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Mining of gene modules a
nd identification of key
genes in head and neck squamous cell carcinoma
based on gene co-expression network analysis
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Abstract
To explore the gene modules and key genes of head and neck squamous cell carcinoma (HNSCC), a bioinformatics algorithm based
on the gene co-expression network analysis was proposed in this study.
Firstly, differentially expressed genes (DEGs) were identified and a gene co-expression network (i-GCN) was constructed with

Pearson correlation analysis. Then, the gene modules were identified with 5 different community detection algorithms, and the
correlation analysis between gene modules and clinical indicators was performed. Gene Ontology (GO) analysis was used to
annotate the biological pathways of the gene modules. Then, the key genes were identified with 2 methods, gene significance (GS)
and PageRank algorithm. Moreover, we used the Disgenet database to search the related diseases of the key genes. Lastly, the
online software onclnc was used to perform the survival analysis on the key genes and draw survival curves.
There were 2600 up-regulated and 1547 down-regulated genes identified in HNSCC. An i-GCN was constructed with Pearson

correlation analysis. Then, the i-GCNwas divided into 9 genemodules. The result of association analysis showed that, sex wasmainly
related to mitosis and meiosis processes, event was mainly related to responding to interferons, viruses and T cell differentiation
processes, T stage was mainly related to muscle development and contraction, regulation of protein transport activity processes, N
stage was mainly related to mitosis and meiosis processes, while M stage was mainly related to responding to interferons and
immune response processes. Lastly, 34 key genes were identified, such as CDKN2A, HOXA1, CDC7, PPL, EVPL, PXN, PDGFRB,
CALD1, and NUSAP1. Among them, HOXA1, PXN, and NUSAP1 were negatively correlated with the survival prognosis.
HOXA1, PXN, and NUSAP1might play important roles in the progression of HNSCC and severed as potential biomarkers for future

diagnosis.

Abbreviations: DEG = differentially expressed gene, GS = gene significance, HNSCC = head and neck squamous cell
carcinoma, HOXA1 = Homeobox A1, i-GCN = gene co-expression network, ME =module eigengene, NuSAP1 = Nucleolar spindle
associated protein 1, PCA = principal component analysis, TCGA = the cancer genome atlas, WGCNA = Weighted Gene Co-
expression Network Analysis.
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Highlights

1. A gene co-expression network of HNSCC was con-
structed

2. The gene modules which were highly related to five
clinical indicators sex, event, T, N, and M was identified

3. The key genes which played important roles in HNSCC
were identified, and HOXA1, PXN and NUSAP1 were
negatively correlated with the survival prognosis.
1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is one of the
top 10 common cancer diseases in the world.[1] In recent years,
there have been many studies on HNSCC. Zou et al analyzed the
expression profiles of lncRNA and miRNA in 422 cases of
HNSCC, and found that 307 differential genes were related to the
survival of the patients and were related to the mutations of gene
CDKN2A, TP53, CASP8, etc.[2] Besides, Yan et al found the hub
genes CPBP, NF-AT1, and miR-1 from the TF-miRNA-gene
network which was constructed by 2594 differentially expressed
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genes (DEGs) and 25 miRNAs of HNSCC.[3] The previous
studies focused on identifying DEGs of HNSCC, but there is a
lack of research on gene co-expression networks (i-GCNs) and
identifying its functional gene modules and key genes.
I-GCN was first proposed by Butte and Kohane in 1999.[4]

They measured gene co-expression relationship with Pearson
correlation coefficient as an index, and constructed an i-GCN
with gene expression profile data.[4,5] At present, the commonly
used method in gene co-expression network analysis is Weighted
Gene Co-expression Network Analysis (WGCNA).[6] Xia et al
identified the modules which were closely related to the stage and
the hub genes TOP2A, TTK, CHEK1, and CENPA with
WGCNA on the transcriptome data of adrenocortical carcino-
ma.[7] Tang et al found 13 hub genes associated with breast
cancer prognosis, such as SSPN, NELL2, AGTR1 with
WGCNA.[8] Ao et al constructed a differential i-GCN between
normal tissues and tumor tissues of papillary thyroid carcinoma
and identified the potential functional genes with WGCNA.[9] As
a result, WGCNA has made important contributions to cancer
research by constructing an i-GCN to identify modules which
related to clinical indicators and hub genes. Based on this, we
think there are 2 parts of this analysis that can be optimized. On
the one hand, multiple algorithms can be used to divide the i-
GCN into modules, and then the optimal division result can be
selected. On the other hand, two methods can be used to find key
genes. One is identifying key genes with the correlation of gene
expression levels and clinical indicators. The other was
calculating the importance of nodes in i-GCN based on the
topological structure with the PageRank algorithm to identify the
key genes.
To explore the gene modules and key genes of HNSCC, a

bioinformatics algorithm based on the gene co-expression
network analysis was proposed in this study. Firstly, gene
expression data of HNSCC and its adjacent tissues was obtained
from TCGA. The original data was preprocessed for further
analysis. Then, the FC-t algorithm was used to identify DEGs.
Secondly, we constructed the i-GCNwith the Pearson correlation
analysis. After that, five different community detection algo-
rithms were used to divide the i-GCN. Then the algorithm with
the highest modularity was selected to divide the i-GCN into gene
modules for further analysis. Furthermore, we found the gene
modules which were highly related to 5 clinical indicators sex,
event, T, N, and M. The biological significance of each gene
module was explored using GO enrichment analysis. Finally, the
PageRank algorithm and gene significance (GS) bothwere used to
identify key genes, which next to be search for related diseases in
the Disgenet database. In the end, the survival analysis was
performed on the key genes.
2. Methods and materials

To explore the gene modules and identify the key genes of
HNSCC, a bioinformatics algorithm based on the gene co-
expression network analysis was proposed in this study. And
the transcriptome data of HNSCC and its adjacent tissues were
used. Flow-chart of data analysis in this paper was shown
in Fig. 1.

2.1. Data collection and pre-processing

The transcriptome data of HNSCC and its adjacent tissues which
were used in this paper were downloading from the cancer
2

genome atlas (TCGA)[10] (https://cancergenome.nih.gov/),
which included 498 HNSCC samples and 44 adjacent tissues
samples, each of which contains 60,483 genes. Of the 60,483
genes in each sample, we removed genes which expression below
1. Then, the filtered genes were used for hierarchical clustering
of HNSCC. This study based on public sources data, which
contains its ethnic approval. Thus, we do not need any further
ethnic approval.
2.2. Identification of DEGs

We identified the DEGs between HNSCC and its adjacent tissues
with FC-t algorithm[11] in this study. FC ≥2 or FC �0.5 and P �
.05 was set as the cut-off criteria.
2.3. Construction of i-GCN

The Pearson correlation coefficient and its P value between
pairwise DEGs were calculated. Then the conditions jrj ≥ 0.6 and
P< .05 (r represents the Pearson correlation coefficient) was set as
the cut-off criteria. An i-GCN was constructed based on this.
2.4. Community division of i-GCN

Five different community detection algorithms, multilevel,[12]

eigenvector,[13] label-propagation,[14] map-equation[15,16] and
edge-betweenness[17] were used to divide the i-GCN to obtain
communities (gene modules). Therefore, we installed igraph
package[18] in R (v1.2.4) for community detection using
multilevel.community, leading.eigenvector.community, label.
propagation.community, infomap.community, edge.between-
ness.community. The modularity was carried out to determine
the results of different algorithms. Then the algorithm with the
highest modularity was selected to divide the i-GCN for further
analysis.

2.5. Association analysis between gene modules and
clinical indicators

To measure the association between the gene modules and
clinical indicators, the principal component analysis (PCA)[19]

was carried out to perform the gene expression profiles in each
module. Then the first principal component was used as the
module eigengene (ME). Pearson correlation analysis was used
to find the association matrix between the MEs of each module
and five clinical indicators sex, event, T, N, and M,
respectively.

2.6. GO enrichment analysis

To explore the biological significance of the gene modules, the
genes contained in gene modules were enriched with the
biological processes provided by the GO database (http://
geneontology.org/). The 10 GO Terms with the smallest P value
were selected for further research.

2.7. Identification of key genes

We used two methods to identify key genes. One was identifying
key genes with the Pearson correlation analysis of gene
expression levels and clinical indicators event. The Pearson
correlation coefficient was defined as the GS, and the DEGs with
jGSj >0.16 were selected as key genes. The other was calculating
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Figure 1. Flow-chart of data analysis in this paper. The rectangular boxes represent the processing steps, and the parallelogram boxes represent the method or
database.
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the importance of nodes in i-GCN based on the topological
structure with the PageRank algorithm[20] to identify the key
genes. And the top 20 genes with the highest scores were selected
as key genes.
2.8. Use of Disgenet database

Disgenet Database[21] (http://www.disgenet.org/) contains the
information between diseases and genes. We used the Disgenet
database to search the related diseases of the key genes.
2.9. Survival analysis of key genes

The online software onclnc[22] (http://www.oncolnc.org/) was
used to perform the survival analysis on the key genes and draw
survival curves. Cancer was set to HNSCC and lower and upper
percentiles were both set as 20.
3

3. Results

3.1. Data pre-processing

We removed genes which expression below 1. Then, the remained
18,510 genes were used for hierarchical clustering of HNSCC
(Fig. 2A). From the Figure 2A, there were2 obvious outlier
samples in the original data: TCGA-D6-A6ES and TCGA-IQ-
7631, which were removed to obtain a data set for further
analysis. Details of the remaining genes and samples were
presented in the Supplementary Table 1, http://links.lww.com/
MD/F274, which contained the pre-processed data.

3.2. Identification of DEGs with FC-t algorithm

After data pre-processing, the remaining 18,510 genes were used
for identifying the DEGs between HNSCC and its adjacent
tissues with FC-t algorithm (Fig. 2B and Supplementary Table 2,
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Figure 2. Data preprocessing and identification of DEG. (A) Sample clustering was conducted to detect outliers, whlie TCGA-D6-A6ES and TCGA-IQ-7631 were
removed. (B) X-axis represents log2 fold-changes and Y-axis represents negative logarithm to the base 10 of the P-values. Black vertical and horizontal dashed
lines reflect filtering criteria (FC=±1 and P value= .05). (C) Red and blue bars are number of significantly down-regulated (n=1547) and up-regulated genes (n=
2600) in HNSCC compared with its adjacent tissues.
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http://links.lww.com/MD/F275, which showed the fold changes
and P values of the DEGs). In total, 4147 genes had differential
expression, including 2600 up-regulated genes and 1547 down-
regulated genes (Fig. 2C).
3.3. Construction of i-GCN with Pearson correlation analysis

The Pearson correlation coefficient and its P value between
pairwise DEGs were calculated. The number of preliminary
relationships was 17,197,609. Then the conditions jrj ≥ 0.6 and
P< .05 was set as the cut-off criteria. There were 129,220
relationships remained with 2,526 genes. An i-GCN was
constructed based on this. The remained relationships were
imported into Cytoscape software[23] for visualization (Fig. 3A).
There were a large net and several small nets, and the number of
genes in each small net was less than 10. The large net (i-GCN)
containing 2241 genes were remained for further research after
small nets removed.

3.4. Divide i-GCN with community detection algorithms

Five different community detection algorithms, multilevel, eigen-
vector, label-propagation, map-equation and edge-betweens were
Figure 3. Construction of GCN and mining of gene modules. (A) The i-GCN was
multilevel algorithm. The multilevel algorithm divided i-GCN into 13 communities. (C
row corresponds to module, the column corresponds to clinical indicator. The mo
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used to identify the community of i-GCN. The modularity of each
algorithmwas shown inTable 1. It could be seen that themultilevel
algorithm with the highest modularity was selected for further
analysis.
The i-GCN was divided into 13 communities by multilevel

algorithm (Fig. 3B and Supplementary Table 3, http://links.lww.
com/MD/F276, which demonstrated the details of each module).
The communities with genes less than 20 were removed and 9
communities corresponding to 9 gene modules were left. The
network densities of these 9 communities were shown in Table 2.
While the network density of i-GCN without community
detection was 0.05131319. Each network density of these 9
communities was higher than the i-GCN.
3.5. Association analysis between gene modules and
clinical indicators

The ME of each module was obtained by PCA, and the details
were showed in Supplementary Table 4, http://links.lww.com/
MD/F277. The association matrix was obtained from the result
of correlation analysis between the modules and clinical
indicators (Fig. 3C). The module was considered to be highly
correlated with the clinical indicator when the absolute value of
constructed by Pearson correlation analysis. (B) Division result obtained by the
) The heat map of the correlation between modules and clinical indicators. The
dules m2, m3, m7, m8, and m9 were highly correlated with clinical indicators.
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Table 1

The modularities of five algorithms.

Algorithm Modularity

multilevel 0.5256592
eigenvector 0.5137625
label-propagation 0.5155226
map-equation 0.01748193
edge-betweenness 0.5223523
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the correlation coefficient was over 0.1. The results showed that
m2, m7, m8, andm9were highly correlated with sex, m7, m8 and
m9 were highly correlated with event, m3 and m8 were highly
correlated with T, m2 and m8 were highly correlated with N, m7
were highly correlated with M.
3.6. The biological significance of gene modules with GO
enrichment analysis

The above results showed that modules m2, m3, m7, m8, and m9
were highly related to the clinical indicators. Then we found the
biological functions of these modules with GO enrichment
analysis (Table 3). Association analysis between the MEs of each
module and clinical indicators showed that (Fig. 3C), sex was
mainly related to mitosis and meiosis processes, event was mainly
related to responding to interferons, viruses and T cell
differentiation processes, T was mainly related to muscle
development and contraction, regulation of protein transport
activity processes, N was mainly related to mitosis and meiosis
processes, while M was mainly related to responding to
interferons and immune response processes.
3.7. Identification of key genes and exploration of their
functions

In this paper, 2 methods were used to find key genes. One method
was identifying key genes with the correlation of gene expression
levels and clinical indicators. The GS values of DEGs were
showed in Supplementary Table 5, http://links.lww.com/MD/
F278. Among the results, 14 genes with jGSj >0.16 were
identified as the key genes. Then we searched these key genes for
related diseases in the Disgenet database. The result showed that
9 key genes have a strong correlation with tumor diseases, i.e.,
HOXA1, ZAP70, XPR1, DONSON, CDC7, HENMT1,
TNFRSF25, GNMT, CDKN2A. These key genes were related
Table 2

Network density of nine communities containing more than 20
genes.

Module Densities

m1 0.220859773
m2 0.221835782
m3 1.219824805
m4 0.141935484
m5 0.367359229
m6 0.158419958
m7 0.106810852
m8 0.10614192
m9 0.063424239
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to a variety of tumor diseases, i.e., Lymphoma, Glioma, Lip and
Oral Cavity Carcinoma, Malignant neoplasm of mouth,
Colorectal Cancer, Prostate carcinoma, Central neuroblastoma,
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma, Prostate
carcinoma, Breast Carcinoma, Liver carcinoma, Pancreatic
Ductal Adenocarcinoma, etc. (Supplementary Table 5 http://
links.lww.com/MD/F278, which demonstrated the key genes
related to the diseases). It worth noted that 3 key genes were
related to HNSCC, CDKN2A, HOXA1, and CDC7.
The other method was scoring the importance of all nodes in

the i-GCN with the PageRank algorithm, the scores of each node
were showed in the Supplementary Table 6, http://links.lww.
com/MD/F279 and the top 20 genes with the highest score were
identified as the key genes. The results of the Disgenet database
showed that 15 of the 20 key genes have a strong correlation with
tumor diseases, i.e., PPL, PRSS27, AHSA2P, CD27, SULT2B1,
FCRL5, IKZF2, EVPL, PXN, ASF1B, PDGFRB, LAMA4,
CALD1, CD79A, and NUSAP1. These key genes were related
to a variety of tumor diseases, i.e., Prostatic Neoplasms, Thyroid
carcinoma, Lymphoma, Carcinoma of lung, Malignant Glioma,
Breast Carcinoma, Ovarian Carcinoma, Dermatofibrosarcoma,
Liver carcinoma, Urothelial Carcinoma, etc. (Supplementary
Table 6, http://links.lww.com/MD/F279 which demonstrated the
key genes related to the diseases). It worth noted that 6 key genes
were related to HNSCC, PPL, EVPL, PXN, PDGFRB, CALD1,
and NUSAP1.
3.8. Survival analysis of key genes

To assess the utility of i-GCN at identifying key genes indicative
of HNSCC, we conducted survival analysis with onclnc (Fig. 4).
The survival curves results showed that the expression of
HOXA1, PXN, and NUSAP1 were negatively correlated with the
survival prognosis. While EVPL showed the opposite result.
These were consistent with the results of DEGs identifying.

4. Discussion

To explore the gene modules and key genes of HNSCC, a
bioinformatics algorithm based on the gene co-expression
network analysis was proposed in this study. Related studies
showed that there was a co-expression relationship between two
genes if their absolute values of Pearson correlation coefficient
over a certain threshold.[24] Chang et al applied Pearson
correlation coefficient to construct an i-GCN to compare
transcriptomes from maize leaf and identified regulators of
maize C4 enzyme genes.[24] Based on the Pearson correlation
coefficient between 2 gene expression data, an i-GCN was
constructed in our study.
Then, comparing the results of 5 different community detection

algorithms (multilevel, eigenvector, label-propagation, map-
equation and edge-betweenness), the multilevel algorithm which
had the highest modularity divided the i-GCN into 9 gene
modules. Association analysis between the MEs of each module
and clinical indicators showed that, sex was mainly related to
mitosis and meiosis processes, event was mainly related to
responding to interferons, viruses and T cell differentiation
processes, T was mainly related to muscle development and
contraction, regulation of protein transport activity processes, N
was mainly related to mitosis and meiosis processes, while Mwas
mainly related to responding to interferons and immune response
processes.
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Table 3

GO analysis of DEGs in highly correlative module.

ID Description P value Count

Sex-related biological processes
GO:0007059 chromosome segregation 1.23E-71 86
GO:0000819 sister chromatid segregation 9.62E-70 73
GO:0006260 DNA replication 4.52E-58 70
GO:0000280 nuclear division 1.05E-57 80
GO:0140014 mitotic nuclear division 3.93E-56 67
GO:0034340 response to type I interferon 1.07E-42 33
GO:0051607 defense response to virus 3.92E-38 36
GO:0000082 G1/S transition of mitotic cell cycle 7.00E-35 50
GO:0009615 response to virus 2.41E-34 37
GO:0071103 DNA conformation change 4.06E-33 50

Event-related biological processes
GO:0034340 response to type I interferon 1.07E-42 33
GO:0051607 defense response to virus 3.92E-38 36
GO:0009615 response to virus 2.41E-34 37
GO:0045071 negative regulation of viral genome replication 2.49E-23 17
GO:0070268 cornification 5.43E-22 21
GO:0019079 viral genome replication 5.97E-18 17
GO:0043900 regulation of multi-organism process 6.39E-17 26
GO:0035455 response to interferon-alpha 3.10E-13 8
GO:0018149 peptide cross-linking 1.45E-12 11
GO:0032480 negative regulation of type I interferon production 2.87E-09 8

T-related biological processes
GO:0006936 muscle contraction 3.56E-56 68
GO:0055001 muscle cell development 2.25E-40 44
GO:0030239 myofibril assembly 2.50E-40 32
GO:0030049 muscle filament sliding 6.02E-35 24
GO:0033275 actin-myosin filament sliding 6.02E-35 24
GO:0010927 cellular component assembly involved in morphogenesis 2.24E-34 33
GO:0007517 muscle organ development 4.19E-34 53
GO:0031032 actomyosin structure organization 5.69E-28 35
GO:0014706 striated muscle tissue development 7.28E-25 43
GO:0050879 multicellular organismal movement 8.75E-21 18

N-related biological processes
GO:0007059 chromosome segregation 1.23E-71 86
GO:0000819 sister chromatid segregation 9.62E-70 73
GO:0006260 DNA replication 4.52E-58 70
GO:0000280 nuclear division 1.05E-57 80
GO:0140014 mitotic nuclear division 3.93E-56 67
GO:0000082 G1/S transition of mitotic cell cycle 7.00E-35 50
GO:0071103 DNA conformation change 4.06E-33 50
GO:1901990 regulation of mitotic cell cycle phase transition 1.99E-31 57
GO:0051983 regulation of chromosome segregation 2.04E-30 31
GO:0007088 regulation of mitotic nuclear division 1.56E-27 35

M-related biological processes
GO:0034340 response to type I interferon 1.07E-42 33
GO:0051607 defense response to virus 3.92E-38 36
GO:0009615 response to virus 2.41E-34 37
GO:0045071 negative regulation of viral genome replication 2.49E-23 17
GO:0019079 viral genome replication 5.97E-18 17
GO:0043900 regulation of multi-organism process 6.39E-17 26
GO:0035455 response to interferon-alpha 3.10E-13 8
GO:0032480 negative regulation of type I interferon production 2.87E-09 8
GO:0032606 type I interferon production 3.53E-09 11
GO:0050688 regulation of defense response to virus 9.98E-08 8

Zhao et al. Medicine (2020) 99:49 Medicine
Lastly, combine with the GS values of all the DEGs and the
PageRank algorithm to find the key genes. It was worth noting
that the key gens were related to many skin disease, such as Dry
skin, Vesicular Stomatitis, Skin Erosion, Eczema, Dermatologic
disorders, Dermatitis, Atopic, Hyperextensible skin, Thin skin,
etc. And there were skin-related tumor diseases, such as
6

Squamous cell carcinoma of skin, Skin Neoplasms, etc. We
speculated that the pathogenesis of HNSCCmight be similar with
skin diseases. In addition, the key genes PRSS27, AHSA2P,
CD27, SULT2B1, FCRL5, IKZF2, ASF1B, LAMA4, CD79A,
ZAP70, XPR1, DONSON, HENMT1, TNFRSF25, GNMT
were related to a variety of tumor diseases without HNSCC.



Figure 4. Significant correlation between key genes expression and survival. Survival curves of genes HOXA1, EVPL, PXN, and NUSAP1, X-axis represented
survival time and Y-axis represented survival rate.
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Therefore, the roles of these genes in HNSCC should be further
study.
It was noted that HOXA1, PXN and NUSAP1 were negatively

correlated with the survival prognosis. The survival curves results
showed that the expression of HOXA1, PXN, andNUSAP1 were
negatively correlated with the survival prognosis, the gene
expression lower, the survival prognosis better. While EVPL
showed the opposite result. Homeobox A1 (HOXA1) was a
member of HOX gene family, which was a part of a cluster on
chromosome 7 and encoded a DNA-binding transcription factor
that might regulate gene expression, morphogenesis and
differentiation. Previous results showed that HOXA1 was
abnormally expressed in leukemia, cervical cancer, and breast
cancer and it was associated with prognosis.[25,26] PXN
participated in cell signal transmission and played a role in
organ development, damage repair and cell movement. PXNwas
abnormally expressed in a large number of digestive system
tumors, but its function of suppressing or promoting cancer was
remained unclear.[27,28] Nucleolar spindle associated protein 1
(NuSAP1) mainly participated in the assembly process of mitotic
spindle. It was an important regulatory molecule to ensure the
normal cell cycle. NuSAP1 was overexpressed in a variety of
tumors, which was significantly associated with invasion and
metastasis and poor prognosis.[29,30] However, the specific
functions of these genes that contribute to HNSCC cell
proliferation, differentiation, and metastasis needed further
study.
5. Conclusions

An i-GCN was constructed with Pearson correlation analysis.
Association analysis between the MEs of each module and
clinical indicators showed that, sex was mainly related to mitosis
7

and meiosis processes, event was mainly related to responding to
interferons, viruses and T cell differentiation processes, T was
mainly related to muscle development and contraction, regula-
tion of protein transport activity processes, N was mainly related
to mitosis and meiosis processes, while M was mainly related to
responding to interferons and immune response processes. Lastly,
HOXA1, PXN, and NUSAP1 might play important roles in the
progression of HNSCC and severed as potential biomarkers for
future diagnosis.
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