tokyo, Japan). After membranes were blocked with

3% skimmed milk in TBST (20 mM Tris–HCl, pH 7.5, 150 mMNaCl, 0.05% v/v Tween 20), proteins of interest

were probed with specific primary antibodies and then appropriate horseradish peroxidase (HRP)-conju-

gated secondary antibodies. Chemiluminescent signals were detected using an ImageQuant LAS

4000 mini (GE Healthcare, Tokyo). Sequential probing of membranes with a variety of antibodies was per-

formed after inactivation of HRP with 0.1% sodium azide (NaN3), according to the antibody manufacturer’s

protocol. Protein level was quantified using ImageJ software and normalized to a-tubulin. The following

primary antibodies were used for immunoblotting: XRN1 (A300-443A; Bethyl Laboratories), LEPR

(ab177469; Abcam), INSR (#3025; Cell Signaling), STAT3 (#4904; Cell Signaling), SOCS3 (#2923; Cell

Signaling), FOXO1 (#2880; Cell Signaling), PTP1B (#5311; Cell Signaling), TCPTP (#58935; Cell Signaling),

a-tubulin (#T9026; SIGMA), GAPDH (#2118; Cell Signaling), CNOT1 (#1012; Bio Matrix), CNOT2 (#34214;

Cell Signaling), CNOT3 (#54; Bio Matrix), and CNOT7 (H00029883-M01; Abnova). The following secondary

antibodies were used: ECL anti-mouse IgG HRP-conjugated whole antibody (NA931V; GE healthcare) and

ECL anti-rabbit IgG HRP-conjugated whole antibody (NA934V; GE healthcare).

Quantitative PCR

Quantitative PCR (qPCR) was performed according to the protocol of Taylor et al. (Taylor et al., 2019). 1mg

of total RNA was used for cDNA synthesis with SuperScript Reverse Transcriptase III (Thermo Fisher Scien-

tific). cDNA was diluted 10-fold with RNase-free water. qPCR reactions consisted of 2.5 mL of cDNA, 5 mL of

SYBR Premix Ex Taq (Takara), 0.2 mL of ROX reference dye, 0.2 mL of 10 mM primers (primers are listed in

Tables S3 and S4). qPCR was performed using a ViiA 7 Real-Time PCR System (Applied Biosystems). Target

cDNA expression was normalized to both Gapdh and Hprt using the method of Taylor et al. (2019). Pre-

mRNA expression was normalized to both Gapdh and Rplp0. Each sample was run in three technical

replicates.

Immunofluorescence

Mice were euthanized with isoflurane and perfused with 4% PFA/PBS. After perfusion, brains were

dissected and further fixed in 4% PFA/PBS overnight at 4�C. Fixed brains were immersed in 15% su-

crose/PBS for 2 hours at 4�C and 30% sucrose/PBS overnight at 4�C. Brains were embedded in optimal cut-

ting temperature (OCT) compound and frozen at -20�C. Frozen brains were sectioned coronally at 30 mm

using a Leica CM 3050S cryostat. Brain sections were kept in PBS at 4�C until use. Brain sections were

mounted on slides, and then washed twice with PBS. After blocking in PBS with 0.05% Triton X-100

(PBS-T) containing 5% goat serum for 1 hour at RT, sections were incubated with antibodies against

XRN1 (A300-443A; Bethyl Laboratories), or AgRP (H-003-57; Phoenix Pharmaceuticals) at 4�C overnight.

After washing in PBS-T, slides were incubated with secondary antibody (Goat Anti-Rabbit IgG H&L (Alexa

Fluor� 555); ab150078; Abcam) for 2 hours at RT. Slides were then washed in PBS-T and incubated with
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DAPI. Immunolabelling was detected by fluorescence microscopy using a Keyence BZ-X700. Signal inten-

sities were quantified from images using ImageJ software.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were conducted using an unpaired two-tailed Student’s t test, one-way ANOVA fol-

lowed by Tukey post hoc test or two-way ANOVA followed by Bonferroni post hoc test as indicated in

the figure legends. All values < 0.05 were considered significant.
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