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Abstract: Honey adulteration is a major issue in food production, which may reduce the effective
components in honey and have a detrimental effect on human health. Herein, laser-induced
breakdown spectroscopy (LIBS) combined with chemometric methods was used to fast quantify the
adulterant content. Two common types of adulteration, including mixing acacia honey with high
fructose corn syrup (HFCS) and rape honey, were quantified with univariate analysis and partial
least squares regression (PLSR). In addition, the variable importance was tested with univariable
analysis and feature selection methods (genetic algorithm (GA), variable importance in projection
(VIP), selectivity ratio (SR)). The results indicated that emissions from Mg II 279.58, 280.30 nm, Mg I
285.25 nm, Ca II 393.37, 396.89 nm, Ca I 422.70 nm, Na I 589.03, 589.64 nm, and K I 766.57, 769.97 nm
had compact relationship with adulterant content. Best models for detecting the adulteration ratio
of HFCS 55, HFCS 90, and rape honey were achieved by SR-PLSR, VIP-PLSR, and VIP-PLSR, with
root-mean-square error (RMSE) of 8.9%, 8.2%, and 4.8%, respectively. This study provided a fast and
simple approach for detecting honey adulteration.

Keywords: honey; adulteration; feature variable; partial least square regression; laser-induced
breakdown spectroscopy

1. Introduction

Food adulteration is an illegal activity of food production, which may threaten food quality and
safety. On one hand, the nutritional value of food is limited because of the reduction of effective
components in food. On the other hand, the adulterants may have a detrimental effect on human
health. Several scandals concerning food adulteration have been reported around the world [1–3].
Honey is one of the most commonly adulterated foods because of its economical purpose and wide use.
There are two main approaches for honey adulteration. One is to mix pure honey with sugar-based
adulterants, and the other is to adulterate high-quality honey with inferior honey. These two cases will
be explored in this study.

The adulterant usually has a similar constituent or characteristic with the pure honey, and it is
hard to distinguish from the appearance. Several studies concerning honey adulteration detection
have been reported. Amiry et al. [4] discriminated adulterated honey (mix pure honey with date
syrup and invert sugar syrup) with linear discriminant analysis. Different parameters including color
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indices, rheological, physical, and chemical parameters were used as variables for discrimination.
Physical and chemical parameters achieved the best results, with accuracy above 95%. The results
highlighted the use of physical and chemical parameters to detect honey adulteration. In addition,
Arroyo-Manzanares et al. [5] used gas chromatography-ion mobility spectrometry to detect sugar cane
or corn syrup adulterated honey; seven out of nine commercial honeys were classified as adulterated
samples. Traditionally, the chemical features of honey are detected with wet chemical analysis, which
is time and labor consuming. Hence, several rapid analytical methods based on electronic and
optical techniques were proposed by other researchers, e.g., electronic nose [6], electronic tongue [6],
fluorescence spectroscopy [7], visible-near infrared spectroscopy [8,9]. The ‘fingerprint information’ of
honey could be rapidly obtained by these sensors, and the adulterated honey could be distinguished
with the help of chemometric methods.

For its part, laser-induced breakdown spectroscopy (LIBS), which allows elemental analysis, may
be useful for honey authenticity. The elemental information of honey can be obtained through analyzing
the atomic emission spectroscopy from plasma which is induced by a laser. It has the advantages of fast
detection, multi-elemental analysis, and environmentally friendly feature [10]. As a novel approach in
food, it has been used for regional discrimination [11] and elemental detection [12–14]. Because LIBS
spectrum often contains numerous variables, chemometric methods are usually used to figure out
the useful information and establish models for food adulteration detection. Recently, LIBS was used
to classify the botanical origins of honey, and detect rice syrup adulterated samples [15]. However,
the adulterant content in honey should be further quantified. Herein, LIBS combined with partial least
squares regression was used as an analytical tool for fast quantification of honey adulterant content.

In this study, acacia honey mixed with high fructose corn syrup (HFCS) and rape honey were
analyzed by LIBS. The specific objectives were to: (1) analyze the LIBS spectral features of pure honey
and adulterants; (2) determine the feature variables that are related to adulteration; (3) quantify the
adulterant content with univariate and multivariate analysis.

2. Materials and Methods

2.1. Sample Preparation

Honey including acacia honey (Guanshengyuan Co., Ltd, Shanghai, China) and rape honey
(Yaoquan Food Co., Ltd, Yunnan, China) were collected from main producers in China, and two kinds
of HFCS with different fructose concentrations (F55 and F90) were purchased from markets. HFCS F55
contains 55% fructose, and HFCS F90 contains 90% fructose. In this case, acacia honey was considered
as pure honey, and HFCS (F55 and F90) and rape honey were used as adulterants.

Honey adulteration was prepared by mixing the acacia honey with HFCS F55, HFCS F90, and
rape honey. To establish models for quantifying adulterant content, acacia honey was adulterated with
HFCS and rape honey at 21 different percentages (0%, 5%, 10%, 15%, 20%, 25%, 30%, 35,% 40%, 45%,
50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, and 100%). In addition, adulterated samples for
external prediction were prepared at 13 different adulteration rates, i.e., 0%, 8%, 16%, 24%, 32%, 40%,
48%, 56%, 64%, 72%, 80%, 88%, and 96%. The adulteration rates of 0% and 100% indicated pure acacia
honey and pure adulterant, respectively. All sample adulteration was performed in three replications,
so there were 63 samples for calibration, and 39 samples for prediction. After mixing, all samples were
kept in a water bath at 37 ◦C for 12 h to ensure homogeneity.

2.2. LIBS Measurement

A laboratory-assembled LIBS device was used for honey adulteration detection. The detailed
description of the device was introduced in our previous published article [16]. First, 8 g of sample
was added in 12-well plates and placed in a X-Y-Z moving stage. A pulse laser (Vlite 200, Beamtech,
Beijing, China) operated at 532 nm was used to ablate the sample with energy of 80 mJ. Then, emission
light from induced plasma was transferred into an Echelle spectrograph (ME 5000, Andor, Belfast, UK),
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and detected by an intensified charge coupled device (ICCD, DH334T-18F-03, Andor, Belfast, UK).
To improve the signal-to-background ratio, the delay time, integral time, and relative gain of ICCD
camera were set at 2 µs, 10 µs, and 26. Single shot scanning was performed in an ablation region of
10 mm × 10 mm with resolution of 1 mm. Hence, 100 successive spectra were collected for each sample,
the spectra were averaged to minimize the sample inhomogeneity. Because of the advantages of LIBS, no
sample preparation was needed, and the total detection time for one sample was less than two minutes.

2.3. Data Analysis

Because the peak in LIBS spectrum corresponds to the emission from a certain element or molecule
band, the observed peak intensity was used as the variable for analysis. To establish a model for
quantifying adulterant content, PLSR was used. In addition, several feature selection methods based
on PLSR were used to determine the key LIBS emissions that related to the adulterant content.

PLSR is a commonly and widely used multivariate method for quantitative analysis. It projects
the raw variables into new dimensions with the maximal variation, and regresses the first few new
variables (latent variable, LV) with respond value [17]. In this case, the raw variables were peak
intensities of main emissions, and the respond value was the adulterant content in honey. Before
modeling, the auto scale preprocessing method, which used mean-centering followed by dividing
each variable by the standard variation of the variable, was used to correct the scaling of each variable.
Ten-folds random cross-validation was used to determine the number of LV, and prevent the overfitting.
In addition, the straightforward implementation of a statistically inspired modification of the PLS
(SIMPLS) algorithm was used to calculate the PLS model parameters [18].

Three feature selection methods including genetic algorithm (GA), variable importance in
projection (VIP), and the selectivity ratio (SR) were used in this case. GA is a subset search algorithm
that was inspired by biological evolution theory and natural selection [19]. The subset of relevant
variables selected by GA is then fitted with PLSR to evaluate the performance, and determine the
feature variables. Different from GA, the variable selection based on VIP and SR is carried out by using
a threshold of some parameters from the PLSR model. VIP calculates the accumulation of PLS weights,
and SR defines the ratio between explained variance and the unexplained variance in the PLS model.
The larger values of VIP and SR, the greater contribution of the variable. For the criteria of variable
selection, VIP follows the rule of ‘greater than one rule’, and SR follows the F-test (95%) criterion [20].
In this case, the variables with VIP value greater than 1 and SR value greater than 1.532 were selected
as important variables.

After modeling, some measures should be used to evaluate the performance. In this case, model
performance was evaluated with correlation coefficient (r) and root-mean-square error (RMSE). The r
value measures the relationship between predicted adulterant content and actual value, and the RMSE
value measures the predictive error. The larger the r value and the smaller the RMSE value, the better
the model performance. All data analyses were carried out in the MATLAB (v2019b, The MathWorks
Inc., Natick, MA, USA).

3. Results and Discussion

3.1. LIBS Spectral Characteristics

Before quantification, LIBS spectral characteristics of acacia honey, rape honey, HFCS F55, and
HFCS F90 were first analyzed (Figure 1). All the LIBS spectra ranged from 240 to 860 nm. In general,
the average LIBS spectra for different samples were similar except some emissions in certain spectral
range. It was credited to the similar constituent of honey and HFCS. In general, honey contains 75%
saccharides (mainly glucose and fructose), 15% water, amino acids, and minerals, etc. HFCS mainly
contains glucose and fructose. According to the concentration of fructose, the HFCS can be divided
into three categories: F42 (42% fructose), F55 (55% fructose), and F90 (90% fructose). Hence, the main
components ablated by laser in both honey and HFCS were glucose and fructose. As shown in Figure 1,
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the emissions from C, H, O, and N were observed in all samples. The molecular band CN that usually
appears in an organic sample when analyzed in air atmosphere was also found in this case.
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Figure 1. Average laser-induced breakdown spectroscopy (LIBS) spectrum of honey (acacia honey and
rape honey) and high fructose corn syrup (HFCS 55 and HFCS 90).

Some differences in elemental emissions could be observed between honey and HFCS. It was
obvious that emissions from Mg, Ca, and K appeared in the spectra of honey, while it cannot be found
in the spectra of HFCS. It indicated that the concentrations of Mg, Ca, and K in honey were significantly
higher than those in HFCS. In addition, there was no obvious difference between acacia honey and
rape honey, except relatively stronger emission of Na in acacia honey. These elemental differences
might be used to differentiate the adulterants. However, it was hard to quantify the adulterant content
simply by analyzing spectrum. Hence, some modeling methods were further used to quantify the
adulterant content.

3.2. Univariate Analysis

Univariate analysis was used to explore the relationship between adulterant content and single
variable and quantify the adulteration. In this case, the peak intensities of main emissions from
samples were used for analysis. Univariate analysis was performed by regressing the peak intensity
of each emission with the adulterant content, and r and RMSE were used to evaluate the results.
The corresponding element for each emission could be identified with the National Institute of Standard
and Technology (NIST, Gaithersburg, Maryland, USA) database [21]. Table 1 shows the results of
univariate analysis between main emission lines and adulterant content. Forty-three univariate models
were established. The variables contained emissions from C, Si, Mg, Ca, Na, K, N, H, O, and CN. Four
variables with emissions of 748.47, 794.83, 795.17, and 822.43 nm were marked with unknown, because
they could not be identified with the NIST database or references.

In general, the models for quantifying adulterant content of HFCS F90 had the best results with
higher r and lower RMSE. It indicated that high concentration of fructose in HFCS led to greater
spectral difference and contributed to the univariate analysis. In addition, for HFCS F90 and HFCS F55,
the emissions from Mg II 279.58, 280.30 nm, Mg I 285.25 nm, Ca II 393.37, 396.89 nm, Ca I 422.70 nm,
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Na I 589.03, 589.63 nm, and K I 766.57, 769.97 nm had compact relationship with the adulterant content,
with r > 0.9 and RMSE < 11.0%. For rape honey, models based on emissions from Na I 589.03 and
589.63 nm had good results, with r of 0.919 and 0.903, and RMSE of 12.0% and 13.0%. It indicated
that emissions from mineral elements played an important role in adulteration quantification. It also
verified the LIBS spectral difference between acacia honey and adulterants.

Table 1. Results of univariate analysis based on peak intensities of main emissions.

No.
Observed

Wavelength (nm) Element
HFCS F55 HFCS F90 Rape Honey

r RMSE r RMSE r RMSE

1 247.88 C I 0.493 26.4% 0.823 17.2% 0.066 30.2%
2 250.72 Si I 0.176 29.8% 0.204 29.6% 0.154 29.9%
3 251.45 Si I 0.180 29.8% 0.214 29.6% 0.153 29.9%
4 251.64 Si I 0.204 29.7% 0.222 29.5% 0.166 29.8%
5 251.94 Si I 0.193 29.7% 0.205 29.6% 0.159 29.9%
6 252.44 Si I 0.195 29.7% 0.210 29.6% 0.149 29.9%
7 252.88 Si I 0.200 29.7% 0.210 29.6% 0.158 29.9%
8 279.58 Mg II 0.932 10.9% 0.936 10.6% 0.516 25.9%
9 280.30 Mg II 0.922 11.7% 0.934 10.8% 0.441 27.2%

10 285.25 Mg I 0.959 8.6% 0.959 8.6% 0.517 25.9%
11 288.20 Si I 0.194 29.7% 0.227 29.5% 0.161 29.9%
12 385.07 CN 4-4 0.550 25.3% 0.828 17.0% 0.487 26.4%
13 385.49 CN 3-3 0.576 24.8% 0.820 17.3% 0.454 27.0%
14 386.17 CN 2-2 0.596 24.3% 0.821 17.3% 0.442 27.2%
15 387.13 CN 1-1 0.473 26.7% 0.828 17.0% 0.460 26.9%
16 388.33 CN 0-0 0.514 26.0% 0.824 17.2% 0.466 26.8%
17 393.37 Ca II 0.957 8.8% 0.948 9.6% 0.694 21.8%
18 396.89 Ca II 0.959 8.6% 0.951 9.3% 0.652 22.9%
19 422.70 Ca I 0.953 9.2% 0.942 10.1% 0.707 21.4%
20 589.03 Na I 0.937 10.6% 0.973 6.9% 0.919 12.0%
21 589.64 Na I 0.936 10.6% 0.975 6.8% 0.903 13.0%
22 656.33 Hα 0.617 23.8% 0.538 25.5% 0.243 29.4%
23 715.77 O I 0.316 28.7% 0.766 19.5% 0.227 29.5%
24 742.45 N I 0.220 29.5% 0.739 20.4% 0.268 29.2%
25 744.30 N I 0.197 29.7% 0.738 20.4% 0.278 29.1%
26 746.92 N I 0.162 29.9% 0.742 20.3% 0.248 29.3%
27 748.47 Unknown 0.507 26.1% 0.632 23.4% 0.220 29.5%
28 766.57 K I 0.943 10.1% 0.960 8.4% 0.756 19.8%
29 769.97 K I 0.931 11.1% 0.959 8.6% 0.750 20.0%
30 777.47 O I 0.183 29.8% 0.760 19.7% 0.215 29.6%
31 794.83 Unknown 0.316 28.7% 0.758 19.7% 0.215 29.6%
32 795.17 Unknown 0.299 28.9% 0.773 19.2% 0.206 29.6%
33 818.57 N I 0.170 29.9% 0.740 20.4% 0.256 29.3%
34 818.86 N I 0.217 29.6% 0.736 20.5% 0.265 29.2%
35 820.10 N I 0.232 29.5% 0.746 20.2% 0.237 29.4%
36 821.14 N I 0.221 29.5% 0.744 20.2% 0.247 29.3%
37 821.68 N I 0.244 29.4% 0.725 20.8% 0.250 29.3%
38 822.28 N I 0.067 30.2% 0.782 18.9% 0.305 28.8%
39 822.43 Unknown 0.290 29.0% 0.706 21.4% 0.303 28.8%
40 824.32 N I 0.291 29.0% 0.719 21.0% 0.285 29.0%
41 844.73 O I 0.252 29.3% 0.743 20.3% 0.260 29.2%
42 856.86 N I 0.325 28.7% 0.729 20.7% 0.275 29.1%
43 859.49 N I 0.357 28.3% 0.706 21.5% 0.316 28.7%

Note: The shade color of the table represents the performance of univariate analysis. The shade color of being green
indicates the best compact relationship (r = ±1) and the lowest predictive error (RMSE = 0).

3.3. Quantification of Adulterant Content Based on Multivariate Analysis

Multivariate analysis was further used to quantify the adulterant content. First, all variables in
univariate analysis were used as the inputs of PLS models. As seen in Table 2, PLS models based on all
variables achieved good results for all three types of adulteration. The r values for HFCS F55, HFCS
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F90, rape honey in the prediction set were 0.962, 0.980, 0.988, and the RSME values were 15.6%, 16.6%,
4.7%, respectively. The latent variables for these three models were 4, 4, 5, which were determined by
cross validation. The results of PLS models were better than those of univariate analysis. It also verified
the advantages of multivariate analysis. The combination of information from multiple emissions
contributed to the adulterant content quantification.

Table 2. Multivariate analysis results based on partial least square regression (PLSR) and feature
selection methods.

Adulterant Method No.
of LV

No.
of Var.

Calibration C.V. Prediction

r RMSE r RMSE r RMSE

HFCS
F55

PLSR 4 43 0.977 6.5% 0.965 8.0% 0.962 15.6%
GA-PLSR 4 12 0.983 5.6% 0.978 6.4% 0.794 32.0%
VIP-PLSR 5 16 0.982 5.7% 0.966 8.1% 0.938 18.6%
SR-PLSR 1 11 0.965 7.9% 0.960 8.5% 0.966 8.9%

HFCS
F90

PLSR 4 43 0.973 7.0% 0.964 8.2% 0.980 16.6%
GA-PLSR 5 19 0.979 6.1% 0.972 7.3% 0.985 11.3%
VIP-PLSR 5 15 0.982 5.7% 0.977 6.5% 0.980 8.2%
SR-PLSR 5 20 0.981 5.9% 0.973 7.0% 0.982 9.4%

Rape honey

PLSR 5 43 0.993 3.6% 0.990 4.3% 0.988 4.7%
GA-PLSR 4 21 0.994 3.3% 0.990 4.4% 0.988 4.7%
VIP-PLSR 3 10 0.991 4.1% 0.989 4.6% 0.988 4.8%
SR-PLSR 1 2 0.912 12.4% 0.874 15.0% 0.943 11.3%

Note: No. of LV: number of latent variables; No. of var.: number of variables; C.V.: cross-validation; r: correlation
coefficient; RMSE: root-mean-square error; GA: genetic algorithm; VIP: variable importance in projection; SR:
selectivity ratio.

In addition, results of PLS models based on feature variables (selected by GA, VIP, and SR) are also
shown in Table 2. In general, prediction results after feature selection were similar or better than those
based all variables. The irrelevant variables in models might worsen the modeling performance [22,23],
which also verified the necessity of feature selection. Only one exception happened for the GA-PLS
model in HFCS F55 quantification. The RMSE value in prediction set was 0.320, which is greatly worse
than that without feature selection (0.156). It might be credited to the selected variables by the GA
method. As shown in Figure 2, lots of irrelevant variables were selected. The GA method might not
be suitable for feature selection in the honey adulteration with HFCS F55. With the consideration of
variable number and prediction performance, the models marked with bold achieved the best results.
The RMSE value for HFCS 55, HFCS F90, and rape honey in the prediction set were 8.9%, 8.2%, and
4.8%, respectively. In addition, similar results were achieved in 10-folds cross-validation, and RMSE
value for HFCS 55, HFCS F90, and rape honey were 8.5%, 6.5%, and 4.6%, respectively.

We also compared the variables selected with GA, VIP, and SR methods (Figure 2). Row 1, 5, 9
showed the correlation coefficient between each variable and adulterant content of HFCS F55, HFCS
F90, and rape honey, respectively. The values of correlation coefficient were in the range of 0 to 1.
Other rows represented the variables selected by GA, VIP, and SR methods. Selected variables were
represented in blue, and non-selected variables were in white. As shown in Figure 2, VIP and SR
methods chose the variables with a high correlation coefficient, while some variables with a low
correlation coefficient were selected by the GA method. It was related to the principal of feature
selection methods. For the GA method, the variables were randomly combined and verified by PLSR.
The variables were selected based on the results of PLSR modeling. For VIP and SR methods, the
contribution of each variable was considered in the selection [20]. The variables selected by the GA
method might be easily affected when testing with external samples. In addition, VIP and SR methods
had some common variables, while the number of selected variables was different. It might be credited
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to the different threshold measure of each method. Hence, VIP and SR methods might be recommended
for feature selection in quantification of honey adulterant content.
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Figure 2. Feature variables selected with genetic algorithm (GA), variable importance in projection
(VIP), and selectivity ratio (SR) methods. Row 1, 5, 9 shows the univariate analysis result between
each variable and adulterant content of HFCS F55, HFCS F90, and rape honey, respectively. Cells with
a gradient of blue color indicated the correlation coefficient. Other rows represented the variables
selected by GA, VIP, and SR methods. Selected variables were represented in blue, and non-selected
variables were in white.

The scatter plot of the best model for quantifying adulteration ratio of HFCS 55, HFCS 90, and rape
honey is shown in Figure 3. Among these three models, the quantification for rape honey achieved
the best result, with r and RMSE of 0.988 and 4.8% in the prediction set. The samples in calibration
and prediction sets distributed closely around the regression lines, and the regression lines almost
went through original point. The emissions from Mg II 279.58, 280.30 nm, Mg I 285.25 nm, Ca II 393.37,
396.89 nm, Ca I 422.70 nm, Na I 589.03, 589.64 nm, and K I 766.57, 769.97 nm, which were the feature
variables in the rape honey quantification, were also included in the other two models. It indicated
that these variables might play an important role in honey adulteration analysis.
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4. Conclusions

In this study, LIBS combined with chemometric methods was used to detect honey adulteration.
The adulterant content of acacia honey (adulterated with HFCS 55, HFCS 90, and rape honey) was
successfully quantified. SR and VIP methods detected effectively the most relevant variables for
adulteration determination. The emissions from Mg II 279.58, 280.30 nm, Mg I 285.25 nm, Ca II 393.37,
396.89 nm, Ca I 422.70 nm, Na I 589.03, 589.64 nm, and K I 766.57, 769.97 nm were considered as feature
variables and played an important role in modeling. The importance of these variables was also verified
in univariate analysis. The SR-PLSR, VIP-PLSR, and VIP-PLSR achieved the best results for detecting
an adulteration ratio of HFCS F55, HFCS 90, and rape honey, with RMSE of 8.9%, 8.2%, and 4.8%,
respectively. The results indicated the promising possibility of using LIBS and chemometric methods
for quantification in honey adulteration. In addition, some research concerning model transfer could
be explored, and more types of acacia honey as well as adulterants could be included in modeling in
further study, which might be helpful for practical application.
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