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The role of genetic variation of human
metabolism for BMI, mental traits and mental
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ABSTRACT

Objective: The aim was to assess whether loci associated with metabolic traits also have a significant role in BMI and mental traits/disorders
Methods: We first assessed the number of single nucleotide polymorphisms (SNPs) with genome-wide significance for human metabolism
(NHGRI-EBI Catalog). These 516 SNPs (216 independent loci) were looked-up in genome-wide association studies for association with body mass
index (BMI) and the mental traits/disorders educational attainment, neuroticism, schizophrenia, well-being, anxiety, depressive symptoms, major
depressive disorder, autism-spectrum disorder, attention-deficit/hyperactivity disorder, Alzheimer’s disease, bipolar disorder, aggressive
behavior, and internalizing problems. A strict significance threshold of p < 6.92 � 10�6 was based on the correction for 516 SNPs and all 14
phenotypes, a second less conservative threshold (p < 9.69 � 10�5) on the correction for the 516 SNPs only.
Results: 19 SNPs located in nine independent loci revealed p-values < 6.92 � 10�6; the less strict criterion was met by 41 SNPs in 24
independent loci. BMI and schizophrenia showed the most pronounced genetic overlap with human metabolism with three loci each meeting the
strict significance threshold. Overall, genetic variation associated with estimated glomerular filtration rate showed up frequently; single metabolite
SNPs were associated with more than one phenotype. Replications in independent samples were obtained for BMI and educational attainment.
Conclusions: Approximately 5e10% of the regions involved in the regulation of blood/urine metabolite levels seem to also play a role in BMI and
mental traits/disorders and related phenotypes. If validated in metabolomic studies of the respective phenotypes, the associated blood/urine
metabolites may enable novel preventive and therapeutic strategies.

� 2018 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Genome-wide association studies (GWAS) and meta-analyses thereof
(GWAMA) have offered insights into the genetic makeup of BMI and of
several categorically defined mental disorders [1] as well as dimen-
sional mental phenotypes [2e5]. The largest number of genome-wide
significant loci have been identified for BMI, for which in total 209 loci
have been detected in subjects of European and Japanese ancestry,
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respectively [6,7]. Schizophrenia ranks highest among mental traits
and disorders with currently 108 identified independent genetic loci
(Supplemental Table 1); for other disorders/traits such as attention-
deficit/hyperactivity disorder (ADHD) and internalizing traits, genome-
wide significant loci have yet to be reported. Currently, only a small
fraction of the respective heritability estimates can be explained at the
DNA level and functional implications of the detected genetic variations
have only insufficiently been elucidated.
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A substantial amount of evidence links obesity with mental health [8];
obviously, behavior figures prominently in both energy intake and
expenditure. Genetic factors seemingly account for part of this link.
Thus, a number of lookups of SNP hits for one trait (e.g. BMI) in
GWAMA data for a related trait (e.g. anorexia nervosa [9]) and vice
versa have detected jointly relevant genetic variants. Such cross-
phenotype/-trait analyses have led to the identification of potentially
relevant genetic loci, which had not yet achieved genome-wide sig-
nificance in the respective GWAMA analyses. Additionally, the identi-
fication of genetic correlations between BMI and mental traits/
disorders suggests causal relationships [1,10]. Thus, cross-trait link-
age disequilibrium score regression (LDSC) revealed genetic correla-
tions between BMI/obesity and schizophrenia, bipolar illness, anorexia
nervosa, Alzheimer’s disease, smoking behavior, neuroticism, and
educational attainment [1]. Furthermore, genetic correlations have also
been identified between different mental traits/disorders [11]; e.g.
between bipolar disorder (BD) and schizophrenia [1].
In contrast to the weak effect sizes for loci identified in GWAMA of
both BMI and mental phenotypes, GWAS performed for levels of
blood or urine metabolites and ratios thereof have identified several
loci with substantially larger effect sizes (Supplemental Table 2). For
example, in the initial GWAS of 163 serum metabolic traits, which
was based on only 1,809 population-based German probands
(discovery) and 422 twins of a UK twin cohort (confirmation), the
locus with the strongest effect size explained 36.3% of the ratio of
two serum metabolites [12]. In addition, in the currently most
comprehensive study, which reported 145 genome-wide significant
independent SNP associations with blood metabolites, the median
for the contribution of genome-wide significant metabolic loci to
metabolite variance has been estimated at 6.9% (range 1e62%;
[13]). Such loci may improve our understanding of genetic disease
predisposition and enable identification of potential biomarkers,
drug targets and the causal role of environmental and modifiable
determinants in human traits and disease [13].
Metabolism related studies have been conducted for both BMI and
mental disorders. For example, genetic factors in metabolism have
been identified in deeply phenotyped mouse models [14]. Levels of key
metabolites, e.g. branched chain amino acids, which are part of the
cross-talk with lipid metabolism, have been evaluated in obesity [15] in
humans. Metabolites have also been associated with mental pheno-
types: In a small sample of 17 drug-free schizophrenia patients,
plasma creatine levels were lower, while 2-hydroxybutyric acid levels
were higher compared with 19 healthy controls [16]. In contrast,
reduced betaine levels, which were previously suggested as a
biomarker candidate at least for first-onset schizophrenia [17], were
not replicated in this study. These conflicting results could at least
partly be explained by differences in durations of illness between study
samples since a positive correlation was observed between duration of
illness and betaine concentrations [16]. Despite this research, a
generally approved biomarker (panel) for schizophrenia still remains to
be identified [18].
SNPs explaining a proportion of both the variance of specific metabolite
concentrations and BMI and mental phenotypes could help identify
candidate metabolites to be measured in serum samples of patients in
order to determine if indeed the metabolite concentrations are directly
associated. Knowledge of such associations may contribute to the
development of new options for treatment and prevention of obesity
and mental disorders via environmentally induced alterations of the
respective metabolite levels [12,19].
The aim of the current study was to assess whether loci associated
with metabolic traits also have a significant role in the partially
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behavior driven phenotype BMI, the mental disorders schizo-
phrenia, major depressive disorder (MDD), BD, autism-spectrum
disorder (ASD), ADHD, and Alzheimer’s disease, and the quanti-
tative mental/behavioral phenotypes educational attainment,
neuroticism, well-being, aggressive behavior, anxiety, depressive
symptoms, and internalizing problems (all 14 phenotypes subse-
quently referred to as mental phenotypes). To that end, we per-
formed a lookup analysis of SNPs with genome-wide significant
association to metabolic traits in GWAS of these mental pheno-
types. Finally, SNPs identified as being potentially relevant for BMI
or educational attainment were looked up in independent data sets
for confirmation.

2. MATERIAL AND METHODS

2.1. Selection of relevant SNPs
We performed a lookup of SNPs, which are genome-wide significantly
associated with metabolite levels or ratios thereof (p � 5 � 10�8,
Figure 1). Relevant SNPs were derived from the GWAS Catalog [20]
(The NHGRI-EBI Catalog of published genome-wide association
studies: http://www.ebi.ac.uk/gwas/, accessed on December 12th
2016, version v1.0.) using the search terms ‘metabolite,’ ‘metabolites,’
and ‘metabolism’ (Figure 1). The resulting studies pertaining to
metabolic traits were independently reviewed by two authors (JH, LL)
in order to find traits, which are not directly related to physiological
metabolism. Single different ratings were resolved by consensus. This
selection process resulted in the exclusion of the following traits from
further analyses: birth weight, cardiovascular heart disease in di-
abetics, response to serotonin reuptake inhibitor, hereditary
hemochromatosis-related traits, AR-C124910XX levels in individuals
with acute coronary syndromes treated with ticagrelor, metabolic traits
in smokers, and nicotine metabolite ratio.
The lookup of the identified SNPs was performed in the following
publically available GWAMA data sets from: (a) the Psychiatric Genetics
Consortium (PGC): all GWAMA data available until February 12th 2017
including schizophrenia [21], MDD [22], ADHD [23], BD [24] and ASD
(downloaded between November 22nd 2016 and February 12th 2017)
[25]; (b) the Social Science Genetic Association Consortium (SSGAC):
educational attainment [3], neuroticism [2], well-being [2], depressive
symptoms [2] (downloaded between November 22nd and December
12th 2016); (c) the Genetic Investigation of Anthropometric Traits
(GIANT) Consortium: BMI [7] (downloaded on March 26th 2016); (d)
Early Genetics and Lifecourse Epidemiology Consortium (EAGLE):
aggressive behavior [26] and internalizing problems [27] (downloaded
on February 10th 2017); (e) Anxiety Neuro Genetics Study: anxiety
disorder [28] (downloaded on November 28th 2016), (f) International
Genomics of Alzheimer’s Project (IGAP): Alzheimer’s disease [29]
(downloaded on February 12th 2017).
In case of unavailability of the identified metabolite SNPs in the
respective 14 GWAS and GWAMA, we used proxy-SNPs. The SNPs
with minimum linkage disequilibrium (LD) r2 � 0.80 on the basis of
1000 Genomes, Phase 3 (Oct. 2014) for European ancestry (maximal
distance of 500 kb) were exported applying the in silico tool rAggr
(University of Southern California (USC; http://raggr.usc.edu/). Post-hoc
selection criteria for proxy-SNPs were defined: 1st highest r2, 2nd
smallest distance to the lead SNP. To define separate chromosomal
regions we used a distance criterion of þ/�500 kb surrounding the
middle SNP [7] of a chromosomal locus. Consecutive numbers were
assigned to each region.
Independent data for the confirmation of SNPs identified to be shared
between metabolic and mental traits were available for (a) BMI (GWAS
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Look-up in GWAMA

Mental disorders and other mental/behavioral
phenotypes (n=14):
- Body mass index 
- Educational attaintment 
- Neuroticism 
- Alzheimer disease 
- Schizophrenia 
- Well-being 
- Aggressive behavior 
- Anxiety disorders 
- Depressive symptoms 
- Major depressive disorder 
- Bipolar disorder 
- Autism spectrum disorders 
- Internalizing problems 
- Attention deficit/hyperactivity disorder 

Search in GWAS Catalog:
 Term 1: „metabolite“ - 56 studies, 1526 associations, 45 catalog traits
Term 2: „metabolites“ - 8 studies, 3726  associations, 6 catalog traits
 Term 3: „metabolism“ - 25 studies, 210 associations, 21 catalog traits

- Exclude irrelevant traits (9 traits, 75 associations)
- Exclude multiple hits

Detection of associations for three different p-value thresholds:
- p < 0.05; no correction for multiple testing 
       Result: 361 SNPs in 163 chromosomal regions A
- p < 9.7 x 10-5; Bonferroni correction for multiple testing of 516 SNPs 
                         Result: 41 SNPs in 24 chromosomal regions 
- p < 6.9 x 10-6; Bonferroni correction for multiple testing of 516 SNPs and 14 phenotypes 
     Result: 19 SNPs in 9 chromosomal regions

516 SNPs in 216 chromosomal regions (p ≤ 5 x 10-8)

Figure 1: Flow chart of the conducted lookup analysis. Legend: A30 associations were identified via proxy-SNPs; GWAMA: Genome-wide association meta-analysis.
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Table 1 e Associations of GWAS and GWAMA derived human metabolism SNPs in GWAMA data for mental disorders and other mental/behavioral phenotypes.

SNP Region Mapped
Gene

Effect allele MetaboliteA p-value for
metabolite or
metabolite ratio

Exponents of p-values per mental phenotype Effect directionsB Source
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rs2802729 1q43 SDCCAG8 A eGFRcrea 2.0E-8 �3 L6* �2 �3 �2 A: metabY; SchizoY [31]
rs6546838 2p13.1 ALMS1 A eGFRcrea 8.0E-20 �3 L6* A: metab Y; SchizoY [31]
rs9309473 2p13.1 ALMS1 G N-acetylated

compound(s)
4.1E-19 �3 L6* G: metab[; Schizo[ [46]

rs11884776 2p13.1 ALMS1 C N-acetylated
compounds

6.0E-17 �3 L6* C: metab[; SchizoY [45]

rs10469966 2p13.1 ALMS1 A X-12093 1.0E-51 �4 L7* A: metab[; Schizo[ [13]
rs6546847 2p13.1 ALMS1 A N-acetylated

compounds
5.3E-161 �3 L6* A: metab[; SchizoY [45]

rs13391552 2p13.1 ALMS1 A N-
acetylornithine

5.0E-252 �3 L6* A: metabY; Schizo[ [63]

rs6546857 2p13.1 ALMS1 -
NAT8

A (X-11787) 1.0E-23 �3 L7* A: metab[; SchizoY [64]

rs10178409 2p13.1 ALMS1 -
NAT8

T N-acetylaspartate 1.0E-95 �3 L5 T: metab[; Schizo[ [65]

rs13538 2p13.1 NAT8 A N-acetylornithine/
myo-inositol

8.0E-157 �3 L5 A: metab[; SchizoY [13]

rs13538 2p13.1 NAT8 G eGFRcrea 5.0E-14 �3 L5 G: metab[; Schizo[ [66]
rs13538 2p13.1 NAT8 A X-11787 2.0E-23 �3 L5 A: metab[; SchizoY [64]
rs10206899 2p13.1 ALMS1P T N-acetylornithine 2.0E-14 �3 L5 T: metab[; SchizoY [13]
rs1260326 2p23.3 GCKR A HDL total 6.3E-36 L5 �3 �3 A: metab[;BMIY [67]

rs1260326 2p23.3 GCKR n.a. S-HDL-P 1.0E-12 L5 �3 �3 ? [68]
rs1260326 2p23.3 GCKR C mannose 6.0E-56 L5 �3 �3 C: metab[; BMI[ [69]
rs1260326 2p23.3 GCKR T eGFRcrea 3.0E-14 L5 �3 �3 T: metab[; BMIY [66]
rs1260326 2p23.3 GCKR T glucose/mannose 3.0E-148 L5 �3 �3 T: metab[; BMIY [13]
rs7570971 2q21.3 RAB3GAP1 A 1.5-anhydroglucitol 8.0E-45 L6* �2 A: metabY; BMI Y [13]
rs1047891 2q34 CPS1 A plasma homocysteine

levels
9.0E-13 L5 A: metab[; BMI[ [70]

rs715 2q34 CPS1 T serine 3.0E-11 L6 T: metabY; BMIY [71]
rs715 2q34 CPS1 T glycine 3.0E-50 L6 T: metabY; BMIY [13] [72] [65]
rs10513801 3q27.2 ETV5 T eGFRcrea 1.0E-9 L21* L5 T: metab[; BMI[; EdAtt[ [31]
rs12654264 5q13.3 HMGCR T LDLc 1.0E-20 L8* �3 �2 �2 T: metab Y; BMIY [58]
rs7759001 6p22.1 ZNF204P A eGFRcrea 2.0E-8 �2 L5 �2 �3 A: metabY; SchizoY [31]
rs2762353 6p22.2 SLC17A1 A 4-androsten-

3beta,17beta-diol
disulfate 2

3.0E-13 L5 �3 A; metab[; Schizo[ [13]

rs9400467 6q21 SLC16A10 T tyrosine 7.0E-14 L6* T: metab Y; SchizoY [13], [71]
rs4841132 8p23.1 LOC157273 n.a. free cholesterol in

medium HDL
2.0E-9 �3 L5 n.a. [68]

rs15676 9q34.11 TBC1D13 A indolelactate 1.0E-12 �3 L5 �2 A: metab[; Schizo[ [13]
rs9527 10q24.32 A dimethylarsinic acid in

urine
3.0E-9 �2 L5 n.a. [43]
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C10orf32
C10orf32-
ASMT

rs1278587 11q13.4 NADSYN1 T vitamin D insufficiency 2.0E-27 L5 n.a. [73]
rs3184504 12q24.12 SH2B3 T kynurenine 6.0E-18 L6 T: metab[; BMIY [13]
rs2066938 12q24.31 UNC119B A butyrylcarnitine 3.1E-630 L6* �4 A: metabY; EdAtt[ [13]
rs2066938 12q24.31 UNC119B A butyrylcarnitine

/propionylcarnitine
4.4E-305 L6* �4 A: metabY; EdAtt[ [63]

rs2014355 12q24.31 ACADS T C3/C4 5.0E-96 L6* �3 T: metabY; edAtt[ [12]
rs3916 12q24.31 ACADS G unknown 2.4E-22 L6* �3 n.a. [45]
rs4144027 14q32.33 LOC105

370690
T aspargine 1.0E-11 �2 L5 �2 �2 �2 T: metab[; SchizoY [13]

rs12446492 16p12.3 PDILT A uromodulin indexed to
creatinine

6.0E-27 L5 A: metabY; BMI[ [74]

rs7200543 16p13.11 PDXDC1 A PC aa C38:3
(Glycerophospholipid
levels)

3.0E-17 L5 �3 �2 A: metab[; BMI[ [71]

rs7200543 16p13.11 PDXDC1 G 1-
eicosatrienoylglycero
-phosphocholine /1-
linoleoylglycero-
phosphocholine

5.0E-16 G: metabY; BMIY [63]

rs11075253 16p13.11 PDXDC1,
NTAN1

A linoleic acid/PUFA 5.0E-15 L5 �2 �2 �2 A: metabY; EdAtt[ [75]

rs8056893 16q22.1 SLC7A6 A glutaroyl carnitine 2.0E-30 L5 �2 �2 A: metabY; BMIY [13]
rs2863979 16q22.1 SLC7A6 A lysine 1.0E-17 L5 �2 �2 �2 A: metab[; BMIY [13]
rs9916302 17q12 FBXL20 T eGFRcrea 5.0E-15 L5 �3 T: metabY; EdAtt[ [31]
rs7219014 17q12 CDK12 A histidine/s-

methylhistidine
4.0E-26 L5 �3 A: metabY; EdAttY [65]

rs4808136 19p13.11 ELL A myo-inositol 5.0E-14 �3 L5 �2 �3 �2 A: metab[; Alz[ [13]
rs4803750 19q13.32 BCL3 G LDL-C assay fasting 1.0E-27 L13* G: metabY; AlzY [67]
rs7412 19q13.32 APOE T L-LDL-FC 3.0E-58 �2 L22* T: metabY; Alz Y [75]
rs4420638 19q13.32 APOC1-

APOC1P1
A LDL-C 1.0E-14 �4 L454* �2 G: metab[; Alz[ proxy [76]

rs2287921 19q13.33 RASIP1 C FUT2 - fucose 7.0E-19 �2 �2 �2 �3 L6* C: metab[, BIP[ [45]

Horizontal lines separate chromosomal regions of 1 Mb.
Bold values indicate significant results upon correction for 516 SNPs (p < 9.7 � 10-5).
*Significant values upon correction for 14 traits and 516 SNPs (p < 6.92 � 10-6).
ADHD: Attention Deficit/Hyperactivity Disorder; Aggression: Aggressive behavior; Alz: Alzheimer’s disease; Autism: Autism spectrum disorder; Bipolar: Bipolar disorder; BMI: Body mass index; Ed_Att: Educational attainment; Internalizing: Internalizing
problems; GWAS: Genome-wide association study; GWAMA: Genome-wide association meta-analysis; MDD: Major depressive disorder, metab: Metabolite or ratio of metabolites.
A Metabolite, ratio of metabolites, or metabolism markers with lowest p-value in GWAMA.
B Upward arrows indicate positive beta-values or odds ratios >1, downward arrows negative beta-values or odds ratios <1 for the phenotype showing the lowest p-value.
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Original Article
data of Japanese individuals (n ¼ 173,430; [6]; data downloaded on
September 25th 2017 from https://humandbs.biosciencedbc.jp/
en/hum0014-v6#JGAS00000000114%20/%20hum 0014.v6.158k.v1)
and (b) Educational Attainment (UK Biobank sample (n ¼ 111,114;
[30]; data downloaded on December 4th 2017 from https://grasp.
nhlbi.nih.gov/FullResults.aspx).

2.2. Statistical analyses
To control for the overall type I error rate in the lookup, a Bonferroni
correction was used. We performed a conservative study-wide
correction for 516 SNPs and all 14 traits which yielded a threshold
p-value of 6.92� 10�6. We additionally assumed a univariate multiple
regression model for each psychiatric trait entailing a Bonferroni
correction for 516 tests (¼516 SNPs), resulting in a less strict
threshold p-value of 9.7 � 10�5. For both corrections, independence
of SNPs was assumed. However, although the selected dataset only
included 216 chromosomal regions, we did not prune SNPs in high LD
to adhere to the most conservative approach possible.
Additionally, we compared the number of observed associations be-
tween metabolite SNPs or their proxies and mental phenotypes with
the expected number as based on the null hypothesis (no association;
see Table 2). For this analysis, we assumed that the 516 SNPs were
located in 216 chromosomal regions (1 Mb each). For each mental
phenotype, the expected total number of false positive hits was
computed as follows: 0.001 � 216 ¼ 0.216 for a p-value � 0.001.
For confirmatory analyses for BMI and educational attainment a p-
value < 0.05 was considered as significant.

3. RESULTS

3.1. Observed associations linking human metabolism with BMI
and mental traits/disorders
Our search identified 516 SNPs that were genome-wide significantly
associated with metabolite levels and ratios thereof in human blood
and/or urine (Figure 1) in GWAS or GWAMA of human metabolism
(Supplemental Table 1). Of these, 19 SNPs were significantly
associated with specific mental phenotypes when using the strict
Bonferroni correction for both 516 SNPs and 14 traits
(p < 6.92 � 10�6; Table 1) in GWAS and GWAMA of BMI and
mental traits/disorders (Supplemental Table 2). The less conserva-
tive adjustment for the 516 SNPs merely within each phenotype
resulted in a total of 41 SNPs that met the Bonferroni-corrected
threshold (p < 9.69 � 10�5). The numbers of identified hits per
phenotype (p < 6.92 � 10�6) correlated with the known numbers
of genome-wide significant findings (considered as percentages of
Table 2 e Comparison between observed and expected hits stratified by pheno

Nominal
p-value

Expected
hits per

phenotype A

N

BMI Ed_Att Neuro-
ticism

Alzheimer Schizo-
phrenia

Well-
being

A

p � 0.001 0.216 11 8 2 2 14 1
p � 0.0001 0.0216 9 4 2 9
p � 0.00001 0.00216 5 1 1 3
p � 0.000001 0.000216 2 1 1
p � 0.0000001 0.0000216 2 1
p � 0.00000001 0.00000216 1 1

Expected number of false positive hits was computed as follows: 0.001 x 216¼0.216 for
ADHD Attention Deficit/Hyperactivity Disorder; BMI, Body Mass Index; Ed_Att: Educational a
A Based on the identified 216 chromosomal regions of 1 MB (see Methods online).
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examined SNPs) for the respective datasets (Spearman rank cor-
relation: r ¼ 0.72 p ¼ 0.003).
Based on our definition of independent loci (see Methods), the 516
SNPs belong to 216 regions. Accordingly, the 19 and 41 SNPs are
located in nine and 24 regions, respectively (Table 1, Supplemental
Table 4). Hence, approximately 5% (10% upon use of the less
conservative threshold of p < 9.69 � 10�5) of the 216 regions
which are relevant for the regulation of blood/urine metabolite levels
also appear to play a role in mental disorders and related quanti-
tative phenotypes. The largest numbers of hits were observed for
BMI, schizophrenia, and educational attainment (Tables 1 and 2).
Genetic variation associated with estimated glomerular filtration rate
(eGFR), a marker for renal function, which is predominantly calculated
based on serum creatinine levels, appeared frequently in our hits for
schizophrenia (three loci with p < 9.69 � 10�5), educational attain-
ment (two loci) and BMI (two loci). Of the 53 loci detected in the most
recent GWAMA for eGFR [31] 43 loci (81%) were nominally associated
(p < 0.05) with one or more of the investigated phenotypes
(Supplemental Table 4).

3.2. Crossephenotype associations
Among the 41 SNPs located in the 24 regions, ETV5 was the only locus
that met our less strict threshold of p< 9.7 � 10�5 for more than one
phenotype, i.e. BMI and educational attainment. However, the potential
cross-phenotype relevance of specific loci is illustrated by the fact that
for four, five (twice), and 20 of the 41 SNPs, nominal hits (p < 0.05)
were found for a total of four, three, two and one additional pheno-
types, respectively (Table 1). Interestingly, four of the nine regions
identified for schizophrenia (p < 9.69 � 10�5) were nominally also
associated with educational attainment (vice versa two of four). For the
phenotypes MDD, depressive symptoms, anxiety, ASD, well-being,
and neuroticism, we observed no genetic cross-link with human
metabolism.

3.3. Confirmatory analyses
The confirmatory analyses (Table 3) in independent samples
comprised all SNPs that fulfilled the p-value threshold of
p < 9.69 � 10�5 for BMI or educational attainment in the discovery
analyses, respectively. For BMI five of the nine regions with
p< 9.69� 10�5 in the discovery data set revealed p-values< 0.05 in
the confirmatory data set based on Japanese subjects. For educational
attainment, three of four regions in the discovery data set revealed p-
values< 0.05 in the confirmatory data set (UK Biobank). The directions
of all effect alleles with were consistent between discovery and
confirmatory data sets.
type.

umber of hits per phenotype

ggressive
behavior

Anxiety Depressive
Symptoms

MDD Bipolar
disorder

Autism Internalizing
problems

ADHD

1 4 2
1 1
1

p-value�0.001.
ttainment.
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Table 3 e Confirmation of SNPs for BMI and educational attainment fulfilling the p-value treshold p < 9.69 � 10�5.

SNP Region Mapped Gene Effect
allele

P-values

BMI e Discovery BMI - Confirmation Educational
Attainment - Discovery

Educational
Attainment - Confirmation

rs1260326 2p23.3 GCKR A 9.2 � 10�5 n.s.
rs7570971 2q21.3 RAB3GAP1 A 1.5 3 10�6 n.s.
rs1047891 2q34 CPS1 A 8.1 � 10�5 4.7 � 10�3

rs715 2q34 CPS1 T 7.1 � 10�6 4.7 � 10�3

rs10513801 3q27.2 ETV5 T 1.1 3 10�21 3.4 � 10�3 2.0 � 10�5 1.3 � 10�2

rs12654264 5q13.3 HMGCR T 1.8 3 10�8 8.3 � 10�9

rs3184504 12q24.12 SH2B3 T 9.3 � 10�6 n.s.
rs2066938 12q24.31 UNC119B A 4.4 3 10�6 n.s.
rs2014355 12q24.31 ACADS T 5.0 3 10�6 n.s.
rs3916 12q24.31 ACADS G 3.2 3 10�6 n.s.
rs12446492 16p12.3 PDILT A 3.0 � 10�5 n.s.
rs7200543 16p13.11 PDXDC1 A 1.0 � 10�5 4.2 � 10�5

rs11075253 16p13.11 PDXDC1, NTAN1 A 4.6 � 10�5 7.0 � 10�4

rs8056893 16q22.1 SLC7A6 A 3.1 � 10�5 4.5 � 10�3

rs2863979 16q22.1 SLC7A6 A 2.7 � 10�5 3.6 � 10�3

rs9916302 17q12 FBXL20 T 1.9 � 10�5 3.9 � 10�2

rs7219014 17q12 CDK12 A 1.1 � 10�5 1.6 � 10�2

Horizontal lines separate chromosomal regions of 1 Mb.
Bold values indicate significant values in the discovery data sets upon correction for 14 traits and 516 SNPs (p < 6.92 � 10�6).
BMI: Body mass index; n.s: p � 0.05.
The effect allele direction was consistent in discovery and confirmatory data for all replicated SNPs.
4. DISCUSSION

The main finding of the current study was the identification of SNPs
that both explain variation of human metabolite concentrations and
are associated with BMI and mental traits/disorders. Approximately
5e10% of the regions, which are relevant for the regulation of blood/
urine metabolite levels, were also associated with BMI/mental phe-
notypes. Furthermore, our approach re-identified three genome-wide
significant loci (p � 5 � 10�8) in the respective data sets, i.e. ETV5
[32] and HMGCR [7] for BMI, and APO-E4 for Alzheimer’s disease
[29]). Two further loci (C10orf32-AS3MT and SDCCAG8) surpassed
the genome-wide significance level in analyses for schizophrenia
[21,33]. However, in the available GWAMA dataset (see Methods), the
respective SNPs in these two regions had not reached genome-wide
significance.
For schizophrenia and educational attainment, our examination
revealed several loci with cross-phenotype relevance. Positive but low
genetic correlations (rg ¼ 0.09e0.10, p < 0.05) between schizo-
phrenia and educational attainment have been reported previously
[1,11,34]. Overall, the genetic link between metabolism and mental
phenotypes was mainly apparent for BMI, schizophrenia, and educa-
tional attainment. The number of significant hits for these three phe-
notypes seemingly parallels the high number of previously identified
genome-wide significant findings (Supplemental Table 1).
Conversely, in the GWAS and GWAMA datasets Aggressive Behavior,
Anxiety, Depressive Symptoms, MDD, ASD, and Internalizing Prob-
lems, nominal p-values� 0.001 were not detected (Table 2). For these
phenotypes genome-wide significant findings had not been reported in
the analyzed data sets. The lack of overlap between SNPs involved in
metabolite regulation with aggressive behavior, anxiety, depressive
symptoms, MDD, ASD, and internalizing problems might indicate that
genetic variations in human metabolism are of minor relevance for
these phenotypes, not disputing that metabolic disturbances e albeit
not genetically dominated - may well impact the respective mental
trait. However, the lack of significant hits might also reflect insufficient
statistical power due to the relatively small sample sizes for MDD,
MOLECULAR METABOLISM 12 (2018) 1e11 � 2018 The Authors. Published by Elsevier GmbH. This is an open acc
www.molecularmetabolism.com
anxiety, and ASD in particular. For future analyses of a similar type, we
recommend focusing on datasets with at least one genome-wide
significant finding. Unfortunately, the data set of the most recent
GWAMA for MDD [35] was not available for download on the PGC
website at the time of the lookup; it will be of particular interest to
analyze this data set to determine if metabolite SNPs overlap between
BMI and MDD.
One important finding was that genetic variation associated with eGFR
seems to play a relevant role in our hits for schizophrenia. Reduced
renal clearance of specific toxins had been postulated to elevate the
risk for schizophrenia decades ago; however, small-scaled efforts to
treat schizophrenia with dialysis failed [36]. More recently, schizo-
phrenia has been shown to be associated with an increased risk of
chronic kidney disease (CKD) [37]. However, for all three of the
identified eGFR loci relevant for schizophrenia the observed effect
directions of the respective SNPs were not consistent with the hy-
pothesis that a reduced eGFR might causally underlie these findings.
LSCD analyses (http://ldsc.broadinstitute.org/) also revealed a negative
genetic correlation (rg ¼ �0.166, p ¼ 0.016) between CKD and
schizophrenia, but a slightly positive correlation between schizo-
phrenia and serum creatinine (rg ¼ 0.067, p ¼ 0.028). Similarly, for
educational attainment, the direction of effect of the two eGFR SNPs
again appears counterintuitive since reduced renal function is clinically
associated with cognitive deficits: cognitive deficits develop early in
CKD and worsen over time independently of other risk factors [38].
Clinically, the encephalopathy observed in end-stage renal disease is
probably caused by the accumulation of uremic toxins [39]. Overall, our
results do not support the notion from clinical observations that
metabolite SNPs that reduce eGFR are associated with an increased
risk of schizophrenia or a lower level of educational attainment.
Toxins from e.g. environmental pollution (e.g. so-called endocrine
disruptors like phthalates and chlorinated polyphenols or heavy metal
exposures) are potential contributors to the etiology of obesity [40,41]
and schizophrenia [42]. Our analysis did not support this hypothesis for
obesity; for schizophrenia, we identified genetic variation in the
C10orf32-AS3MT gene region (Supplemental Table 3) as one potential
ess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 7
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cross-link between arsenic detoxification metabolism and schizo-
phrenia; the respective locus was identified in a GWAS of arsenic
metabolism and toxicity phenotypes in Bangladesh [43]. Furthermore,
the gene product of N-acetyltransferase 8 (NAT8), which is located in
the same chromosomal region, is involved in xenobiotic metabolism
and detoxification processes [44]. However, SNPs near NAT8, which
increase levels of N-acetylated compounds, appear to have opposite
effects on schizophrenia (e.g. rs9309473 and rs11884776; Table 1),
which potentially reflects inconsistently reported effect directions in the
underlying studies [21,45,46], or point speculatively towards inde-
pendent roles in brain versus somatic pathways.
The identification of biomarkers [47] may improve diagnostic classi-
fication systems of mental disorders and related phenotypes [48]. The
current lack of biomarkers represents a key challenge for psychiatric
research according to the U.S. National Institute of Mental Health’s
(NIMH) new Research Domain Criteria (RDoC) [49]. This study, for the
first time, analyzed the overlap between SNPs involved in the regu-
lation of blood/urine metabolites and mental phenotypes at the DNA
level on a large scale including 14 phenotypes. Therefore, our
approach could represent a step towards the identification of geneti-
cally based biomarkers, thus assisting in the classification of biologi-
cally more homogenous subtypes of mental disorders [50].
Based on our results, the evaluation of the identified serum/urine
metabolites in appropriately characterized and sufficiently powered
(patient) samples represents an initial step towards investigating a
potential causal link between the respective metabolite concentrations
and the corresponding phenotype(s). In fact, for some structural
classes of steroids, which have been identified in the current study,
differences in steroid levels between patients with schizophrenia and
controls have already been observed [51].
However, a note of caution is warranted. The identified SNPs may have
a link with the respective phenotype via mechanisms that are not
related to the serum/urine concentrations of the respective metabolite.
For example, an enzyme could be differentially regulated in the pe-
riphery and the central nervous system, with only the latter explaining
the genetic predisposition to the mental phenotype. Alternatively, some
of the findings may prove to be due to a disease locus being in LD with
the respective metabolite locus. Therefore, caseecontrol studies of the
metabolite concentrations tagged by the SNPs listed in Table 1 are
needed to follow-up on our findings, e.g. on markers for kidney
function (e.g. eGFR) and schizophrenia, BMI, and educational attain-
ment. However, the strength of our approach is that the genetic impact
observed for the identified metabolites indicates that at least part of the
variance in metabolite levels does not seem to result from the mental
phenotype itself or from medications but could parallel or precede the
onset of the mental phenotype.
To evaluate any causal or pleiotropic effects of the metabolites on BMI/
mental phenotypes identified in our lookup, we suggest subsequent
studies using two-sample Mendelian Randomization [52e55] with
multiple SNPs or a polygenic risk score with a strong association to a
metabolite as instrumental variables. A specific challenge here would
be that Mendelian Randomization assumes no pleiotropy, but many of
the SNPs identified in our study are associated with a number of
metabolites of interest. To address this issue, the recently suggested
multivariable Mendelian Randomization approach could be employed
that was shown to be successful in disentangling different lipid
pathways in their causal roles for coronary heart disease [56].
A further limitation of our work pertains to the identification of me-
tabolites of interest via the GWAS Catalog. Single GWAS reports for
metabolite concentrations were not covered by this website [57].
Furthermore, these GWAS differed with regard to ancestry of the study
8 MOLECULAR METABOLISM 12 (2018) 1e11 � 2018 The Authors. Published by Elsevier GmbH. T
population, e.g. Kim et al. focused on East-Asians population [58].
Therefore, genetic ancestry could be a potential confounding factor.
Another limitation is that for our confirmatory analyses we found in-
dependent datasets for only BMI and educational attainment. Because
the BMI data sets are based on subjects of different ethnic origin, the
confirmation of BMI loci in the Japanese data set suggests a common
predisposition in both Europeans and the Japanese. Further replication
analyses are necessary to confirm the role of the identified metabolites
in light of p-values that did not meet the criterion of genome-wide
significance established for GWAS or GWAMA. However, the detec-
tion of the five previously identified loci with p-values < 5 � 10�8

seemingly indirectly “validates” our approach.

5. CONCLUSION

There is a substantial genetic overlap between metabolism, BMI, and
mental phenotypes, as 5e10% of the regions, which are relevant for
the regulation of blood/urine metabolite levels, were significantly
associated with BMI and mental phenotypes.
Considering results from this study and previous clinical observations
[38,39,59e62], the feasibility of eGFR, acetylated-compounds, and
heavy-metal metabolites as potential biomarkers needs to be exam-
ined in caseecontrol studies, especially in schizophrenia. A diagnostic
use of these potential biomarkers and an adjustment of metabolite
levels e.g. via dietary interventions could guide prevention and addi-
tional intervention concepts for obesity and schizophrenia. Assuming a
confirmation of these findings in caseecontrol studies, metabolic traits
related to these biomarkers might even help the development of future
treatment options. If some of the tagged genes are involved in
detoxification, the disease risk alleles may prove to be relevant under
specific environmental conditions only. In such scenarios, the effect
sizes may prove to be more substantial than the current findings
suggest, which could become relevant for efficacious targeted thera-
peutic and preventive efforts.
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