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Abstract

Background: Human monocytotropic ehrlichiosis is an emerging life-threatening zoonosis caused by obligately intracellular
bacterium, Ehrlichia chaffeensis. E. chaffeensis is transmitted by the lone star tick, Amblyomma americanum, and replicates in
mononuclear phagocytes in mammalian hosts. Differences in the E. chaffeensis transcriptome in mammalian and arthropod
hosts are unknown. Thus, we determined host-specific E. chaffeensis gene expression in human monocyte (THP-1) and in
Amblyomma and Ixodes tick cell lines (AAE2 and ISE6) using a whole genome microarray.

Methodology/Principal Findings: The majority (,80%) of E. chaffeensis genes were expressed during infection in human
and tick cells. There were few differences observed in E. chaffeensis gene expression between the vector Amblyomma and
non-vector Ixodes tick cells, but extensive host-specific and differential gene expression profiles were detected between
human and tick cells, including higher transcriptional activity in tick cells and identification of gene subsets that were
differentially expressed in the two hosts. Differentially and host-specifically expressed ehrlichial genes encoded major
immunoreactive tandem repeat proteins (TRP), the outer membrane protein (OMP-1) family, and hypothetical proteins that
were 30–80 amino acids in length. Consistent with previous observations, high expression of p28 and OMP-1B genes was
detected in human and tick cells, respectively. Notably, E. chaffeensis genes encoding TRP32 and TRP47 were highly
upregulated in the human monocytes and expressed as proteins; however, although TRP transcripts were expressed in tick
cells, the proteins were not detected in whole cell lysates demonstrating that TRP expression was post transcriptionally
regulated.

Conclusions/Significance: Ehrlichia gene expression is highly active in tick cells, and differential gene expression among a
wide variety of host-pathogen associated genes occurs. Furthermore, we demonstrate that genes associated with host-
pathogen interactions are differentially expressed and regulated by post transcriptional mechanisms.
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Introduction

Human monocytotropic ehrlichiosis (HME) is a life-threatening

emerging tick-borne zoonosis caused by obligately intracellular

bacterium, Ehrlichia chaffeensis [1]. HME is a systemic disease

characterized by clinical presentation that includes fever, head-

ache, myalgia, anorexia, chills and laboratory abnormalities

including leucopenia, thrombocytopenia, anemia and elevation

of serum hepatic aminotransferases [1]. The severity of the disease

varies from asymptomatic seroconversion to a fatal multisystem

failure [2]. E. chaffeensis is transmitted by the lone star tick,

Amblyomma americanum, and maintained in nature by persistent

infection of mammalian hosts [1]. In the mammalian host, E.

chaffeensis replicates primarily within mononuclear phagocytes

forming membrane-bound cytoplasmic microcolonies called

morulae that are resistant to innate immune destruction [3].

Bacterial pathogens survive by expressing genes necessary for

transmission, invasion and persistence, and evasion of innate and

adaptive defenses [4]. Among these include surface proteins of

Borrelia burgdorferi and Yersinia pestis, secreted effectors of Shigella

flexneri and transcriptional regulator of Bordetella pertussis [5–7].

Moreover, host-specific gene expression by Anaplasma phagocytophi-

lum has been reported in human and tick cells [8], and the E.

chaffeensis p28 outer membrane protein encoded by the OMP-1

multigene locus is differentially expressed in human and tick cells

[9–11]. Furthermore, it is recognized that E. chaffeensis propagated
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in tick cells has a distinct antigen expression profile from that of

mammalian phagocyte grown ehrlichiae [12].

E. chaffeensis has a relatively small genome (1.18 Mbp) [13],

but has evolved within mammalian and arthropod hosts and

developed mechanisms to subvert host immune defenses. There

are numerous Ehrlichia genes that are associated with host-

pathogen interactions [14], including tandem repeat (TRPs) and

ankyrin repeat proteins (Anks), actin polymerization proteins, poly

(G–C) tracts, Type IV secretion (T4S) system and a multigene

family encoding the outer membrane proteins (OMP-1) that

exhibit porin activity [15,16]. TRPs (TRP120, TRP47 and

TRP32) and Anks (Ank200) elicit strong antibody responses in

the mammalian host and have major continuous species-specific

antibody epitopes in acidic domains that include the serine-rich

tandem repeats [17–19]. The TRPs are secreted, and TRP47 and

TRP120 are differentially expressed on the surface of dense-cored

(infectious) ehrlichiae [18–20].

Molecular interactions between TRP47 and the mammalian

host identified numerous host cell targets with distinct cellular

functions associated with signaling, transcriptional regulation,

vesicle trafficking and cellular proliferation and differentiation

[21]. TRP120 has been shown to play an important role in

binding and internalization [22], and its expression is regulated

by the second messenger cyclic di-GMP and protease HtrA [23].

It is also associated with novel molecular protein-protein, protein-

DNA interactions suggesting that it is involved in modulating host

cell processes and gene transcription [24,25]. E. chaffeensis Ank200

was recently detected in the mammalian host cell nuclei and

interacts with an adenine-rich motif in promoter and Alu

elements [26].

The macrophage transcriptome during E. chaffeensis infection

has been previously determined [27]; however, investigation of E.

chaffeensis gene expression in distinct hosts has been limited to

genes encoding the OMP-1 multigene family. In this study, we

analyzed the E. chaffeensis transcriptome in human monocytes

(THP-1), tick cells from the known arthropod vector (A.

americanum; AAE2 cells) and the vector of A. phagocytophilum (Ixodes

scapularis; ISE6 cells) and determined that well characterized

ehrlichial proteins involved in host-pathogen interactions were

differentially expressed.

Results

E. chaffeensis genes expressed in THP-1, AAE2 and ISE6
cells

The transcriptome of E. chaffeensis in THP-1 consisted of 79% of

all genes (n = 1031). Similar expression levels were observed in

AAE2 (76%) and ISE6 (81%).

Differentially expressed E. chaffeensis genes
E. chaffeensis genes were differentially expressed in THP-1

compared to AAE2 and ISE6 cells. Minor differences in E. cha-

ffeensis gene expression between the tick cell lines were observed

(Fig. 1). There were 405 E. chaffeensis genes (39%) differentially

expressed (greater than 2 fold change; p,0.005) between THP-1

and ISE6 cells, 371 genes (36%, p,0.005) differentially expressed

between THP-1 and AAE2, and 351 were similarly expressed in

the tick cell lines (Fig. 2A).

E. chaffeensis genes upregulated in the human
monocytes

There were 50 E. chaffeensis genes upregulated (.2 fold; p,0.05)

in the THP-1 cells compared to both AAE2 and ISE6 cells

(Table 1), and 19 additional genes upregulated in THP-1

compared to AAE2 cells. In contrast, only five additional genes

were upregulated in THP-1 compared to ISE6 cells. When

classifying the genes according to the Clusters of Orthologous

Groups (COGs) [28], the E. chaffeensis genes upregulated in the

THP-1 cells were grouped into the metabolic and cellular process

(C, G, P, Q, D); transcription, translation and DNA repair (J, K,

L); cell envelope biogenesis and outer membrane (M); posttrans-

lational modifications (O); general function predicted or unknown

(R,S); trafficking and secretion (U) (Fig. 2B, black bars). The

majority of these genes (54%) were classified as hypothetical with

unknown functions.

E. chaffeensis genes upregulated in the tick cells
There were 193 E. chaffeensis genes upregulated (.2 fold;

p,0.05) in tick cells compared to human cells (Table S1). The

largest proportion (32%) belonged to the COG with general

function predicted or unknown (R, S), 30% were involved in

metabolism and cellular process, and 7% of the genes were

associated with translation (J) (Fig. 2B, grey bars). The remaining

E. chaffeensis genes (31%) were distributed in the other COGs.

Hyper-expressed genes in the human monocytes
There were ten E. chaffeensis genes expressed in the THP-1 cells

with expression levels 10–15 times higher (hyper-expressed) than

other genes identified as highly expressed. These genes included

TRP47 (the highest expressed gene), TRP32, ribosomal proteins,

malonyl CoA-acyl carrier protein transacylase, and hypothetical

proteins (ECH_0166, ECH_1059, ECH_0570, ECH_0253).

Expression of genes associated with host-pathogen
interactions

For the two E. chaffeensis proteins recently shown to bind

mammalian host cell DNA, transcripts for TRP120 and Ank200

Figure 1. Microarray data of gene expression profiles from E. chaffeensis-infected human and tick cell lines. Heat map with gene
expression in THP-1, AAE2 and ISE6 cells, coloring: red, up-regulated; yellow, normal; green, down-regulated.
doi:10.1371/journal.pone.0024136.g001
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genes were detected in human and tick cells. The E. chaffeensis

genome encodes for a polymorphic multigene family composed of

22 paralogues that are clustered in a 29 kb gene locus that is

downstream of the transcriptional regulator gene tr1 [29].

Transcriptional regulator tr1 (ECH_1118) of E. chaffeensis was

expressed in human and tick and cells. With respect to the OMP-1

(p28) family genes, transcripts were not detected for OMP-1H

(p28–11) and OMP-1W (p28–7) in human cells and OMP-1P

(p28–3), OMP-1U (p28–5) and OMP-1H (p28–11) were not

detected in tick cells, but OMP-1B (p28–14) and OMP-1N (p28–1)

were hyper-expressed. Notably, OMP-1B (p28–14) was up-

regulated in tick cells, but OMP-1N (p28–1) was also highly

expressed in human cells. OMP-1F (p28–18) and OMP-1D (p28–

16) transcripts were also upregulated in tick cells compared to

human cells, and P28 (p28–19) was among the most highly

expressed OMP-1 genes in human cells.

E. chaffeensis genes associated with protein trafficking and

secretion were expressed in tick and human cells; however, several

of these genes were upregulated in the tick cells compared to

human cells, including SecF, TatC, TatA and members of the type

IV secretion systems. Additionally, in the tick cells, several of the

genes associated with posttranslational modification, and protein

turnover were upregulated including several ATP-dependent

proteases and chaperones.

Expression of hypothetical genes
A large percentage (42%) of annotated E. chaffeensis genes

encode hypothetical proteins with unknown functions [13]. In this

study, we determined that most of these genes were differentially

expressed in human and tick cell lines. There were 27 hypothetical

genes (COG; R, S) that were highly expressed in the THP-1 cells,

including TRP32 and TRP47 (Table 1). However, 11 of these 27

genes were not expressed by E. chaffeensis in the AAE2 and ISE6

cells (Table 2). Most of these genes (9/11) encoded peptides (30–70

amino acids) that do not have orthologs. Host-specific expression

of these genes suggested that they are required exclusively for

adaptation and survival within the mammalian host.

There were a larger number of E. chaffeensis genes that were

differentially expressed in the tick cells, including 63 genes

categorized as hypothetical (COG; R, S). Some of these genes

(n = 18) were expressed only in the tick cells (Table 3). Of

these genes, ECH_0114, ECH_0249, ECH_0258, ECH_0889,

ECH_1030, ECH_1048 were highly expressed (expression values

3–5 times greater than the average expression value). Of the 18

genes differentially expressed in the tick cells, seven did not

have orthologs and six were peptides (30–80 aa). ECH_0114

was predicted to be a secreted protein, and ECH_0526 and

ECH_1038 were predicted as outer membrane proteins (CELLO

subcellular localization predictor) [30]. In a previous study,

ECH_0526 protein expression was detected in both AAE2 and

ISE6 tick cell lines [31].

Validation of microarray data
Real-time quantitative RT-PCR was used to verify the

microarray results of a subset of ehrlichial genes. Eight E.

chaffeensis genes assayed for relative transcript abundance by

qRT-PCR, included; Suc CoA (ECH_0979), RpsL (ECH_0963),

OMP-1B (ECH_1136), OMP-1N (ECH_1121), TRP120

(ECH_0039), TRP32 (ECH_0170), TRP47 (ECH_0166). The

relative transcripts levels for the selected genes within and between

cell lines confirmed expression levels determined by microarray

(Fig. 3).

Expression of tandem repeat proteins
Expression of three tandem repeat proteins; TRP32, TRP47

and TRP120 were analyzed in AAE2, ISE6 and THP-1 cells.

TRP120 transcript was detected in all three cell lines, and the

protein was also expressed in human monocytes and tick cells

(Fig. 4). Interestingly, transcripts for hyper-expressed genes TRP32

and TRP47 were detected in tick cells by microarray and qRT-

Figure 2. Genes upregulated by E. chaffeensis in human and tick
cells. (A) Scatter plot of expression in mammalian (THP-1) vs. arthropod
(AAE2 and ISE6) cells, center line represents equivalence and outer lines
indicate two fold difference. Images generated using ArrayStarH. (B)
Distribution of significantly upregulated E. chaffeensis genes in
mammalian cells (black bars) and tick cells (grey bars) classified to
Clusters of Orthologous Groups (COGs). C: Energy production and
conversion, D: Cell cycle control and mitosis, E: Amino acid metabolism
and transport, F: Nucleotide metabolism and transport, G: Carbohydrate
metabolism and transport, H: Coenzyme metabolism, I: Lipid metabo-
lism, J: Translation, K: Transcription, L: Replication and repair, M: Cell
wall/membrane/envelope biogenesis, O: Post-translational modifica-
tion, protein turnover, chaperone functions, P: Inorganic ion transport
and metabolism, R: General functional prediction only, S: Function
unknown, Q: Secondary structure, U: Intracellular trafficking and
secretion.
doi:10.1371/journal.pone.0024136.g002
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Table 1. E. chaffeensis genes upregulated in THP-1 cells compared to AAE2 and ISE6 cells.

Gene Function Gene ID
Fold Change THP-1 vs
(AAE2, ISE6).2fold; p,0.05

Function Unknown or Predicted

1. Conserved hypothetical protein ECH_0147 5.3, 4.8

2. Conserved hypothetical protein ECH_0619 5.6, 5.3

3. Conserved hypothetical protein ECH_0790 2.6, 2.6

4. Conserved hypothetical protein ECH_1059 2.3, 2.4

5. Conserved hypothetical protein ECH_1122 7.4, 6.7

6. Hypothetical protein ECH_0034 2.6, 2.4

7. Hypothetical protein ECH_0078 3.2, 3.1

8. Hypothetical protein ECH_0253 3.2, 2.2

9. Hypothetical protein ECH_0254 3.7, 2.2

10. Hypothetical protein ECH_0265 3.3, 2.0

11. Hypothetical protein ECH_0682 2.1, 2.5

12. Hypothetical protein ECH_0685 2.6, 2.7

13. Hypothetical protein ECH_0833 2.9, 3.1

14. Hypothetical protein ECH_0834 3.1, 2.6

15. Hypothetical protein ECH_0887 3.9, 2.0

16. Hypothetical protein ECH_0909 2.8, 2.1

17. Hypothetical protein ECH_0921 2.3, 2.2

18. Hypothetical protein ECH_0965 2.2, 2.2

19. Hypothetical protein ECH_1049 3.7, 4.1

20. Hypothetical protein ECH_1056 4.8, 2.6

21. Hypothetical protein ECH_1102 4.5, 2.5

22. Conserved hypothetical protein (TRP47) ECH_0166 11.4, 14.1

23. Variable length PCR target protein (TRP32) ECH_0170 9.4, 7.7

24. HAD-superfamily hydrolase, subfamily IA, variant 1 ECH_0332 2.2, 2.2

25. Putative flavin reductase ECH_0442 2.5, 2.8

26. Putative NADH dehydrogenase I, J subunit, truncation ECH_0550 3.1, 2.7

27. Rhodanese domain protein ECH_0896 2.2, 2.0

Cell envelope biogenesis/Outer membrane

28. Major outer membrane protein P28 ECH_1143 2.2, 2.2

Trafficking/Secretion

29. Preprotein translocase, SecG subunit ECH_0172 4.2, 4.3

Posttranslational modification/Protein turnover/Chaperones

30. Trigger factor ECH_0902 2.3, 2.0

Transcription/Translation/DNA replication/RNA

31. Cold shock protein, CSD family ECH_0298 2.9, 2.7

32. DNA-binding protein HU ECH_0804 2.1, 2.6

33. Putative ribosomal protein S18 ECH_0309 3.2, 2.9

34. Ribosomal protein L13 ECH_1019 3.5, 3.4

35. Ribosomal protein L15 ECH_0427 2.3, 2.0

36. Ribosomal protein L20 ECH_0197 2.5, 2.7

37. Ribosomal protein L34 ECH_0440 2.8, 2.5

38. Ribosomal protein L35 ECH_0198 5.7, 5.1

39. Ribosomal protein S13 ECH_0430 2.2, 2.3

40. Ribosomal protein S15 ECH_0727 4.6, 4.0

41. Ribosomal protein S19 ECH_0413 2.2, 2.5

42. Ribosomal protein S6 ECH_0308 2.6, 2.4

43. Ribosomal protein S8 ECH_0423 2.2, 2.1

Metabolism/Cellular Processes

E. chaffeensis Host Specific Gene Expression
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PCR; however, these proteins were not detected by western

immunoblot in E. chaffeensis-infected AAE2 and ISE6 cell lysates

(Fig. 4).

Discussion

Defining the dynamic changes in pathogen gene and protein

expression that occurs in infected hosts is essential to understand-

ing pathobiology and having a rational basis for vaccine

development. This investigation was conducted because of our

lack of knowledge regarding the relative E. chaffeensis gene

expression in mammalian and arthropod hosts, which is a major

impediment to understanding which genes are essential for

ehrlichial adaptation. In this study, we demonstrated that the

expression of many E. chaffeensis genes was influenced by the host

environment. In addition, we examined E. chaffeensis gene

expression in tick cell lines from the established vector species

and another common tick that is not a vector. Significant

differences in E. chaffeensis gene expression were not observed

between the two tick cell lines, and similar expression patterns

were observed in E. chaffeensis genes involved in metabolic and

cellular processes between human and tick cells. Differentially

expressed genes identified were primarily hypothetical genes and

genes associated with translation and posttranslational modifica-

tion. Furthermore, we have also found evidence of post-

transcriptional regulation of select ehrlichial genes involved in

host-pathogen interactions in mammalian and arthropod hosts.

In mammalian cells, the Ehrlichia developmental cycle occurs

within 72 hrs and is characterized by entry of the dense-cored

form, replication of the reticulate cells and transformation to

infectious dense-cored ehrlichiae [32]. In this study, enriched

bacterial RNA was extracted from E. chaffeensis infected THP-1,

AAE2 and ISE6 cells when 90% of the cells were infected.

Although the infection was not synchronized to evaluate a specific

phase of the developmental cycle, cells were harvested when 90%

of the cells had E. chaffeensis morulae within their cytoplasm;

therefore the data presented in this study likely includes genes

expressed during all phases of development, but may be more

representative of ehrlichial transcription during the later develop-

mental stages that is dominated by dense-cored ehrlichiae [32].

The I. scapularis cell line, ISE6, has been routinely used in

previous investigations involving arthropod-borne pathogens

including Ehrlichia, Rickettsia, Anaplasma and Borrelia [33]; however,

I. scapularis is not a natural vector of E. chaffeensis. Recently,

Munderloh et. al, developed the A. americanum, AAE2 cell line from

tick embryos (Munderloh, U. and Davidson, W.R., unpublished

data), and E. chaffeensis protein expression in AAE2 tick cells has

been investigated [31], but a comprehensive analysis of E.

chaffeensis gene expression has not been determined in the AAE2

cell line. Therefore, we investigated gene expression in both cell

lines to determine if significant differences existed. Notably, we did

not identify any significant differences in E. chaffeensis gene

expression; hence, it appears that either cell line could be used

for vector-pathogen studies for E. chaffeensis. However, the AAE2

Gene Function Gene ID
Fold Change THP-1 vs
(AAE2, ISE6).2fold; p,0.05

44. ATP synthase F1, delta subunit ECH_0131 2.4, 2.5

45. Cell division protein FtsA ECH_1090 2.2, 2.1

46. Monovalent cation/proton antiporter, MrpF/PhaF subunit family ECH_0466 2.7, 2.3

47. Na(+)/H(+) antiporter subunit C ECH_0469 2.7, 2.2

48. Ribose 5-phosphate isomerase B ECH_0638 3.4, 2.9

49. Superoxide dismutase, Fe ECH_0493 2.6, 2.6

50. YGGT family protein ECH_0891 3.1, 3.3

doi:10.1371/journal.pone.0024136.t001

Table 1. Cont.

Table 2. Hypothetical genes expressed only in human (THP-1) cells.

Gene Function SEQ_ID Length (Amino Acids) Predicted Cellular Location

Hypothetical protein ECH_0790 44 Cytoplasmic

Hypothetical protein ECH_0034 31 Cytoplasmic

*Hypothetical protein ECH_0078 56 Cytoplasmic

Hypothetical protein ECH_0353 73 Cytoplasmic

Hypothetical protein ECH_0833 50 Cytoplasmic

Hypothetical protein ECH_0834 49 Cytoplasmic

Hypothetical protein ECH_0921 52 Cytoplasmic

Hypothetical protein ECH_0965 203 Inner Membrane

*Hypothetical protein ECH_1056 47 Cytoplasmic

Hypothetical protein ECH_1113 48 Cytoplasmic

*Hypothetical protein ECH_0887 39 Cytoplasmic

*Expression values 3–5 times greater than average expression values.
doi:10.1371/journal.pone.0024136.t002
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cells grew more rapidly and appeared to support more robust

growth of ehrlichiae, which are also important considerations.

Transcripts were detected for ,80% of the E. chaffeensis genes in

human monocytes and tick cells. This level of transcript detection

is slightly higher (,10%) than that previously reported for A.

phagocytophilum in human (HL-60) and tick (ISE6) cells [8]. This

difference may be related to the fact that we utilized pathogen-

enriched RNA rather than total RNA. Most E. chaffeensis genes

(81–95%) involved in metabolic and cellular process, transcription,

translation, DNA repair, cell envelope biogenesis, outer mem-

brane proteins, posttranslational modifications, general function

predicted or unknown, trafficking and secretion were expressed in

all three cell lines. There were 77 genes for which transcripts were

not detected in any of the three cell lines, and the function of the

majority of these genes is unknown. It is possible that these genes

are required during stages of infection not depicted in this study

such as transmission of the pathogen from one host to the other,

reactivation of the pathogen after a blood meal in the tick, or in

the presence of tick saliva.

Although similar numbers of genes were expressed by E.

chaffeensis in the human and tick cells, the most striking discovery is

that 38% of the E. chaffeensis genes were differentially expressed.

When compared to human cells, E. chaffeensis was transcriptionally

more active in the tick cells, and there were a larger number of

genes with high expression levels in the tick cells. The functions of

these genes were associated with protein modification, energy

production and conversion and nutrient transport. Similar genes

were upregulated in Rickettsia conorii and R. rickettsii under

conditions of nutrient limitations and lower temperatures, when

the metabolism of the host cells slows [34,35]. In contrast, the

majority of the genes had a moderate expression level in human

cells. Additionally, there were several genes involved in metabo-

lism, cellular process, and translation that were upregulated in tick

cells. The upregulation of these genes in the arthropod host

suggests that Ehrlichia has higher metabolic activity in the tick. The

number of genes differentially expressed by E. chaffeensis between

the two host cells was similar to that observed for A. phagocytophilum

[8]. However, only minimal differences were observed in gene

expression when R. rickettsii grown in ISE6 was compared to R.

rickettsii grown in Vero cells [35]. Although all three organisms

have evolved to adapt within both arthropod and mammalian

cells, there appears to be significant differences between Rickettsia

compared to Ehrlichia and Anaplasma suggesting that they have

different adaptation mechanisms and pathobiology.

In contrast to the total expression level (,80%) of genes from

the other functional groups, the 437 E. chaffeensis genes with

unknown function were expressed at a lower level (,67%) in

each cell line and the majority were differentially expressed. We

identified 11 genes highly expressed in the human cells that were

not expressed in the tick cells and identified 18 genes exclusively

expressed in the tick cells, and the majority of these hypothetical

genes encoded peptides, 30-80 amino acids in length. Additionally,

these peptides are E. chaffeensis-specific and do not have orthologs

in other ehrlichial species. Nearly half of the genes (n = 243)

annotated as hypothetical proteins in the E. chaffeensis genome

contain fewer than 100 amino acids, and recently peptides were

detected for 66% of these proteins during infection in THP-1 cells

[36]. Host-induced expression of these E. chaffeensis peptides

suggests that they are required exclusively for adaptation and

survival within the mammalian host. Further studies are needed to

characterize these genes and their role in host-specific adaption

and survival.

In human cells, there were ten ehrlichial genes that were hyper-

expressed, defined as genes with expression values 10–15 times

greater than other highly expressed genes. Among these genes

were two major immunoreactive tandem repeat proteins, TRP47

and TRP32. TRP47, the most highly expressed E. chaffeensis gene

in human cells, contains seven 19-mer tandem repeats that

dominate the C-terminal region and several N-terminal tyro-

sine phosphorylation sites [21,37]. A recent study to examine

Table 3. Hypothetical genes expressed only in tick (AAE2 and ISE6) cells.

Gene Function SEQ_ID Length (Amino Acids) Predicted Cellular Location

Conserved hypothetical protein ECH_0516 120 Cytoplasmic

Conserved hypothetical protein ECH_0767 621 Cytoplasmic

Conserved hypothetical protein ECH_0988 208 Cytoplasmic

Conserved hypothetical protein ECH_1154 135 Cytoplasmic

Conserved domain protein ECH_0526 495 Outer Membrane

Hypothetical protein ECH_0059 49 Cytoplasmic

Hypothetical protein ECH_0099 42 Cytoplasmic

*Hypothetical protein ECH_0114 122 Extracellular

*Hypothetical protein ECH_0249 46 Cytoplasmic

*Hypothetical protein ECH_0258 35 Cytoplasmic

Hypothetical protein ECH_0635 357 Cytoplasmic

Hypothetical protein ECH_0765 79 Cytoplasmic

Hypothetical protein ECH_0868 31 Cytoplasmic

*Hypothetical protein ECH_0889 38 Cytoplasmic

*Hypothetical protein ECH_1030 62 Cytoplasmic

Hypothetical protein ECH_1038 1963 Outer Membrane

*Hypothetical protein ECH_1048 64 Cytoplasmic

Hypothetical protein ECH_1077 68 Cytoplasmic

*Expression values 3–5 times greater than average expression values.
doi:10.1371/journal.pone.0024136.t003
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molecular interactions between TRP47 and the host identified

several interactions with specific host cell proteins that have

distinct cellular functions associated with signalling, transcriptional

regulation, vesicle trafficking, and cellular proliferation and

differentiation [21]. The hyper-expression of TRP47 in human

cells, the absence of TRP47 in tick cells, and our recent findings

regarding molecular host-pathogen interactions, suggests that

TRP47 is a multifunctional effector that is required for ehrlichial

intracellular survival within the mammalian host. Unlike TRP47

which is differentially expressed by the dense-cored form of E.

chaffeensis, TRP32 is extracellularly associated with the morular

fibrillar matrix and the morula membrane, indicating that this

protein is secreted. TRP32 does not have homology with other

known proteins [18]; however, we have recently demonstrated that

TRP32 interacts with proteins with functions similar to those that

interact with TRP47 [38]. In the tick cells, although transcripts

were detected for the TRP47 and TRP32, the proteins were not

detected suggesting that they are regulated posttranslationally.

E. chaffeensis TRP120 is a well characterized protein that is

differentially expressed on the surface of the dense-cored E.

chaffeensis. Similar levels of TRP120 transcripts were detected in

human and tick cells, and the protein was detected in both cell

lysates. Our findings regarding TRP120 expression were in

contrast to a previous study that examined macrophage- and tick

cell-derived proteins of E. chaffeensis, in which TRP120 was not

detected in macrophages, but was detected in tick cell lysates [31].

However, numerous other studies have reported TRP120

expression in ehrlichiae cultivated in human cells [20,22,23].

TRP120 has known functional properties including binding and

internalization, and its surface expression is regulated by second

messenger cyclic di-GMP and interacts with host cell proteins

associated with biological processes similar to TRP47 [22–24].

Furthermore, we recently, demonstrated that TRP120 binds host

cell DNA and targets genes associated with biological processes

known to be altered during E. chaffeensis infection [25]. Although

TRP120 has important functions in the mammalian host related

to pathobiology, the role of TRP120 in the arthropod host is

unknown. The expression of TRP120 in the tick cells suggests that

it may have similar functions in the arthropod host.

The OMP-1/P28 multigene family of E. chaffeensis have been

well studied and host cell-specific expression of these genes has

been previously reported [10,11]. The function of these immuno-

reactive outer membrane proteins has been associated with

immune evasion; however, Rikihisa et. al. recently demonstrated

porin activity for OMP-1F and P28 [16,39,40], suggesting an

important functional role in nutrient acquisition. Consistent with

previous studies, we determined that Omp-1B and p28 were

expressed in human and tick cells. The upregulation of p28 (p28–

19) in human cells and the high expression of OMP-1B (p28–14) in

tick cells were also consistent with previous in vitro studies [11,12],

and expression of OMP-1B (p28–14) transcript has been detected

in all three developmental stages of the tick vector, A. americanum

[11]. However, our finding that OMP-1N (p28–1) was upregulated

in tick cells has not been previously reported. Transcripts were not

detected for OMP-1H (p28–11) and OMP-1W (p28–7) in the

human cells. The absence of OMP-1W (p28–7) expression was

also consistent with the fact that it could not be detected in dogs

experimentally infected with E. chaffeensis [11]. However, OMP-

1H (p28–11) was detected in experimentally infected dogs and

DH82 cells (canine cell line) [11,41], but not in the human and tick

cells suggesting that there are other host factors that contribute to

expression of OMP-1H. Similarly, although transcripts for OMP-1

family members have been detected in several studies, OMP-1B is

the only OMP-1 paralogue detected by proteomics in E. chaffeensis

Figure 4. Expression of E. chaffeensis TRPs in human (THP-1)
and tick (ISE6 and AAE2) cell lysates. Western immunoblots were
probed with anti-TRP32 (A), anti-TRP47 (B) and anti-TRP120 (C)
antibodies. TRP120 was detected in E. chaffeensis-infected human and
tick cell lysates, and TRP32 and TRP47 were detected only in E.
chaffeensis-infected THP-1 cells.
doi:10.1371/journal.pone.0024136.g004

Figure 3. Comparison of microarray (gene expression value)
and qPCR (40 minus threshold cycle) analysis of selected E.
chaffeensis transcript levels.
doi:10.1371/journal.pone.0024136.g003
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cultured in ISE6 cells [31]. The role of host-specific OMP

expression is not clear, but our findings suggest that vaccines

targeting ehrlichial OMPs expressed in the tick should include

OMP-1N. Host cell specific expression of these genes could be

related to adaptation to different host environments and for

nutrient acquisition.

It is generally recognized that regulation of bacterial gene

expression is controlled by transcriptional and posttranscriptional

mechanisms [42–44]. Several recent studies have investigated the

mechanisms involved in the mRNA and protein stability and

translational regulation in prokaryotes, and their dependence on

environmental conditions and growth phase, especially with

virulence factors [45,46]. Bacterial protein expression is not only

dependent on levels of mRNAs but also on other RNA species.

Regulatory RNAs such as small RNAs (sRNA) controlling

virulence and pathogenesis have been demonstrated in other

Gram-negative bacteria including Escherichia coli, Pseudomonas

aeruginosa, Salmonella typhimurium, and Chlamydia trachomatis [47,48].

In this investigation, transcripts were detected for TRP47 and

TRP32 in the tick cells, yet the proteins were not detected

suggesting that their expression is, in part, controlled by post-

translational mechanisms in response to host cell environments,

potentially by regulatory RNAs. Similarly, OMP-1B (P28–14)

transcripts have been routinely detected in mammalian cells, yet

the protein has not been detected in numerous proteomic studies

[9,11,31,49]. Therefore, there is evidence that posttranslational

mechanisms are involved in TRP expression and could also be

involved in regulating OMP expression. Further investigation of

posttranslational regulation mechanisms in Ehrlichia survival in

mammalian and arthropod hosts is needed to understand how

ehrlichial protein expression is regulated and its role in host

adaptation.

Understanding the molecular survival strategies within the

distinct hosts and the mechanisms involved in host adaptation will

lead to novel prophylactic and therapeutic targets to prevent

transmission and infection. We determined that some TRPs,

OMPs, and hypothetical proteins are differentially expressed, and

thus, appear to be important for adaptation to each host.

Additionally, the hyper-expression of the TRP32 and TRP47

genes in the human cells and absence of the expression of these

proteins in the tick cells demonstrate their significance in the

mammalian host. The subset of E. chaffeensis hypothetical genes

identified exclusively in each of the host cells in this study should

be examined and their functions determined.

Methods

Cell culture and cultivation of E. chaffeensis
E. chaffeensis (Arkansas strain) was cultivated in THP-1 cells, a

human monocytic leukemia cell line (ATCC# TIB-202, Manas-

sas, VA) and tick cells (AAE2 and ISE6). THP-1 cells were

cultured in Dulbecco’s modified Eagle’s medium (Invitrogen,

Carlsbad, CA) supplemented with 10% fetal bovine serum

(HyClone, Logan, UT), 1% HEPES buffer (Sigma, St. Louis,

MO), 1% sodium pyruvate (Sigma) at 37uC in a humidified 5%

CO2 atmosphere. Uninfected AAE2 and ISE6 cells and E.

chaffeensis-infected tick cells were obtained from Dr. Ulrike

Munderloh (University of Minnesota) and were maintained in

L15B300 medium supplemented with 10% fetal bovine serum

(Harlan, Indianapolis, IN), 10% tryptose phosphate broth (BD,

Sparks, MD) and 1% bovine lipoprotein cholesterol concentrate

(MP Biomedicals, Irvine, CA) at 34uC as previously described

[50,51]. Uninfected cells were propogated in T-150 flasks, and E.

chaffeensis infection was maintained in the cells by subculturing with

infected cells (10%) to uninfected cells. The level of ehrlichial

infection was assessed by modified Giemsa stained (HEMA 3,

Fisher Scientific) cytocentrifuged cells (Fig. 5).

RNA extraction
Total RNA was purified from uninfected and E. chaffeensis-

infected (90% infected) THP-1, AAE2 and ISE6 cells (107cells per

sample) using Tri reagent (Ambion, Austin, TX). Genomic DNA

was eliminated by treatment with Turbo DNA-free (Ambion)

according to the manufacturer’s protocol. Polyadenylated host

mRNA was removed using oligo (dT) columns (Oligotex,

Qiagen, Valencia, CA) as previously described [52], and bacterial

RNA was enriched using Terminator (Epicenter Biotechnologies,

Madison, WI) that selectively digests RNAs with 59-monophos-

phates that are present only on ribosomal RNA. RNA concen-

tration was determined by NanoDrop (Thermo Scientific,

Wilmington, DE) and quality confirmed by Agilent 2100

Bioanalyzer (Agilent Technologies, Santa Clara, CA) at the

UTMB Genomics Core Facility. The RNA quality requirements

were established as: A260/A280 $1.8, A260/A230 $1.8 and

concentrations $ 1 mg/ul.

Microarray design
The genome sequence of E. chaffeensis (GenBank accession no.

CP000236) [13] was submitted to Roche NimbleGen Systems

(Madison, WI) for custom 4-plex microarray design. The arrays

were manufactured using maskless, digital micromirror technology.

Five replicates of the genome were included per chip, with an

average of 12 different 60-base oligonucleotides (60-mer probes)

representing each open reading frame in the E. chaffeensis genome.

Unique probes were designed for 1031 of the 1158 ORFs (1.18 Mbp

genome). Three biological replicates were included for E. chaffeensis

cultivated in each cell line (THP-1, AAE2 and ISE6). Additionally,

for each cell line, RNA was extracted from uninfected cells (negative

controls) and was processed similarly, and these samples were used

to establish background subtraction thresholds.

Hybridization
Enriched E. chaffeensis RNA (10 mg) was used for cDNA

synthesis using random hexamer primers and the SuperScript

Figure 5. E. chaffeensis morulae in (A) THP-1, (B) AAE2, and (C) ISE6 cells stained with Giemsa stain (100x; identified by arrows).
doi:10.1371/journal.pone.0024136.g005
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Double-Stranded cDNA Synthesis Kit (Invitrogen) according to

the NimbleGen Arrays User’s Guide (Gene Expression Analysis

v3.2). Labeling and hybridization was done at the MD Anderson

Cancer Center, Genomics Facility (Houston, TX). Briefly, double-

stranded cDNA was random-prime labeled with Cy3-nonamers

and hybridized to the microarray for 16 hrs at 42uC. The arrays

were washed, dried and scanned using a GenePix 400B

microarray scanner (Molecular Devices, Sunnyvale, CA).

Microarray data analysis
Data were extracted from the scanned array images using

NimbleScan software (Roche NimbleGen). Quantile normaliza-

tion was performed across replicates within the 4-plex arrays, and

RMA (Robust Multichip Average) analysis was performed to

generate gene expression values [53]. The genes expressed were

determined by subtracting expression values obtained from

uninfected cells from those of infected cells from the same cell

line. Analysis and visualization of the expression data were

performed using ArrayStar4 software (DNASTAR Inc., Madison,

WI), using mean log2 expression values for the three biological

replicates for each cell line. F-test (ANOVA) was used to compare

the mean gene expression values for replicates (within same cell

line) and groups of replicates (between cell lines) for a given gene.

The microarray data generated in this study have been deposited

in NCBI’s Gene expression Omnibus [54]. The data are accessible

through GEO series accession number GSE29109 (http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE29109).

Real time quantitative PCR
Real time PCR of selected E. chaffeensis genes was performed

with gene specific primers designed using Lasergene 8 (DNAS-

TAR) (Table 4). RNA (1 mg) was used as template for cDNA

synthesis using iScript cDNA synthesis kit (Bio-Rad Laboratories,

Hercules, CA) according to the manufacturer’s instructions. qPCR

was performed using iQ SYBR Green supermix (Bio-Rad), gene-

specific primers and thermal cycling protocol that consisted of an

initial denaturation step of 95uC for 2 min, and 40 cycles of 95u for

10 s, 55uC for 30 s, and 65uC for 30 s using a Mastercycler EP

Realplex2 S (Eppendorf). DNA from infected cells was used as

positive control. Samples lacking cDNA and cDNA from

uninfected cells were used as negative control. qPCR data were

converted by subtracting the Ct value from the number of cycles

(40 cycles) to obtain values.

Western immunoblotting
Whole cell lysates (1 mg) from uninfected and E. chaffeensis-

infected (90% infected) THP-1, AAE2 and ISE6 cells were

separated by sodium dodecyl sulfate-polyacrylamide gel electro-

phoresis (SDS-PAGE), transferred to nitrocellulose membranes,

and western immunoblotting was performed as previously

described [55] using rabbit anti-TRP32, anti-TRP47, or anti-

TRP120 antibodies [18–20]. Bound primary antibodies were

detected with alkaline phosphatase-conjugated anti-rabbit IgG

(H+L) secondary antibody (Kirkegaard & Perry Laboratories,

Gaithersburg, MD) and visualized after incubation with BCIP/

NBT (5-bromo-4-chloro-3-indolylphosphate-nitroblue tetrazoli-

um) substrate.

Supporting Information

Table S1 E. chaffeensis genes upregulated in AAE2 and
ISE6 compared to THP-1 cells.
(DOC)
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