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Meta-analysis is a method for enhancing statistical power through the integration of information from
multiple studies. Various methods for integrating p-values (i.e., statistical significance), including
Fisher’s method under an independence assumption, the permutation method, and the decorrelation
method, have been broadly used in bioinformatics and computational biotechnology studies. However,
these methods have limitations related to statistical assumption, computing efficiency, and accuracy of
statistical significance estimation. In this study, we proposed a numerical integration method and exam-
ined its theoretical properties. Simulation studies were conducted to evaluate its Type I error, statistical
power, computational efficiency, and estimation accuracy, and the results were compared with those of
other methods. The results demonstrate that our proposed method performs well in terms of Type I error,
statistical power, computing efficiency (regardless of sample size), and statistical significance estimation
accuracy. P-value data from multiple large-scale genome-wide association studies (GWASs) and
transcriptome-wise association studies (TWASs) were analyzed. The results demonstrate that our pro-
posed method can be used to identify critical genomic regions associated with rheumatoid arthritis
and asthma, increase statistical significance in individual GWASs and TWASs, and control for false-
positives more effectively than can Fisher’s method under an independence assumption. We created
the software package Pbine, available at GitHub (https://github.com/Yinchun-Lin/Pbine).
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fisher’s p-value combination method [1], which integrates sta-
tistical significance (i.e., p-value pi) from many statistical hypothe-
sis tests was originally proposed to examine a joint null hypothesis
(i.e., an intersection of the individual null hypotheses) in a meta-
analysis [2]. Test statistic of Fisher’s method is defined as negative
two times the summation of log-transformed p-values (i.e.,
F ¼ �2

P
ilnðpiÞ) [1]. This method has been broadly applied in

bioinformatics and computational biotechnology studies, such as
the meta-analysis of genome-wide association study (GWAS) [3–
5] and that of transcriptome-wide association study (TWAS) [6–8].

If all the p-values pi; i ¼ 1; � � � ;Kf g follow Uniform (0,1) distribu-
tion under a null hypothesis independently, test statistic F follows
a chi-squared distribution with 2K degrees of freedom. As such, the
exact p-value (pF) of F can be derived. However, when the p-values
are correlated, the mathematical derivation for the sampling distri-
bution of F becomes intractable. Remarkably, ignorance of the cor-
relation of p-values will inflate false-positives in the subsequent
statistical inference [9].

The permutation procedure [10], which involves non-
parametric resampling without replacement based on a set of
observed data, has been applied to generate a null distribution
and calculate an empirical p-value (pP) of F when the indepen-
dence assumption of p-values is violated. The permutation proce-
dure is simple in concept and robust to various correlation
structures of p-values. However, this method has some limitations.
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For instance, in a GWAS with a large sample size, which is used to
evaluate the phenotype–genotype relationship, permutations over
the phenotype status of study samples require intensive computa-
tion. Permutations over single nucleotide polymorphisms (SNPs)
may distort the inherent structure of SNPs (i.e., linkage disequilib-
rium). In addition, numerous permutations and intensive compu-
tation are required for a correction for multiple testing in GWASs
and TWASs [11,12].

The permutation procedure requires raw data (only p-value
data itself cannot perform permutations), which are not always
available. For instance, in a meta-analysis of GWAS, the p-values
of single-locus association tests from public genomic databases
(e.g., GWAS Catalog [13] and GWAS Central [14]) are available
and can be combined to infer the genetic association between SNPs
and a phenotype of interest. However, no raw genotype and phe-
notype data are provided in GWAS Catalog and GWAS Central.

Without the need for raw data, a decorrelation procedure [15]
transforms dependent p-values into independent p-values only
on the basis of p-value data and the correlation structure of the
p-values. The distribution F can thus be derived and computed
rapidly. However, in this study, we demonstrated that the order
of the combination of p-values influences the results (the order-
noninterchangeable property). For example, if p1 ¼ 0:9970 and
p2 ¼ 0:1903 are combined and their correlation coefficient
r = 0.5, then the decorrelation procedure provides a p-value of F
(pDÞ ¼ 0:0297; however, if the order of the combination of p-
values is reversed, then pD ¼ 0:5060.

Considering the permutation and decorrelation methods’ limi-
tations, we suggested a numerical integration method (pN) to eval-
uate the statistical significance of F. Herein, the theoretical
properties of a p-value combination are examined. Type I error,
statistical power, computational efficiency, and estimation accu-
racy were evaluated through simulation studies and compared
with those of Fisher’s method under an independence assumption
(pF), permutation (pP), and decorrelation (pD). Real-world examples
of meta-analyses of GWASs and meta-analyses of TWASs are given.

R codes Pbine are provided in GitHub at https://github.com/

Yinchun-Lin/Pbine.
2. Methods

2.1. Proposed method

Let R ¼ pi; i ¼ 1; � � � ;Kf g denote a list of dependent p-values
from K hypothesis tests with a correlation corr Rð Þ ¼ R. Because
the correlation is approximately invariant under monotone trans-
formations [15], R satisfies the following transformation T:
R ¼ 1� UfCU�1ð1� R#Þg, where C is the Cholesky factor of R

(i.e. R ¼ CCT), R# is a list of independent p-values, and U denotes
the cumulative distribution function of a standard normal random
variable. Let p�

i ; i ¼ 1; � � � ;K� �
be the p-values calculated from the

raw data observations for testing K null hypotheses. In our method,
the p-value of F is calculated as follows:

pN ¼
Z
D
JT�1 ;

where JT�1 is the joint probability density function of R (Text S1), D
is the region enclosed by 0 < pi < 1;8i and Qpi <

Q
p�
i . Noted that

pN is fixed for any permutation on p�
i ; i ¼ 1; � � � ;K� �

:

For reduced case K ¼ 2 with correlation 0 < r < 1, then

C ¼ 1 0
r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
� �

. The p-value of F is derived (Text S1) as

follows:
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pN ¼
ZZ
D

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p U0 U�1 1� vð Þ � rU�1 1� uð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
 !

� U�1
� �0

1� vð Þd u;vð Þ; ð1Þ

where D ¼ u;vð Þj0 < u;v < 1;uv < p�
1p

�
2

� �
and U0 is the derivative

of a cumulative distribution function of a standard normal variate.
A logarithm transformation of pi’s was considered to prevent

integration on curvilinear region D. pN in Eq. (1) can be rewritten
as follows:

pN ¼ 1�
ZZ
D0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p U0 U�1 1� ev0ð Þ � rU�1 1� eu
0	 


ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
 !

� U�1
� �0

1� ev0ð Þeu0ev0d u0;v 0ð Þ

where u0; v 0ð Þ ¼ ln uð Þ; ln vð Þð Þ and D0 ¼ u0; v 0ð Þju0; v 0 < 0; u0 þ v 0 >f
ln p�

1

	 
þ ln p�
2

	 
g.
If correlation of two p-values is r ¼ 0, pN in Eq. (1) can be

reduced to Fisher’s method as follows:

pN ¼ pF ¼ p�
1p

�
2 � p�

1p
�
2lnðp�

1p
�
2Þ ð2Þ

For K ¼ 2, the detailed derivation of JT�1 (Text S1), the symmet-
ric behavior and limiting behavior of JT�1 (Text S2), and a compar-
ison of the p-value of our proposed method (pN) with the
individual p-values (Text S3 and Fig. S1) are provided.

2.2. Simulation studies

To evaluate the Type I error, power, and computation time of
the p-value combination methods, bivariate linear regression mod-
els were applied to generate data in the simulation studies. Model
parameters were assigned or estimated following the purposes of
the simulation study. The p-values of our numerical integration
method (pN), the Fisher’s method under an independence assump-
tion (pF), and the decorrelation method (pD) were calculated and
compared with the benchmark method – the permutation method
(pP).

2.2.1. Evaluation of Type I error
A bivariate linear regression model was applied to generate two

phenotypes (yng , zng) and gene expression (xng) data in the simula-
tion study as follows:

yng
zng

� �
¼ bjxng

cjxng

 !
þ eng

ung

 !
;n ¼ 1; � � � ;N; g ¼ 1; � � � ;G ð3Þ

where N denotes the total number of samples and G indicates the
total number of genes. Random error terms eng and
ung ¼ weng þ ð1�wÞ�ng have correlation coefficient

corr eng ;ung

� �
¼ w. We assumed that eng and �ng would be indepen-

dent white noises following a standard normal distribution. Gene
expression xng was independently generated from Uniform 0;1ð Þ.

Here, we considered the regression coefficient under the null
hypothesis: bj ¼ cj ¼ 0; sample size N ¼ 500; gene number
G ¼ 2;000; simulation replications K ¼ 2;000. Given a specified
w, we generated the phenotypes and gene expression data. In each
of the simulated datasets, p-values py and pz were obtained by

testing null hypotheses Hb
0g : bg ¼ 0 and Hc

0g : cg ¼ 0, respectively,
through Student’s t test.

The results demonstrate that the methods control Type I error
well for uncorrelated p-values, i.e., corr py;pz

	 
 ¼ 0 (Fig. 1A). For
the positively correlated p-values py;pz

	 

, Fisher’s method (red
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line) under an independence assumption (pF) exhibited an inflated
Type I error particularly for an increased correlation of p-values.
Our method pN and the decorrelation procedure pD exhibited a
Type I error similar to that of the benchmark method pP; the
false-positive was 0.05–0.06. This indicates that p-value depen-
dency must be considered when the sampling distribution of a p-
value combination is derived. Therefore, our proposed method
controls Type I errors well.

2.2.2. Evaluation of statistical power
A bivariate linear regression model was applied to generate two

phenotypes (yng , zng) and gene expression (xng) data in the simula-
tion study as follows:

yng
zng

� �
¼ bjxng

wbjxng

 !
þ eng

ung

 !
;n ¼ 1; � � � ;N; g ¼ 1; � � � ;G ð4Þ

where N indicates the total number of samples and G indicates the
total number of genes. That is, zng ¼ wyng þ 1�wð Þ�ng and

ung ¼ weng þ ð1�wÞ�ng , and corr yng ; zng
	 
 ¼ corr eng ;ung

� �
¼ w. We

assumed that random error terms eng and �ng would follow an inde-
pendent standard normal random distribution individually. Gene
expression xng was generated from Uniform 0;1ð Þ independently.
Here, we considered bj ¼ 0:6; w ¼ 0:1; 0:3; 0:5; 0:7; 0:9; sample
size N ¼ 500; number of genes G ¼ 2;000; simulation replications
K ¼ 2; 000. P-values py and pz were obtained by testing null

hypotheses Hb
0g : bg ¼ 0 and Hc

0g : cg ¼ 0; where cg ¼ wbg . The rela-

tionship between corr eng ;ung

� �
¼ w and corr py;pz

	 
 ¼ r is dis-

cussed (Text S4 and Fig. S2).
The results demonstrated that the four methods have similar

power and that the power increases with r (Fig. 1B). pF has the
highest power, particularly for a higher r; however, the high power
is accompanied by an inflated Type I error as mentioned in the pre-
Fig. 1. (A) Type I error for the p-value combination methods. The x-axis represents cor
the p-value combination methods. The x-axis represents correlation corr eng ;ung

� �
¼ w

method (pN) and the permutation method (pP). The x-axis indicates number of thous
lines denote gene sizes G of 10,000, 20,000, and 30,000, respectively. The squares, triang
dotted, and dot-dashed lines represent correlation coefficients r of 0.1, 0.5, and 0.9, respe
of the benchmark method (pP). The y-axis indicates the p-values of the other p-value com
coefficients r ¼ 0.3, 0.5, and 0.7 are arranged from left to right.
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vious section (Fig. 1A). pD has the lowest power and deviates from
the benchmark pP, particularly for a high r. The proposed method
pN has high power similar to that of the benchmark pP.

2.2.3. Evaluation of computation time
The simulation model for an evaluation of Type I error was then

applied. We compared the computation time between the pro-
posed method (pN) and the benchmark method (pP) with various
sample sizes (N ¼ 3,000, 5,000, and 7,000), gene numbers (G ¼
10,000, 20,000, and 30,000), correlation coefficients
(w ¼ 0:1;0:5; and 0:9), and permutation times (K ¼ 2,000–
20,000, with increments of 2,000). The results show that the com-
putation time of the proposed method (pN) is unchanged with the
sample size, number of genes, and correlation coefficient (Fig. 1C).
The computation time for the permutation method (pP) increases
with sample size, number of genes, and permutation time, but it
did not change as the correlation coefficient increased; it required
approximately 2,500 h to compute 30,000 pairs of p-value combi-
nations. Our proposed method was more computationally efficient,
requiring < 10 h for computation. Because Fisher’s method under
an independence assumption (pF) and the decorrelation method
(pD) do not involve complex re-sampling or integration procedures,
they are computationally efficient.

2.2.4. Evaluation of estimation accuracy
We applied the model for an evaluation of Type I error with

G ¼ 1;000, N ¼ 500; and K ¼ 5; 000, and compared the estimation
accuracy of the three p-value combination methods pN, pF, and pD

with that of the benchmark permutation pP. Correlation coeffi-
cients corr py;pz

	 
 ¼ r ¼ 0:1; 0:5; 0:9 were considered. The results
demonstrate that pN, pF, and pD deviate from the benchmark pP

as corr py;pz

	 
 ¼ r increases (Fig. 1D–1F). In addition, pD exhibits
a certain proportion of outliers (Fig. 1D–1F). The biased estimation
can be explained by the order-noninterchangeable property (Text
relation corr py;pz

	 
 ¼ r. The y-axis represents Type I error. (B) Statistical power for
. The y-axis represents statistical power. (C) Computation time of the proposed

and permutations (K). The y-axis indicates computation time. Red, green, and blue
les, and circles denote sample sizes N of 3,000, 5,000, and 7,000, respectively. Solid,
ctively. (D)–(F) Estimation accuracy of p-value. The x-axis represents the p-values
bination methods: pF, brown; pN, blue; pD, green). The results based on correlation
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S5) and non-uniformity property (Fig. S3) of pD. Compared with pF

and pD, the proposed method (pN) is closest to the benchmark pP.
Thus, the proposed method provides a more accurate estimate
than do pF and pD.
3. Real data applications

3.1. Meta-GWAS for rheumatoid arthritis

This meta-analysis identified SNPs associated with rheumatoid
arthritis on the basis of two large-scale population-based GWASs
– The North American Rheumatoid Arthritis Consortium (NARAC)
data Ncase ¼ 868;Ncontrol ¼ 1;194ð Þ[16] and Wellcome Trust Case
Control Consortium (WTCCC) data Ncase ¼ 1;999;Ncontrol ¼ 3;002ð Þ
[17]. In each of the two GWASs, a logistic regression analysis with
covariate adjustment for sex and SNP coding based on an additive
genetic model was performed to examine the genetic associations
between rheumatoid arthritis disease status and individual SNP
markers. At each SNP, p-values based on NARAC and WTCCC data
were obtained separately.

We applied Fisher’s (pF) and our (pN) methods to combine the
two p-values at each SNP locus in the NARAC and WTCCC data.
There were 4,963 statistical tests (because of 4,963 SNPs on chro-
mosome 6) in this meta-GWAS. Bonferroni’s correction [18] for
multiple testing was performed to obtain adjusted p-values for pF

and pN separately. The result demonstrate that both the methods
could be used to identify the major histocompatibility complex
(MHC) region on chromosome 6p21.3 (Fig. 2), which is strongly
associated with rheumatoid arthritis [19,20]. Our method ennabled
us to identify the SNP rs9391858 (p = 3:495� 10�6) truly associ-
ated with rheumatoid arthritis [21] (Fig. 2); however, the individ-
ual GWASs could not detect this SNP p ¼ 1:020� 10�5 in NARAC
and p ¼ 1:291� 10�4 in WTCCC; Fig. S4). Fisher’s method but not
ours identified six false-positive SNPs: rs2394102, rs11752073,
rs12697946, rs9394169, rs3818528, and rs3130014 (Fig. 2).

The real data analysis demonstrated that our method can be
used to identify crucial genomic regions strongly associated with
rheumatoid arthritis, detect some of rheumatoid arthritis-
associated loci not detected by individual GWASs, and control for
false-positive more efficiently than can Fisher’s method.
Fig. 2. Manhattan plots for chromosome 6 in the meta-GWAS. This meta-GWAS
contained 4,963 SNPs on chromosome 6. The Fisher’s method (pF) and our method
(pN) were employed. Each point indicates a SNP. The x-axis indicates physical
position of a SNP. The y-axis indicates p-value in a scale of –log10. The green lines
indicate false-positive events identified by the Fisher’s method (pF) but not by our
method (pN); they involved six SNPs: rs11752073, rs2394102, rs3130014,
rs3818528, rs9394169, and rs12697946 (green line). The orange lines indicate
false-positive events identified by both of the Fisher’s method (pF) and our method
(pN). The light blue line indicates the SNP known to be associated with rheumatoid
arthritis and identified by the Fisher’s method (pF) and our method (pN), but not by
either of the two studies (Fig. S4). The red dashed line indicates the significance
level after Bonferroni correction for multiple testing.
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3.2. Meta-TWAS for rheumatoid arthritis

This meta-analysis was performed to identify genes differen-
tially expressed in patients with rheumatoid arthritis and normal
controls of European descent based on the two large-scale TWASs:
Eyre et al. Ncase ¼ 13;838;Ncontrol ¼ 33;742ð Þ [22] and Stahl et al.
Ncase ¼ 5;539;Ncontrol ¼ 20;169ð Þ [23]. In each TWAS, the gene-
level p-values used to examine the association of rheumatoid
arthritis disease status with gene expression were downloaded
from webTWAS [24]. However, raw gene expression data were
unavailable on the website. When the p-value data were down-
loaded, Elastic-net was used as a model for transcriptome data pre-
diction in the MetaXcan framework [25].

We applied Fisher’s (pF) and our (pN) methods to combine the
two p-values from the two TWASs. There were 3,175 statistical
tests (because of 3,175 genes overlapping between the two studied
TWAS datasets) in this meta-TWAS. Bonferroni’s correction [18] for
multiple testing was performed to obtain adjusted p-values for pF

and pN separately. The results indicate that both methods identi-
fied the MHC region as a key genomic region for rheumatoid arthri-
tis (Fig. 3). Fisher’s method identified 11 genes outside the MHC
region. Except ANKRD55 was a true-positive, all other 10 genes
were false-positively identified. Our method did not have false-
positives but failed to detect ANKRD55 (pN ¼ 4:410� 10�5). Our
and Fisher’s methods did not identify additional genes associated
with rheumatoid arthritis detected by individual TWASs; never-
theless, our method demonstrated a more significant signal for
several rheumatoid arthritis genes. For instance, in the TWAS of
Eyre et al [22], the TWAS of Stahl et al [23], and this meta-TWAS,
the p-values were p ¼ 1:93� 10�6, p ¼ 6:33� 10�7, and
p ¼ 1:39� 10�7, respectively, for AFF3 on chromosome 2, and
p ¼ 3:07� 10�5, p ¼ 1:30� 10�5, and p ¼ 4:09� 10�6, respec-
tively, for IRF5 on chromosome 7 (Fig. S5). Thus, this real data anal-
ysis demonstrated the inference of our meta-TWAS.
3.3. Meta-TWAS for asthma

We evaluated the performance of the proposed method in com-
bining p-values from more than two studies. We downloaded the
gene-level p-values data in four large-scale studies for asthma
from webTWAS [24] – Canela-Xandri et al. [26] with
Ncase ¼ 52;269 and Ncontrol ¼ 399;995; Zhu et al. [27] with
Ncase ¼ 14;085 and Ncontrol ¼ 76;768; Zhu et al. [28] with
Fig. 3. Manhattan plots for 22 autosomes in the meta-TWAS. This meta-TWAS
contained 3,175 genes overlapping between the two studied TWAS datasets. The
Fisher’s method (pF) and our method (pN) were employed. Each point indicates a
gene. The x-axis indicates the physical position of a gene in an autosome. The y-axis
indicates p-value in a scale of –log10. The 11 purple lines indicate the genes for
which Fisher’s method (pF) reported genetic association but our method (pN) did
not. All genes, ANKRD55, were false-positively detected. The red dashed line
indicates the significance level after Bonferroni correction for multiple testing.



Table 1
Our method performs better than Fisher’s method when combining more than two p-values. Ten asthma related genes and five asthma unrelated gene were analyzed in this
meta-TWAS. Adjusted p-values of Fisher’s method (pF), our method with equal weights (pN), and our method with unequal weights (pw

N) are provided. All the p-values were
adjusted using Bonferroni’s correction for multiple testing. The numbers marked in bold indicate they are statistically significant.

Gene name Chromosome pF pwN pN

Asthma HLA-G Chr. 6 0.0000127 0.0244885 0.0012742
Related ATP6V1G2 Chr. 6 0.0005959 0.0030811 0.0168662
Genes HLA-DRB5 Chr. 6 0.0059697 0.0386449 0.0689027

TAP1 Chr. 6 0.0003276 0.0025073 0.0118823
TRIM10 Chr. 6 0.0000009 0.0002722 0.0000589
HLA-DRB1 Chr. 6 0.0000018 0.0004108 0.0003191
LST1 Chr. 6 0.0000009 0.0002963 0.0000931
DDX39B Chr. 6 0.0000008 0.0001398 0.0000000
MSH5 Chr. 6 0.0005163 0.0009750 0.0154954
HLA-A Chr. 6 0.0016827 0.0046854 0.0318339

Asthma PHIP Chr. 6 0.0418319 0.0986147 0.2299088
Unrelated EED Chr. 11 0.0094608 0.0100037 0.0915084
Genes PYGB Chr. 20 0.0124950 0.0805022 0.1086624

SMARCD2 Chr. 17 0.0131833 0.0153122 0.1123372
BORCS8 Chr. 19 0.0233820 0.1422346 0.1601654
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Ncase ¼ 46;802 and Ncontrol ¼ 347;481; and Demenais et al. [29]
with Ncase ¼ 19;954 and Ncontrol ¼ 107;715. We analyzed 15 genes,
including 10 asthma-associated genes (HLA-G, ATP6V1G2, TAP1,
TRIM10, HLA-DRB1, LST1, HLA-DRB5, DDX39B, MSH5, and HLA-A)
in the MHC region and five genes that they are located outside
the MHC region and no studies have reported association of
asthma with the genes (PHIP, EED, PYGB, SMARCD2, and BORCS8)
(Table S1).

We applied Fisher’s (pF) and our (pN) methods to identify differ-
entially expressed genes in thismeta-TWAS. After applying Bonfer-
roni’s adjustment for multiple testing correction, the adjusted p-
values are provided (Table 1). Fisher’s method (pF) identified all
the ten asthma-associated genes, but also identified a high propor-
tion of false-positive genes. Our method (pN) identified most of the
asthma-associated genes, except for HLA-DRB5 (adjusted p-
value = 0.069) and controlled false positive well. The results sug-
gest that our method performs well and better than Fisher’s
method in combining more than two p-values.

Furthermore, our method can assign different weights to p-
values in different TWASs. Here, the sample size of a study relative
to the total sample size in the four TWASs was calculated as a
weight; that is, a higher weight was assigned to a study with a
higher sample size. Our weighted method (pw

N) can identify all
the ten asthma-associated genes, including HLA-DRB5 that cannot
be detected by the equal-weighted method (pN). However, pw

N

obtained some false-positive findings, such as EED and SMARCD2
in this analysis.
4. Conclusion and discussion

In this study, we proposed a novel numerical integration
method (pN) to evaluate statistical significance by combining cor-
related p-values from multiple studies in a meta-analysis. The pro-
posed method is simple in concept and flexible to various
correlation structures. Our theoretical investigation and simulation
studies demonstrated that our proposed method performs well in
terms of Type I error, statistical power, computing efficiency (re-
gardless of the sample size), and statistical significance estimation
accuracy. Real applications in large-scale GWASs and TWASs for
rheumatoid arthritis and asthma facilitated efficient identification
of critical genomic regions, such as the MHC region, and genes
associated with rheumatoid arthritis and asthma, not reported in

the previous GWASs or TWASs. We developed Pbine (https://

github.com/Yinchun-Lin/Pbine) for meta-analysis based on a com-
bination of p-values from multiple studies. Our method can com-
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bine p-values from more than two studies with different sample
sizes and precision so as to different levels of importance and infor-
mation. The incorporation of unequal weights into a p-value com-
bination for more than two studies has been implemented into
Pbine.

The results in our simulation studies and real data analyses
demonstrated that our method outperforms Fisher’s method. We
discussed the weakness of the decorrelation method – an order-
noninterchangeable property. Although pD can be calculated in
either an ascending order or a descending order of p-values, we
showed that p-values of these two procedures in the decorrelation
method violate the uniformity property under a null distribution –
the ascending order method (pDA) tends to have more false nega-
tive and the descending order method (pDD) have more false posi-
tive, particularly at the case with a high between-study correlation
of p-values (Fig. S3). When we applied pDA and pDD in the meta-
GWAS and meta-TWAS for rheumatoid arthritis, we did find a
number of false-positive and false-negative findings (Table S2).

In addition to the methods discussed in this paper, studies have
reported other p-value combination methods [30]. Some of these
methods depend on p-value independency assumptions [31,32],
parametric assumptions [33,34], and mathematical approxima-
tions such as Satterthwaite’s approximation [35,36]. These meth-
ods may be efficient in computation. However, when their
assumptions are violated, their performance is negatively affected
by inflated Type I error, particularly when significance level a is
low [37]. In addition, several methods have been developed on
the basis of a generalization of Fisher’s product p-value method,
such as the weighted [38], truncated [15], and rank-truncated
[39] product p-value methods. Our method can be generalized to
more complicated cases.
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