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Signal and noise extraction from analog memory
elements for neuromorphic computing
N. Gong 1,2, T. Idé1, S. Kim1, I. Boybat3,4, A. Sebastian 3, V. Narayanan1 & T. Ando 1

Dense crossbar arrays of non-volatile memory (NVM) can potentially enable massively

parallel and highly energy-efficient neuromorphic computing systems. The key requirements

for the NVM elements are continuous (analog-like) conductance tuning capability and

switching symmetry with acceptable noise levels. However, most NVM devices show non-

linear and asymmetric switching behaviors. Such non-linear behaviors render separation of

signal and noise extremely difficult with conventional characterization techniques. In this

study, we establish a practical methodology based on Gaussian process regression to address

this issue. The methodology is agnostic to switching mechanisms and applicable to various

NVM devices. We show tradeoff between switching symmetry and signal-to-noise ratio for

HfO2-based resistive random access memory. Then, we characterize 1000 phase-change

memory devices based on Ge2Sb2Te5 and separate total variability into device-to-device

variability and inherent randomness from individual devices. These results highlight the

usefulness of our methodology to realize ideal NVM devices for neuromorphic computing.
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Over several decades, the von Neumann architecture has
enabled exponential improvements in system perfor-
mance. However, as device scaling has slowed and

demand to handle big data has soared, the time and energy spent
transporting data across the physically separated memory and
processing units have started to limit the performance and power
efficiency. As potential alternatives, neuro-inspired non-von
Neumann computing paradigms have become promising candi-
dates to perform real-world tasks1, 2. One avenue of research is
referred to as in-memory computing or computational memory,
which exploits the physical properties of non-volatile memory
(NVM) devices for both storing and processing information3–6.
Recently, a large-scale experimental demonstration of this con-
cept using an array of one million phase-change memory (PCM)
devices has been reported7. Another paradigm is hardware
acceleration of deep neural network (DNN)8–12 training via the
use of dense crossbar arrays of NVM to perform locally analog
computation at the location of the data. As shown in Fig. 1, it is
possible to use NVM devices with variable conductance states,
such as resistive random access memory (ReRAM)13 and PCM14

to represent the synaptic weights and to perform vector-matrix
multiplication using the basic electrical principles, i.e., Ohm’s and
Kirchhoff’s laws, thus enabling local and parallel computation on
a large scale. By making the conductance change of the NVM
element bidirectional, backpropagation algorithm can be imple-
mented. Such a crossbar array of NVMs is expected to achieve
significant acceleration factors of DNN training and remarkable
reduction in power and area15, 16. Another active area of research
is spiking neural networks (SNNs) motivated by the need to build
more biologically realistic neural network models. Several neu-
romorphic computing platforms are being developed which are
optimized for emulating spike-based computation. These SNNs
are typically trained using certain local update rules, such as the
spike-timing-dependent plasticity. NVM devices have recently
found applications as both synaptic and neuronal elements of
such SNNs17–20.

The key technical challenge for these applications is to realize
ideal NVM elements with continuous (analog-like) conductance
tuning capability in response to electrical pulses with acceptable
noise levels. For acceleration of DNN training, symmetric con-
ductance change with positive and negative pulse amplitudes is
another key requirement15, 16. The device conductance should go
up with a voltage pulse of one polarity and should go down by the
same magnitude with a voltage pulse of the opposite polarity. In
general, NVM elements do not show this symmetric switching
behavior. Therefore, a differential approach is often used in which
two conductance values are compared in a unit cell14. In this

configuration, linearity in switching is required to ensure a
symmetric differential signal. In reality, most NVM elements
exhibit highly non-linear evolution of conductance as a function
of the number of consecutively applied pulses. This results in
significant errors in weight updates13. In addition, such non-
linear conductance change makes separation of signal and noise
extremely difficult. Most NVM elements show stochasticity
related to the physical origins of switching. When incremental
weight updates are performed for analog NVM devices, the
magnitude of conductance change approaches the level of
inherent randomness21, manifesting as significant noise compo-
nents. Therefore, establishing a universally applicable methodol-
ogy to evaluate signal-to-noise ratio (SNR) of non-linear and
analog NVM devices is of paramount importance for neuro-
morphic computing applications.

In this study, we first establish a practical methodology based
on a machine learning algorithm to precisely separate signal and
noise components from an analog NVM device with non-linear
conductance changes. The methodology is agnostic to the device
physics, enabling us to apply it to different types of NVM ele-
ments. First, the methodology is applied to HfO2-based ReRAM
to understand the relationship between switching symmetry and
SNR. Next, the methodology is applied to PCM devices based on
doped-Ge2Sb2Te5 (GST). We characterize 1000 devices and
separate device-to-device variability and inherent randomness
from individual devices.

Results
Analog switching behaviors of ReRAM and PCM. As shown in
Fig. 2a, our ReRAM device exhibited analog-like (incremental)
change in the device conductance (G) in response to voltage
pulses. Consecutive positive voltage (set) pulses (pulse number
1–1000) on the top electrode caused an overall ascending trend of
G with some pulse-to-pulse fluctuations. On the other hand,
consecutive negative voltage (reset) pulses (pulse number
1001–2000) caused a descending trend of G with similar fluc-
tuations. The change of G in oxide ReRAM device is attributed to
change in the configuration of the current conducting filament
which consists of oxygen vacancies in a metal oxide film22, 23 as
schematically illustrated in Fig. 2b. The movement of the oxygen
vacancies in response to electrical signals has a probabilistic
nature and it emerges as inherent randomness in weight updates,
which are superimposed on the expected signal13.

As for PCM, we investigated the device G changes in response
to 20 consecutive set pulses. Figure 2c is a plot of G as a function
of pulse number, showing incremental changes with a non-linear
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trace, which is convoluted with pulse-to-pulse fluctuations. The
PCM device includes a small part of phase-change material that is
sandwiched by top and bottom electrodes. Transition from the
low conductance state (amorphous phase) to the high conduc-
tance state (crystalline phase) is caused by set pulses that create
sufficient joule heating for crystallization of the GST material
while the temperature is kept below the melting point as
schematically illustrated in Fig. 2d. Due to the stochastic nature
in crystallization of the phase-change materials2, 20, 21, 24, 25, there
is significant randomness associated with the weight updates. On
the other hand, reset to the low conductance state requires melting
of the GST material and this process is known to be abrupt. For
the purpose of characterization of analog switching behaviors, we
focused on incremental set operations for PCM in this study.

Characterization of NVM elements. To evaluate the perfor-
mance of analog NVM elements for neuromorphic computing
applications, one has to extract noise-free signals from experi-
mental data. A conventional approach is to assume a parametric
model for expected conductance changes, derived from relatively
simple assumptions on underlying physics. For ReRAM devices,
an exponential formula has been proposed to capture the non-
linear trend13. However, the pre-assumed exponential relation-
ship often causes significant errors when fitting weight update as
a function of number of applied pulses. In addition, different
NVM elements generally need different fitting formulas, making
it difficult to compare key performance parameters, such as
switching symmetry and SNR, on a common ground. To address
this issue, we leverage a machine learning algorithm called
Gaussian process regression (GPR)26. GPR is a non-parametric
Bayesian regression method, which does not assume any specific
functional form such as linear and exponential. The main moti-
vation for implementing GPR in the analysis of analog NVM
elements is to let experimental data give predictions of noise-free
signals by themselves. The major assumption we used is the
smoothness of the curve. For analog NVM devices, we exploit
continuous changes in switching media (e.g., filament

configuration for ReRAM, volume of crystalline region for PCM)
rather than non-continuous phenomena to achieve incremental
conductance changes. This makes analog switching data highly
compatible with the assumption of smoothness. The key ingre-
dient of GPR is the kernel matrix (Eq. (6) in Methods), which
controls the smoothness of the estimated functional curve. We
established a practical approach to optimize the kernel matrix by
combining the Bayesian marginalized likelihood maximization
with the frequentists’ cross-validation approach. This enabled us
to precisely separate signal and noise for our large dataset while
avoiding numerical instability. The proposed inference procedure
also assumes that a prior probability distribution over underlying
functions follows a multivariate Gaussian distribution, which
consists of a linear combination of finite random variables. This
assumption is consistent with the switching mechanism of analog
memory devices where the device conductance is governed by
parallel configurations of randomly distributed conducting fila-
ments comprising oxygen vacancies or crystalline phase-change
materials. The measured device conductance values indeed follow
a Gaussian distribution around noise-free signals and this was
verified by observing the distribution of noise in our experimental
data for ReRAM (Supplementary Note 1). The details of our
GPR-based methodology are described in Methods section.

We performed cross-validation27 using our ReRAM data and
confirmed that the GPR-based methodology extracted the
inherent features irrespective of the sampling size (Supplementary
Note 2). We confirmed the robustness of our methodology
against the variation of duration of input pulses from 5 to 100 ns,
covering the range of interest for neuromorphic computing
(Supplementary Note 3). We also confirmed the robustness of our
methodology against the variation of test temperature (Supple-
mentary Note 4). For the rest of the analysis, we used a pulse
duration of 100 ns and tested the devices at room temperature.
Next, we extracted key performance metrics using the GPR
fitting. We applied the methodology to our ReRAM data with
1000 consecutive set pulses, followed by 1000 consecutive reset
pulses, for the purpose of characterizing switching symmetry. As
shown in Fig. 3a, the GPR fitting gave predicted noise-free curves
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Fig. 2 Analog switching behaviors of ReRAM and PCM. a Device G as a function of pulse number for our HfO2-based ReRAM device. 1000 consecutive set
pulses, followed by 1000 consecutive reset pulses were applied on the top electrode. b The change of G is attributed to change in the configuration of the
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(red lines) for both set (black) and reset (blue) pulse sequences.
Once the noise-free curves are estimated, the G change per pulse,
denoted by ΔG, is easily computed, based on which we define
SNR as

SNR def
ΔG
r

; ð1Þ

where r represents the absolute difference between predicted and
observed G values (i.e., residuals). The impact of SNR on the
accuracy of neural network was previously discussed21. Since
relatively long sequences were used for both ReRAM and PCM
devices to minimize fluctuations in read signals, we attribute r to
inherent randomness associated with the physical origin of weight
update. In artificial neural network implementations, fast reading
is particularly preferred to decrease the overall cycle time and
consequently accelerate the computational operations. This
should increase the contribution of read noise. In this case, we
need to optimize the read operation to balance the overall
performance and the noise level, which is beyond the scope of this
work. The extracted r value is shown as a function of pulse
number in Fig. 3b. The absolute ΔG values for set and reset pulses
are denoted by ΔG+ and ΔG−, respectively. The ΔG+ (black) and
ΔG− (blue) are plotted as a function of pulse number in Fig. 3c.
Figure 3d shows absolute SNR, calculated locally at each pulse
from ΔG and r. For characterization of switching symmetry, we
introduce symmetry factor (SF), which is defined as

SF def
ΔGþ � ΔG�
ΔGþ þ ΔG�

: ð2Þ

With this definition, the degree of symmetry is quantified as a
value between −1 and 1, with 0 corresponding to the perfect
symmetry. Asymmetry in both directions (larger ΔG+ versus

ΔG−) are equally weighted around 0 and can be compared with
absolute values. In order to compute SF and SNR at a given G
level, we need to express ΔG+, ΔG−, and r as functions of G.
Therefore, we divided the total G range into 100 sub-ranges and
computed a mean value of ΔG and a root mean square value of r
within each G sub-range. In this way, one can obtain SF and SNR
for each G sub-range. The local extraction (i.e., at a certain pulse
number or G level) of SF and SNR is a powerful feature of our
methodology. The symmetry requirement for acceleration of
DNN training specified in ref. 15 (<5% difference between ΔG+
and ΔG−) corresponds to |SF| <0.025.

Switching symmetry and SNR of ReRAM devices. We applied
the GPR-based methodology on our ReRAM devices with dif-
ferent metal oxide thicknesses (device A: 5 nm, device B: 4 nm).
The devices were tested under different set and reset voltages and
the SNR and SF values were extracted locally at each G level, as
shown in Fig. 4a. For SNR, we took mean values for set and reset
traces. Representative G versus pulse number traces are shown in
insets. Figure 4b shows a cross-sectional two-dimensional plot of
SNR versus SF taken at G ~20 μs from Fig. 4a. At this G level, low
|SF| values were achieved at relatively low SNR values, and vice
versa. Data points are absent in the upper-left corner of Fig. 4b,
indicating that there is a fundamental tradeoff between SNR and
SF values. In order to investigate the relationship between SNR
and SF values for multiple device/pulse conditions spanning
different G levels, they were grouped according to SNR values and
cumulative distribution function of |SF| were compared, as shown
in Fig. 4c. The reproducibility of the trend was confirmed up to
10 different devices of device type B (Supplementary Note 5). One
can clearly observe that the device/pulse conditions that lead to
higher SNR values tend to result in poor switching symmetry.
The tradeoff can be directly observed in the G versus pulse
number plots (the insets of Fig. 4a). We speculate that higher
switching symmetry is achieved by making the movement of
oxygen vacancies more incremental and thereby changing the
width of current conducting filament rather than completely
rupturing and reforming it. ΔG is smaller for the former case and
it should eventually approach the level of inherent randomness,
resulting in lower SNR values. Such a tradeoff makes it difficult to
improve both switching symmetry and SNR at the same time and
it remains as a key challenge for ReRAM devices for neuro-
morphic computing applications. However, if these key metrics
are accurately quantified like we demonstrated with our GPR-
based methodology, one can optimize the device and pulse con-
ditions to find the optimum point within the tradeoff. As
reviewed in a previous section, switching symmetry is a critical
requirement to implement backpropagation algorithm for DNNs.
In reality, learning accuracy is compromised due to non-ideal
(asymmetric) switching characteristics of synaptic elements.
Therefore, we optimized the device condition (device A) and the
pulse condition (set: 1.6 V, reset: –1.8 V) using the GPR-based
methodology to minimize SF. The beauty of our methodology is
the capability to extract SF, agnostic to switching mechanisms
and irrespective of data size. This enabled us to compare our
ReRAM data with various resistive switching devices in litera-
ture28–35. There have been reports on improved switching sym-
metry using pulses with varying amplitude28, 30, 31. These cases
were benchmarked together and marked separately in Fig. 4d.
One can see a general trend of improved symmetry using pulses
with varying amplitudes. This approach, however, requires sen-
sing of current states of individual devices and adjustment of
voltage amplitudes, which is not compatible with local and par-
allel computation. It should be noted that our optimized ReRAM
data showed good switching symmetry compared with all
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benchmark data with identical voltage pulses. This is a significant
step forward to realize online training capability in a parallel
manner. Future work needs to focus on simultaneously achieving
sufficiently high SNR values with materials optimizations.

Breakdown of variability components in 90-nm PCM devices.
A conventional approach to extract inherent randomness asso-
ciated with weight updates is to test multiple devices and to
obtain statistical distributions21. The variability obtained in this
manner, however, includes device-to-device variability in addi-
tion to inherent randomness from individual devices. These
variability components need to be quantified separately in order
to accurately assess potentials of certain NVM elements for

neuromorphic computing applications. We tested 1000 PCM
devices and extracted signal and noise from individual devices
using our GPR-based methodology. This enabled us to further
break down the total variability to the inherent randomness of
individual devices and the device-to-device variability. These two
variability components are illustrated in Fig. 5a with two repre-
sentative PCM devices (devices 1 and 2) that were fabricated with
the identical process. The GPR fitting was performed to predict
noise-free signals as shown in red and blue solid lines, respec-
tively, in Fig. 5a. The predicted signals for devices 1 and 2 deviate
from each other due to device-to-device variability. In addition,
the experimental data points (shown in circles) fluctuate around
the individual fitted lines, which is attributable to inherent ran-
domness of weight updates since the read noise was minimized by
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the test sequence as described in Methods section. We compared
the histograms of ΔG values extracted from experimental data
and fitted curves after the pulse numbers 2 (Fig. 5b) and 6
(Fig. 5c). The statistical distribution of the fitted curves (red) is
the contribution from device-to-device variability, whereas the
statistical distribution of the experimental data (blue) includes
inherent randomness superimposed on top of that. The latter
distribution was much wider, clearly showing significant con-
tribution of inherent randomness. The peak ΔG value decreased
and the device-to-device variability (red) tightened from the
second to the sixth pulse. On the other hand, the inherent ran-
domness remained relatively constant. This resulted in the tail of
total distribution (blue) extending into the negative ΔG regime,
which is undesirable (Fig. 5c). The mean and standard deviation
of ΔG obtained from the experimental data (shown in black
circles and error bars) were compared with the root mean square
of inherent randomness (r) obtained from the GPR-based
methodology (shown in red error bars) as a function of pulse
number in Fig. 5d. The total standard deviation became com-
parable with ΔG for incremental weight updates. Since the
learning accuracy is known to degrade when the ratio of standard
deviation to ΔG becomes >121, reduction of variability is indis-
pensable. Our analysis revealed that a large portion of total
variability is attributed to inherent randomness of individual
devices (~67%) for a mature technology based on the 90 nm
CMOS baseline. The median SNR value calculated from inherent
randomness is ~35% for PCM devices, which is comparable to
our ReRAM device switching at a similar G level (cf. Fig. 4b). This
indicates that variability due to inherent randomness is a

common challenge for ReRAM and PCM for neuromorphic
computing applications. Innovations in device and material are
needed to suppress this component. Our methodology based on
GPR enables precise extraction of inherent randomness from
individual devices and provides useful guidelines for further
improvement.

Discussion
We established a practical methodology based on GPR to pre-
cisely separate signal and noise components from analog NVM
elements with non-linear conductance changes. This solves key
technical challenges for characterization of artificial synapses of
neuromorphic computing system, namely extraction of switching
symmetry and SNR. The methodology is agnostic to switching
mechanisms and therefore applicable to various types of NVMs.
We applied the methodology to HfO2-based ReRAM devices and
found the tradeoff between switching symmetry and SNR. Using
SF as a guideline, substantial improvement in switching sym-
metry was achieved compared to reported ReRAM devices in
literature. By systematic analysis of 1000 GST-based PCM devi-
ces, we clearly demonstrated that a large portion of variability in
weight update is attributable to inherent randomness from indi-
vidual devices and this is the key component to be suppressed in
order to achieve high classification accuracy.

Finally, the proposed methodology helps neuromorphic system
engineers in two ways depending on phases of technology
development. In an exploratory phase, our methodology enables
extraction of switching symmetry and SNR from individual
devices and expedites search for ideal materials. The conventional
methodology requires fabrication of many devices with tight
device-to-device variability for extraction of SNR, which is diffi-
cult to attain in the early stage when exotic material options need
to be screened. In a relatively mature technology phase, our
methodology helps find the optimum input signals (e.g., duration
and amplitude of pulses) that provide the best switching sym-
metry (linearity) and SNR within the tradeoff for the entire
neuromorphic system.

Methods
ReRAM device fabrication and test. We fabricated 2-terminal oxide ReRAM
with device dimensions of 50 × 50 μm2. First, a SiO2 underlayer was grown on a
200 mm Si wafer. Then, a 100 nm-thick TiN film was deposited by reactive sput-
tering as a bottom electrode, followed by deposition of a HfO2 layer by atomic layer
deposition as a switching layer where a current conducting filament is formed. We
varied the thickness of the switching layer (device A: 5 nm, device B: 4 nm) to
investigate its impact on switching symmetry. Next, a 20 nm-thick TiN was
deposited by reactive sputtering as a top electrode. The device area was defined by
photolithography and reactive ion etching of the TiN electrode. To test switching
symmetry and SNR of our ReRAM devices, we applied a sequence of weight update
(write) pulses with the same voltage amplitude for each polarity. We used high-
resolution source measure unit (SMU) to read the device conductance state
between the write pulses. We applied a small read voltage of 0.1 V to prevent
disturbance in the resistance state. While keeping the read voltage applied across
the device, we took multiple read steps with a 16.67 ms integration time until the
measured values read at the instrument stabilized (typically within 3–10 repetitive
read measurements in the device resistance range of interest). Then, we chose the
last measurement as the representative value. We did not detect random telegraph
noise with this read sequence. The write pulses had duration of 100 ns (unless
otherwise mentioned) and various voltage amplitudes (set pulse: 1.6–1.7 V; reset
pulse: −1.8 to −1.9 V) were compared to investigate the impacts on switching
symmetry and SNR. In order to separate noises from weight update and those from
weight read, we also carried out read-only test, where only read steps were repeated
up to 1000 times without weight updates in between. Our linear regression analysis
showed that the residual standard error of read-only trace is 2.51 × 10−7 S, which is
almost one order lower than that of read-after-write trace (1.38–1.57 × 10−6 S).
Therefore, we attribute a majority of noise components of our ReRAM devices to
inherent randomness in weight updates.

PCM device fabrication and test. The PCM devices were integrated into a chip
fabricated in the 90 nm CMOS technology36. The phase-change material is doped
Ge2Sb2Te5. The bottom electrode has a radius of ~20 nm and was defined using a
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Fig. 5 Separation of device-to-device variability and inherent randomness
for PCM. a Device G as a function of pulse number for two representative
PCM devices (devices 1 and 2), fabricated with the identical process. The
predicted noise-free signals from the GPR fitting are shown in red and blue
solid lines. The difference of two fitted lines corresponds to device-to-
device variability, whereas the fluctuations of the experimental data around
the fitted lines are attributed to inherent randomness from individual
devices. Histograms of ΔG values extracted from experimental data (blue)
and fitted curves (red) (b) after the second pulse and (c) after the sixth
pulse. d The mean and standard deviation of ΔG obtained from the
experimental data (shown in black circles and error bars) were compared
with the root mean square of inherent randomness (r) obtained from the
GPR-based methodology (shown in red error bars) as a function of pulse
number. The inherent randomness accounts for 67% of the total variability
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sub-lithographic key-hole transfer process37. The phase-change material is ~100
nm-thick and extends to the top electrode. All experiments in this work were done
on an array comprising 1 million devices, which is organized as a matrix of 512
word lines (WLs) and 2048 bit lines (BLs). The selection of one PCM device is done
by serially addressing a WL and a BL. A single selected device can be programmed
by forcing a current through the BL with a voltage-controlled current source. For
reading a PCM cell, the selected BL is biased to a constant voltage of 0.3 V. The
resulting read current is integrated by a capacitor, and the resulting voltage is then
digitized by an on-chip 8-bit cyclic ADC. The ADCs are calibrated by means of on-
chip reference poly-silicon resistors. As for characterization of incremental device
G change, each device was first initialized to a state that has almost zero con-
ductance. After the initialization, a set pulse of 70 μA was applied followed by
conductance read steps. The read step was repeated 50 times to obtain mean G
values in order to minimize read noise and to focus on characterization of write
noise. This sequence was repeated 20 times to obtain G values as a function of pulse
numbers.

GPR-based methodology. The goal of GPR is to learn a probability distribution of
the output signal, y, conditioned on the input signal, x, from data

x nð Þ; y nð Þ� �jn ¼ 1; ¼ ;N
� �

, where N is the number of samples and the superscript
ðnÞ denotes the n-th sample in the data. The distribution is given by

p yjxð Þ ¼ N yjm xð Þ; s2 xð Þ� �
; ð3Þ

m xð Þ ¼ kT Kþ Ið Þ�1yN ; ð4Þ

s2 xð Þ ¼ σ2 2� kT Kþ Ið Þ�1k
� �

; ð5Þ

where N yjm xð Þ; s2 xð Þð Þ denotes the Gaussian distribution of y with the mean
m xð Þ and the variance s2 xð Þ. Also, σ2 denotes the variance that corresponds to
measurement noise, I denotes the identity matrix, and yN ¼ y 1ð Þ; ¼ ; y Nð Þ� �T

,
where the superscript T denotes the matrix transpose.

The key ingredient of GPR is the kernel matrix K, which controls the
smoothness of the estimated functional curve. We use a non-dimensional kernel K
whose ði; jÞ element is given by

K x ið Þ; x jð Þ
� 	

def exp � jx ið Þ � x jð Þj2
2σ2K


 �
: ð6Þ

The n-th entry of the N-dimensional vector kðxÞ is also given by K x; x nð Þ� �
. The

parameters σ2K ; σ
2 are learned from the data, as explained later. The idea is to use

the predictive mean, m xð Þ, at the input value (pulse number) x, as a noise-free
version of the output signal (G).

Determining GPR parameters. The parameter σ2 is determined by maximizing
the log marginalized likelihood26, which is given by

E σð Þ def � N
2
ln σ2 � 1

2σ2
y>N Kþ Ið Þ�1yN � 1

2
ln det Kþ Ið Þ þ c; ð7Þ

in our parameterization, where c denotes an unimportant constant, and det is the
matrix determinant. Assuming σK is given for now and taking the derivative with
respect to σ�2, we have

σ2 ¼ 1
N


 �
yTN Kþ Ið Þ�1yN : ð8Þ

To compute this, we need a value of σK . In theory, we could find it by
maximizing E simultaneously with σ: This approach, however, involves a complex
non-linear optimization procedure and often results in numerical instability in our
application.

Here we propose a practical approach that combines the Bayesian marginalized
likelihood maximization with the frequentists’ cross-validation approach.
Specifically, to determine σK , we maximize the predictive leave-one-out (LOO)
likelihood, as defined by

L σKð Þ def
XN

i¼1

lnN y ið Þjm�i x ið Þ
� 	

; s2�i xðiÞ
� 	� 	

; ð9Þ

where m�i and s2�i are the predictive mean and variance of GPR (Eqs. (4) and (5))
obtained from the dataset excluding the i-th sample. To find the maximizer of
L σKð Þ, we can leverage the fact that the observed variance does not depend heavily
on the input across the entire domain. By replacing s2�i with a constant, the LOO
likelihood criterion is reduced to the task of finding a minimizer of the mean
square of the residual (i.e., r), which is easily done independently of σ2. In this
study, we use the following procedure and criterion to find an appropriate σK value
from the experimental data. We vary σK to cover a wide range and identify an

optimum range where the change of σK negligibly affects extracted r values. This is
practically equivalent to maximizing the predictive LOO likelihood. Our criterion is
r change of <1% for σK change of 10% and this is met with a σK value of around
3 ´N for our dataset (Supplementary Note 6).

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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