
Epigenetics: A Molecular Link Between Environmental
Factors and Type 2 Diabetes
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A
lthough obesity, reduced physical activity, and
aging increase susceptibility to type 2 diabetes,
many people exposed to these risk factors do
not develop the disease. Recent genome-wide

association studies have identified a number of genetic
variants that explain some of the interindividual variation
in diabetes susceptibility (1–5). There is also a growing
body of literature suggesting a role for epigenetic factors
in the complex interplay between genes and the environ-
ment. Nevertheless, our knowledge about the molecular
mechanisms linking environmental factors and type 2
diabetes still remains limited. This perspective will pro-
vide some insights into epigenetic mechanisms associated
with type 2 diabetes.
An overview of epigenetic regulation. Although there
is no uniform definition of epigenetics, it has been de-
scribed as heritable changes in gene function that occur
without a change in the nucleotide sequence (6). Epige-
netic modifications can be passed from one cell generation
to the next (mitotic inheritance) and between generations
of a species (meiotic inheritance). In plants, it is well
established that epigenetic modifications can be inherited
from one generation to the next (7). However, there is only
limited information about the inheritance of epigenetic
traits between generations in animals (8,9). Notably, epi-
genetic effects may also be affected by the environment,
making them potentially important pathogenic mecha-
nisms in complex multifactorial diseases such as type 2
diabetes (Fig. 1). Epigenetic factors include DNA methy-
lations, histone modifications, and microRNAs, and they
can help to explain how cells with identical DNA can
differentiate into different cell types with different pheno-
types. This perspective will focus on the roles of DNA
methylation and histone modification in the pathogenesis
of type 2 diabetes.

Cytosine residues occurring in CG dinucleotides are
targets for DNA methylation in vertebrates, and DNA
methylation is associated with transcriptional silencing
(e.g., on the inactive X chromosome). This silencing can be
achieved by either repressing the binding of transcription
factors (Fig. 2A) or by recruiting proteins that specifically
bind to methylated CGs (methyl-CG–binding proteins, e.g.,

MeCP2), which can further recruit histone deacetyltrans-
ferases (HDACs) and corepressors (Fig. 2B) (10).

DNA methylation requires the activity of methyltrans-
ferases. There are two groups of DNA methyltransferases:
DNMT1, which copies the DNA methylation pattern be-
tween cell generations during replication (maintenance
methylation), and DNMT3a and DNMT3b, which are re-
sponsible for de novo methylation of DNA (10). The
process leading to demethylation of DNA is still poorly
understood; for a recent review see Patra et al. (11).

Genomic DNA in eukaryotic cells is packed together
with special proteins, termed histones, to form chromatin.
The basic building block of chromatin is the nucleosome,
which consists of �147 base pairs of DNA wrapped
around an octamer of histone proteins that is composed of
an H3-H4 tetramer flanked on either side with an H2A-H2B
dimer. Although the core histones are densely packed,
their NH2-terminal tails can be modified by histone-
modifying enzymes, resulting in acetylation, methylation,
phosphorylation, sumoylation, or ubiquitination (12).
These modifications are important for determining the
accessibility of the DNA to the transcription machinery as
well as for replication, recombination, and chromosomal
organization.

HDACs remove and histone acetyl transferases (HATs)
add acetyl groups to lysine residues on histone tails
(12–14). Although, it is well established that HAT activity
and increased histone acetylation correlate with increased
gene transcription, the exact mechanisms promoting tran-
scription are less clear (15). Native lysine residues on
histone tails contain a positive charge that can bind
negatively charged DNA to form a condensed structure
with low transcriptional activity. An early suggestion was
that histone acetylation removes these positive charges,
thereby relaxing chromatin structure and facilitating ac-
cess to the DNA for the transcriptional machinery to
initiate transcription (13,15). However, different models
have recently been proposed, including the histone code
hypothesis, where multiple histone modifications act in
combination to regulate transcription (15,16). Histone
acetylation may also recruit bromodomain proteins that
can act as transcriptional activators (13). Histone methyl-
ation can result in either transcriptional activation or
inactivation, depending on the degree of methylation and
the specific lysine and/or arginine residues modified
(17,18). Histone methyltransferases and histone demethy-
lases mediate these processes (18).

New techniques have made it easier to analyze DNA
methylation and histone modifications on a genome-wide
scale (19,20). These techniques may be useful when study-
ing the impact of epigenetics on the pathogenesis of type
2 diabetes.
Epigenetic changes induced by aging. Aging is associ-
ated with an increased risk of type 2 diabetes. Correspond-
ingly, oxidative capacity and mitochondrial function
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decline with age as well as in patients with type 2 diabetes
(21–26). The mechanisms behind these defects may be
both genetic and environmental (27–31). Recent data
further suggest that the epigenetic pattern may change
during the course of life, affecting key genes in the
respiratory chain (32–34). COX7A1, which is part of
complex 4 of the respiratory chain and which shows
decreased expression in diabetic muscle, is a target of
age-related DNA methylation (23,34). Whereas DNA meth-
ylation of the COX7A1 promoter is increased in skeletal
muscle of elderly compared with young twins, the oppo-
site pattern is found for COX7A1 gene expression (34).
Additionally, the transcript level of COX7A1 in skeletal
muscle is associated with increased in vivo glucose uptake
and VO2max (34). These data demonstrate how age can
influence DNA methylation, gene expression, and subse-
quently in vivo metabolism. The interaction between non-
genetic and epigenetic mechanisms may further be
affected by genetic factors. Indeed, a polymorphism intro-
ducing a possible DNA methylation site, a CG dinucle-

otide, and a putative transcription factor binding site in the
NDUFB6 promoter is associated with increased DNA
methylation, decreased gene expression, and decreased in
vivo metabolism with increasing age (33). This study
provides an example of interactions between genetic
(polymorphism), epigenetic (DNA methylation), and non-
genetic (age) factors in the determination of human
metabolism.

Hepatic insulin resistance is another important charac-
teristic of both aging and type 2 diabetes. Glucokinase is a
key enzyme in hepatic glucose utilization, and its activity
is decreased in the liver of diabetic patients (35). Muta-
tions in the glucokinase gene can cause a monogenic form
of diabetes (maturity-onset diabetes of the young [MODY]
2) (36). Moreover, in aged compared with young rats, the
liver displays reduced levels of glucokinase expression
and enzyme activity in parallel with increased DNA meth-
ylation of the glucokinase promoter (37). When hepato-
cytes of aged rats were cultured in vitro and the DNA was
chemically demethylated, there was a substantial increase
in glucokinase expression, suggesting an important role
for DNA methylation in the age-related regulation of this
gene. Similar studies in humans with diabetes are still
lacking.

Although aging is associated with gene-specific hyper-
methylation, many mammalian tissues demonstrate
global hypomethylation of DNA and decreased methyl-
transferase (DNMT1 and DNMT3a) expression with
increased age (33,34,37– 45). Global hypomethylation of
DNA is seen in repetitive sequences and may promote
genomic instability during aging. Increased age is also
associated with hypomethylation of specific genes, e.g.,
proto-oncogenes, thereby increasing susceptibility to
cancer, especially if combined with hypermethylation of
tumor suppressor genes. Further studies examining the
effects of aging on genome-wide epigenetic patterns in
target tissues may help to improve our understanding of
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FIG. 1. Model proposing a role for epigenetic mechanisms in the
pathogenesis of type 2 diabetes.
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FIG. 2. Effects of DNA methylation on gene expression. A: Whereas low levels of DNA methylation at gene promoters have been proposed to
generate active genes through increased binding of transcription factors, elevated DNA methylation at promoters may inhibit binding of
transcription factors resulting in inactive genes. B: DNA methylation at gene promoters may also repress gene transcription via specific proteins
that bind to methylated CpGs (methyl-CpG binding proteins, e.g., MeCP2), and these proteins may then recruit HDACs and transcriptional
corepressors (e.g., NCoR), resulting in an altered chromatin structure and inactive genes.
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the molecular mechanisms influencing the pathogenesis
of type 2 diabetes.
Links between obesity, energy metabolism, nutri-
ents, and epigenetic modifications. The prevalence of
type 2 diabetes is increasing rapidly worldwide, partly due
to the epidemic in obesity seen among most ethnic groups.
The fact that loss of function of the histone demethylase,
Jhdm2a, is associated with obesity, decreased expression
of metabolically active genes (e.g., peroxisome proliferator–
activated receptor-� and medium-chain acyl-CoA dehydro-
genase) in skeletal muscle, and an impaired cold-induced
uncoupling protein 1 expression in brown adipose tissue
in rodents suggests a relationship between epigenetic
mechanisms and obesity (46). Another class of enzymes
involved in epigenetic control of metabolism is the nico-
tinamide adenine dinucleotide (NAD�)-dependent sirtuins
(class III HDACs), which target both histone and nonhis-
tone proteins (47). The most well-characterized member,
SIRT1, regulates several metabolic pathways including
adipogenesis, mitochondrial biogenesis, glucose utiliza-
tion, fat oxidation, and insulin secretion. Moreover, ATP-
citrate lyase is an enzyme that regulates the conversion of
citrate to acetyl CoA, which is a metabolite required for
acetylation of histones by HATs. It has recently been
suggested that glucose availability can affect histone acet-
ylation in an ATP-citrate lyase-dependent manner, further
linking energy metabolism to epigenetic regulation (48).

Leptin is a hormone secreted from adipocytes that
regulates appetite and energy homeostasis. It is predomi-
nantly expressed in mature adipocytes, and leptin expres-
sion can therefore be used as a marker of differentiating
preadipocytes. The leptin promoter is embedded within a
CG-rich region, called a CpG island. Although there is a
high degree of DNA methylation of the leptin promoter
and no leptin expression in preadipocytes, the promoter is
demethylated in parallel with induction of leptin expres-
sion in differentiated cells (49,50). Although a high-fat diet
increases DNA methylation of one CpG site in the leptin
promoter of rat adipocytes (51), it remains to be examined
whether food intake and obesity are associated with
epigenetic regulation of leptin expression in human
adipocytes.

Environmental exposures to nutrients may change gene
expression and alter disease susceptibility through epige-
netic modifications. Similar mechanisms are operative in
the agouti mouse; the agouti gene encodes a paracrine-
signaling molecule that promotes melanocytes to produce
yellow rather than black coat pigment and makes mice
prone to develop obesity, diabetes, and tumors (52–54).
The degree to which the agouti gene is methylated regu-
lates agouti expression and thereby coat color and risk for
disease. Moreover, supplementation of the diets of preg-
nant mice with methyl donors such as folic acid, vitamin
B12, choline, or betaine increases DNA methylation of the
gene in the offspring, resulting in low agouti expression
and a brown coat color (55). The effect of maternal
methyl-donor supplementation on coat color is also inher-
ited in the F2 generation through germline epigenetic
modifications (56).

Pdx1/insulin promoter factor (IPF)-1 is a transcription
factor regulating pancreas development and �-cell differ-
entiation, and mutations in this gene can cause a mono-
genic form of diabetes (MODY 4) (36). Intrauterine growth
retardation due to uteroplacental insufficiency has re-
cently been associated with progressive epigenetic silenc-
ing of Pdx1, impaired �-cell function, and type 2 diabetes

in adult offspring (57). Whether PDX1 is a target for similar
epigenetic mechanisms in humans born to mothers with
uteroplacental insufficiency remains unknown. However,
the prenatal environment has been associated with insulin
resistance and a risk for type 2 diabetes in humans
(58–60), and the prenatal nutrient supply may induce
epigenetic changes in humans. Indeed, individuals from
the The Dutch Hunger Winter Families Study who were
prenatally exposed to famine in 1944–1945 showed less
DNA methylation of the imprinted IGF2 and INSIGF genes
and increased DNA methylation of the GNASAS, MEG3,
IL10, ABCA1, and LEP genes in parallel with impaired
glucose tolerance compared with their unexposed same-
sex siblings (60–63). Moreover, a high-fat diet during
pregnancy in rats is associated with impaired glucose
homeostasis and mitochondrial and cardiovascular dys-
functions in adult rats, possibly due to epigenetic modifi-
cations (64–66). In future studies it will be interesting to
study the effects of short- and long-term weight gain and
weight loss on epigenetic changes in relevant tissues.
Histone modifications induced by exercise. Poor phys-
ical fitness and a low VO2max predict risk of developing
type 2 diabetes (67). Mitochondrial dysfunction, changes
in muscle fiber–type composition, and insulin resistance
are potential mechanisms linking poor physical fitness
with an increased risk for disease. Exercise induces the
expression of a number of genes that regulate glucose
uptake in skeletal muscle, including GLUT isoform 4
(GLUT4), (68). GLUT4 expression is further regulated by
the transcription factor myocyte enhancer factor 2
(MEF2).

At rest, it has been proposed that MEF2 interacts with
HDAC5 in the nucleus (69). Histone tails at the GLUT4
gene are thereby deacetylated by HDAC5, resulting in a
condense chromatin structure and subsequently reduced
GLUT4 expression (69). After exercise, HDAC5 is phos-
phorylated by AMP-activated protein kinase, dissociated
from MEF2, and exported from the nucleus to the cytosol
(69–71). MEF2 may then interact with the coactivator
protein PPAR� coactivator-1� (PPARGC1A) and HATs in
the nucleus, resulting in acetylated histones at the GLUT4
gene, enhanced transcriptional activity, and increased
GLUT4 expression (69,72,73). It is possible that other
histone modifications also influence the regulation of
GLUT4 expression in skeletal muscle. Ca�/calmodulin-
dependent protein kinase (CaMK) also seems to modulate
MEF2 activity via histone acetylation in response to acute
exercise (74). Moreover, gene expression of MYST4, a
HAT, correlates positively with the percentage of type 1
fibers and VO2max in human skeletal muscle (75). Together,
these data suggest that some of the biological changes
induced by exercise could be due to histone modifications,
a research area that deserves further exploration.
Epigenetic changes in patients with type 2 diabetes.
Although data mining analysis has suggested a role for
epigenetic factors in the pathogenesis of type 2 diabetes
(76), there are only a limited number of studies that have
examined epigenetic changes in target tissues from pa-
tients with type 2 diabetes. The transcriptional coactivator
PPARGC1A coordinates gene expression that stimulates
mitochondrial oxidative metabolism in multiple tissues
(77). Whereas DNA methylation of the PPARGC1A pro-
moter is elevated in pancreatic islets from patients with
type 2 diabetes compared with that of healthy control
subjects, PPARGC1A expression is reduced in diabetic
islets and correlates inversely with the degree of DNA
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methylation (78). Importantly, PPARGC1A expression cor-
relates positively with glucose-stimulated insulin secretion
in human pancreatic islets (78), suggesting that epigenetic
mechanisms may regulate gene expression and, subse-
quently, insulin secretion in human islets.

Moreover, there have been some efforts to understand
the epigenetic regulation of insulin gene expression in
pancreatic �-cells. In �-cells, the insulin gene displays
hyperacetylation of H4 and hypermethylation of H3 at
lysine 4, typical of active genes; however, these epigenetic
marks are not seen at the insulin gene in other cell types,
e.g., HeLa cells (79,80). Furthermore, in a �-cell line, the
HAT p300 and the histone methyltransferase SET7/9 are
recruited to the insulin promoter to activate the gene (80).
Interestingly, it has been suggested that HDACs influence
pancreatic development in rodents because treatment
with HDAC inhibitors during embryonic development en-
hances the pool of �-cells (81). However, it remains to be
established whether any of these epigenetic marks in the
insulin gene are affected in �-cells from patients with type
2 diabetes.

Although pancreatic islet �-cell proliferation declines
after birth, �-cell proliferation may play a role in the islets
adaption to increased insulin demands imposed by insulin
resistance. In support of this, an increased expression of
Ink4a/Arf (Cdkn2a locus) was associated with reduced
�-cell regeneration in aging mice (82). The elevated Ink4a/
Arf expression in elderly mice further coincided with
reduced levels of histone H3 lysine 27 trimethylation at
Ink4a/Arf and the histone methyltransferase, Ezh2, to-
gether with decreased Bmi-1 binding and a loss of H2A
ubiquitylation at Ink4a/Arf (83,84). Interestingly, a com-
mon variant at the CDKN2A locus has been associated
with an increased risk for type 2 diabetes (1–4). However,
whether this variant is associated with decreased �-cell
proliferation in human islets remains unknown.
Monogenic diabetes and epigenetic factors. Most
forms of MODY are caused by mutations in genes encod-
ing transcription factors, including HNF1A, -4A, and -1B
as well as IPF1/PDX1 and NEUROD1, some of which
regulate transcription of their target genes through asso-
ciations with HATs and HDACs.

HNF1� activates transcription through two different
mechanisms: 1) recruitment of the general transcription
machinery and 2) chromatin remodeling of promoter
regions (85). The chromatin remodeling involves recruit-
ment of HATs (e.g., p300/CBP), resulting in hyperacetyla-
tion of histones at specific promoters, including GLUT2
and pyruvate kinase, in �-cells (86–88). Interestingly, a
missense mutation (R263L) in the HNF1A gene that is
associated with a MODY phenotype results in reduced
affinity for p300 (89). Moreover, MODY mutations in the
HNF1B gene influence the capacity of HNF1� to bind
proteins with HAT activity and may thereby affect the
chromatin structure (90).

Whereas Pdx1 influences glucose-induced expression of
insulin in �-cells, this regulation requires an interaction
between Pdx1 and p300 and thereby hyperacetylation of
histone H4 at the insulin gene promoter (91–93). It has
been suggested that a low glucose level decreases insulin
expression due to recruitment of HDAC1 and HDAC2 by
Pdx1 (94). Insulin transcription also involves methylation
of histone H3 at the insulin promoter, possibly by Pdx1
recruiting methyltransferase SET9 (95). Several PDX1
mutations associated with diabetes in humans modulate
the affinity of PDX1 for both p300 and DNA. If operative in

humans in vivo, this suggests that HAT activity and,
therefore the chromatin structure of target genes may
influence the risk for diabetes (92). NEUROD plays an
important role in the development of the pancreas and
regulates the transcription of insulin (36). One mutation in
NEUROD, which results in a truncated protein and diabe-
tes, also prevents it from binding to p300/CBP (96).
Collectively, the data described above suggest mecha-
nisms by which chromatin modifications can influence the
risk of diabetes, which thereby opens new possible ave-
nues for therapeutically preserving �-cell function.
DNA methylation and transient neonatal diabetes.
Transient neonatal diabetes (TND) is a rare form of
diabetes that begins in the first 6 weeks of life in growth-
retarded neonates (97). Although insulin therapy is only
required for an average of 3 months, the majority of these
patients develop type 2 diabetes later in life. Three differ-
ent chromosome 6 anomalies have been described in TND:
hypomethylation at chromosome 6q24, paternally inher-
ited duplication of 6q24, and paternal uniparental isodis-
omy of chromosome 6 (97,98). Interestingly, it has recently
been shown that mutations in a zinc-finger transcription
factor, ZFP57, are associated with TND and hypomethy-
lation of regions on 6q24, including the imprinted genes
PLAGL1 and HYMAI (98).
Epigenetic changes associated with diabetic complica-
tions. One major event in the progression of diabetic
complications is vascular inflammation with increased
expression of inflammatory genes. Enhanced oxidative
stress, dyslipidemia, and hyperglycemia have also been
suggested to influence the development of diabetic com-
plications. Recent studies have proposed that hyperglyce-
mia may induce epigenetic modifications of genes involved
in vascular inflammation. Nuclear factor-�B (NF-�B) is a
transcription factor regulating expression of genes in-
volved in inflammatory diseases, including atherosclerosis
and diabetic complications (99). Poor glycemic control
increases NF-�B activity in monocytes and thereby gene
expression of inflammatory cytokines (100,101). This reg-
ulation involves an interaction between NF-�B and HATs
(e.g., CBP/p300), resulting in hyperacetylation of target
genes including the tumor necrosis factor (TNF)-� and
cyclooxygenase-2 promoters (99). The histone H3 lysine 4
methyltransferase SET7/9 can also influence the recruit-
ment of NF-�B p65 to gene promoters and thereby its
regulation of proinflammatory genes (102). Moreover, vas-
cular smooth muscle cells from diabetic db/db mice show
decreased levels of histone H3 lysine 9 trimethylation
(H3K9me3) and elevated levels of histone H3 lysine 4
dimethylation (H3K4me2) at the promoters of inflamma-
tory genes, e.g., IL-6 and MCP-1, in parallel with de-
creased levels of the H3K9me3 methyltransferase Suv39h1
and a histone demethylase, the lysine-specific demethylase
1 (LSD1) (103,104). Interestingly, whereas overexpression
of Suv39h1 in vascular smooth muscle cells from diabetic
db/db mice reversed the diabetic phenotype, gene silenc-
ing of SUV39H1 in normal human vascular smooth muscle
cells increased the expression of inflammatory genes
(104). NF-�B and IL-6 also represent genes with altered
histone H3 lysine 9 dimethylation in lymphocytes from
patients with type 1 diabetes (105). Together, these studies
suggest that hyperglycemia may induce epigenetic
changes of proinflammatory genes, which subsequently
regulate gene expression and thereby the development of
vascular inflammation. However, improved glycemic con-
trol for 3–5 years in diabetic patients did not reduce the

C. LING AND L. GROOP

diabetes.diabetesjournals.org DIABETES, VOL. 58, DECEMBER 2009 2721



risk of macrovascular complications (106,107). One reason
could be that the effects of hyperglycemia may be long-
term and that epigenetic modifications induced by hyper-
glycemia may persist for more than 5 years. Moreover,
because the time-averaged mean levels of glycemia, mea-
sured as A1C, only explain part of the variation in risk of
developing diabetic complications, it was recently hypoth-
esized that transient exposures to hyperglycemia may
induce sustained epigenetic changes and thereby NF-�B–
regulated gene expression and increased risk for vascular
complications over a longer period of time (108,109).
Indeed, a transient exposure to hyperglycemia (16 h)
induces epigenetic changes in the promoter of the NF-�B

subunit p65 and subsequently p65 expression and NF-�B
activity in aortic endothelial cells. These changes persist
for 6 days during culture at normal glucose levels.
Interestingly, when genes that reduce mitochondrial
superoxide production (e.g., uncoupling protein-1) are
overexpressed, the changes induced by the transient hy-
perglycemia are prevented (109). It was further shown that
both a histone methylase (SET7) and a histone demethyl-
ase (LSD1) may regulate the epigenetic changes in the
NF-�B p65 promoter induced by transient hyperglycemia
(110). In fact, epigenetic modifications induced by tran-
sient hyperglycemia may explain the hyperglycemic mem-
ory that has been proposed in epidemiological studies. In
the future it may be possible that drugs using and/or
affecting epigenetic mechanisms, e.g., HDAC inhibitors,
can be used in the treatment of diabetic complications
(13,111,112). In support of this idea, a recent study showed
that myocardial infarction and ischemia induce HDAC
activity in parallel with decreased histone acetylation of
histone H3 and 4 in the heart (113). The use of chemical
HDAC inhibitors during myocardial infarction reduced the
infarct area as well as cell death (113).
Conclusions. The use of genome-wide technologies to
study gene expression and genetic variation in patients
with type 2 diabetes has increased rapidly over the recent
years, generating long lists of new type 2 diabetes candi-
date genes. However, the use of global techniques to study
epigenetic modifications in these same patients has been
limited. Epigenetic changes associated with type 2 diabe-
tes are therefore still poorly understood. Nevertheless,
epigenetics may play an important role in the growing
incidence of type 2 diabetes, and over the next few years,
it will be a great challenge to dissect the role of histone
modifications and DNA methylation in the pathogenesis of
the disease and its complications. Two additional impor-
tant questions are whether the epigenetic changes induced
by today’s sedentary lifestyle can be inherited by coming
generations and whether these changes are reversible.
Currently, several epigenetic drugs are being tested in
clinical trials or are already being used (e.g., anticancer or
antiepileptic drugs); it may thus be possible to test epige-
netic drugs as putative novel drugs for the treatment of
diabetes and its complications.
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Roix JJ, Sandbaek A, Shields B, Sjögren M, Steinthorsdottir V, Stringham
HM, Swift AJ, Thorleifsson G, Thorsteinsdottir U, Timpson NJ, Tuomi T,
Tuomilehto J, Walker M, Watanabe RM, Weedon MN, Willer CJ, Wellcome
Trust Case Control Consortium, Illig T, Hveem K, Hu FB, Laakso M,
Stefansson K, Pedersen O, Wareham NJ, Barroso I, Hattersley AT, Collins
FS, Groop L, McCarthy MI, Boehnke M, Altshuler D. Meta-analysis of
genome-wide association data and large-scale replication identifies addi-
tional susceptibility loci for type 2 diabetes. Nat Genet 2008;40:638–645

6. Bird A. Perceptions of epigenetics. Nature 2007;447:396–398
7. Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for

natural variation in floral symmetry. Nature 1999;401:157–161
8. Chong S, Whitelaw E. Epigenetic germline inheritance. Curr Opin Genet

Dev 2004;14:692–696
9. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenera-

tional actions of endocrine disruptors and male fertility. Science 2005;
308:1466–1469

10. Clouaire T, Stancheva I. Methyl-CpG binding proteins: specialized tran-
scriptional repressors or structural components of chromatin? Cell Mol
Life Sci 2008;65:1509–1522

EPIGENETIC FACTORS AND TYPE 2 DIABETES

2722 DIABETES, VOL. 58, DECEMBER 2009 diabetes.diabetesjournals.org



11. Patra SK, Patra A, Rizzi F, Ghosh TC, Bettuzzi S. Demethylation of
(cytosine-5-C-methyl) DNA and regulation of transcription in the epige-
netic pathways of cancer development. Cancer Metastasis Rev 2008;27:
315–334

12. Kouzarides T. Chromatin modifications and their function. Cell 2007;128:
693–705

13. Haberland M, Montgomery RL, Olson EN. The many roles of histone
deacetylases in development and physiology: implications for disease and
therapy. Nat Rev Genet 2009;10:32–42
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