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Abstract: Background and Objective: Accurate retinal vessel segmentation is often considered to
be a reliable biomarker of diagnosis and screening of various diseases, including cardiovascular
diseases, diabetic, and ophthalmologic diseases. Recently, deep learning (DL) algorithms have
demonstrated high performance in segmenting retinal images that may enable fast and lifesaving
diagnoses. To our knowledge, there is no systematic review of the current work in this research
area. Therefore, we performed a systematic review with a meta-analysis of relevant studies to
quantify the performance of the DL algorithms in retinal vessel segmentation. Methods: A systematic
search on EMBASE, PubMed, Google Scholar, Scopus, and Web of Science was conducted for studies
that were published between 1 January 2000 and 15 January 2020. We followed the Preferred
Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) procedure. The DL-based
study design was mandatory for a study’s inclusion. Two authors independently screened all titles
and abstracts against predefined inclusion and exclusion criteria. We used the Quality Assessment
of Diagnostic Accuracy Studies (QUADAS-2) tool for assessing the risk of bias and applicability.
Results: Thirty-one studies were included in the systematic review; however, only 23 studies met
the inclusion criteria for the meta-analysis. DL showed high performance for four publicly available
databases, achieving an average area under the ROC of 0.96, 0.97, 0.96, and 0.94 on the DRIVE,
STARE, CHASE_DB1, and HRF databases, respectively. The pooled sensitivity for the DRIVE, STARE,
CHASE_DB1, and HRF databases was 0.77, 0.79, 0.78, and 0.81, respectively. Moreover, the pooled
specificity of the DRIVE, STARE, CHASE_DB1, and HRF databases was 0.97, 0.97, 0.97, and 0.92,
respectively. Conclusion: The findings of our study showed the DL algorithms had high sensitivity
and specificity for segmenting the retinal vessels from digital fundus images. The future role of DL
algorithms in retinal vessel segmentation is promising, especially for those countries with limited
access to healthcare. More compressive studies and global efforts are mandatory for evaluating the
cost-effectiveness of DL-based tools for retinal disease screening worldwide.

J. Clin. Med. 2020, 9, 1018; doi:10.3390/jcm9041018 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0001-6026-2748
https://orcid.org/0000-0001-6497-4232
http://www.mdpi.com/2077-0383/9/4/1018?type=check_update&version=1
http://dx.doi.org/10.3390/jcm9041018
http://www.mdpi.com/journal/jcm


J. Clin. Med. 2020, 9, 1018 2 of 19

Keywords: retinal vessel; deep learning; diabetes mellitus; convolutional neural network;
artificial intelligence

1. Introduction

1.1. Rationale

Visual impairment is a public health concern that has a negative impact on physical and mental
health [1]. Visual impairment is associated with a high risk of chronic health conditions, including
death. The prevalence and economic burden of visual impairment are exponentially increasing with
an increasing number of aging populations [2]. It is estimated that the number of people with visual
impairment will double by 2050 [3]. Several potential factors, such as cataract, age-related macular
degeneration (AMD), diabetic retinopathy (DR), and glaucoma, are responsible for an increased risk
of blindness [4,5]. This highlights the important public health burden that visual impairment and
blindness place on our health care system. Therefore, the early detection and quantitative diagnosis of
retinal diseases can help to develop more preventive measures, thereby reducing the number of newly
diagnosed cases and the associated financial burden [6].

1.2. Solution Statement

Retinal fundus images are often used for early diagnosis of different ophthalmologic diseases,
including DR and glaucoma [7]. Among various features in digital fundus images, retinal blood vessels
provide useful information that is an important prerequisite for a number of clinical applications [8].
However, manual segmentation of retinal vessels by a trained human expert is time-consuming and
highly variable [9,10]. The lack of human observers, infrastructure, and awareness are key challenges
that need to be overcome. Over the past decades, automatic retinal vessel segmentation methods
were mainly classified into two categories: supervised and unsupervised. Unsupervised methods are
always dependent on threshold filter responses, handcrafted features, or other rule-based techniques.
In contrast, supervised methods train a classifier to obtain discrimination between the vessel and
non-vessel pixels. Recently, deep learning (DL) has achieved tremendous diagnostic performance in
segmenting the retinal vessel [11,12]. The diagnostic accuracy of DL in retinal vessel segmentation has
been shown to be comparable to the accuracy that was achieved by human experts. DL-based automatic
systems offer potential benefits by reducing the manual work and achieving faster segmentation with
reduced costs and resources. DL-based automatic tools can be incorporated into real-world screening
programs that are not widely implemented or routinely practiced [13].

1.3. Goal of Investigation

Herein, we report the results of a comprehensive systematic review of DL algorithms studies
that investigated the performance of DL algorithms for retinal vessel segmentation in digital fundus
photographs. Our primary objective was to precisely gauge the performance of DL methods for
retinal vessel segmentation from color fundus images. The evaluation of DL performance can help
policymakers to understand how DL could be a clinically effective tool for segmenting retinal vessels
in under-resourced areas with a severe shortage of experts and infrastructure.

2. Deep Learning (DL)

2.1. Artificial Neural Network (ANN)

ANNs are one of the main tools used in AI. ANNs are inspired by the neurons of a biological brain
that is intended to mimic the way that humans learn. ANN consists of input, hidden, and output layers.
The input layer is the first layer that receives inputs in the form of numbers, documents, texts, images,
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or audio files. The middle layer is called the hidden layer, and a single layer neural network is called a
perceptron. However, it can consist of multiple layers and output single or multiple outcomes.

In Figure 1, x1, x2, x3, and x4 represent four inputs (independent variables) to the network. Each of
the four inputs is multiplied by a random weight. The weights are represented as w1, w2, w3, and w4.
Weight represents the strength of each node, while b is called the bias. A bias value lets the activation
function go up or down. The following output is generated in the activation function:

x1.w1+x2.w2+x3.w3+x4.w4 (1)
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Figure 1. The basic structure of an Artificial Neural Network (ANN).

The activation function determines where a neuron would be activated or not by the sum of
weights and with the addition of the bias. The primary objective is to introduce non-linearity into the
output of each neuron.

2.2. Convolutional Neural Network (CNN)

A CNN algorithm consists of several network layers, such as input, convolutional, max pooling,
average pooling, and output layers. The total number of layers can be increased or decreased based on
the size of the input used to train the model. Usually, a deeper network will perform better with large
datasets. The advantage of using a CNN is that it does not need any feature extraction. In the CNN
model, the features are automatically hierarchically extracted from the input and they are further
classified using a fully connected layer. Figure 2 shows the architecture of the CNN model.
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Figure 2. A schematic view of the Convolutional Neural Network (CNN) model.

2.2.1. Convolutional Layer

The convolutional layer always utilizes a convolutional function on the given input variables, such
as digital images. A filter is moved over the given input variables with a stride (which describes
how many pixels a filter will be translating horizontally and vertically), and the size of the stride
is usually determined by the providers. It generates feature maps and it is used as the input of the
subsequent layer.

2.2.2. Activation Function

Different types of activation functions are applied in the convolutional layers. They help to create a
non-linear relationship between the data and the output class.

Let layer l be a non-linearity layer that takes the feature volume Y(L−1)
I from a convolutional layer

(l− 1) and generates the activation volume Y(l)
i .

Y(l)
i = f (Y(l−1)

i ) (2)

There are several types of activation functions, such as tanh, sigmoid, or ReLu, which are used to
classify output variables. However, ReLu is a widely used activation function, because of its capability
to reduce the exploding/vanishing gradient problem.

Tan : f (x) = tan h(x)

Sigmoid : f (x) =
1

1 + e−x

ReLu : f (x) = max(0, x)

2.2.3. Max Pooling

A Max pooling layer is used to reduce the size of a feature. The value of the stride is selected
according to the maximum value/average value (Figure 3). The maximum/average value is taken by
the stride to generate a matrix. However, the output size of the layer is smaller than the previous layer.
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2.2.4. Fully Connected Layer

The neuron of the previous layer i.e., the max-pooling layer is connected to each and every neuron in
this layer. The output layer of the MLP will have m(l−i)

1 outputs. In the output neurons, i denotes the
number of the layer in the MLP (Figure 4).
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If l− 1 is a fully connected layer;

y(l)i = f
(
z(l)i

)
with z(l)i =

∑m(l−1)
1

j=1
w(l)

i, j y(l−1)
i (3)

2.3. Retinal Image Processing

The retinal vessel structure is compounded, and there are always immense differences between
the vessels in various local areas in terms of size, shape, and intensity [14]. Thus, it is very difficult
to build a model that can explain the compounded vessel structure. Some features are similar in
shape and intensity with vessels (e.g., striped hemorrhage). Moreover, micro-vessels are very thin,
and the width of the vessels varies (from one to several pixels), depending on the sizes and image
resolutions. Therefore, it is challenging to differentiate retinal vessels from other similar features or
noises. Multiple methods that were developed using vector geometry, image filters, and machine
learning techniques have been used to generate the low-level feature vectors, which can detect the
vessels [15,16]. The performance of these models sometimes relied on high-quality image features
or heuristic presumptions. However, these traditional methods did not utilize generalized learning
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patterns to create feature vectors. Recently, deep learning algorithms have been used in retinal vessel
segmentation, due to their ability to higher-level abstractions from diverse data by using multiple
layers. Retinal vessel segmentation is conducted through pixel-wise processing. Vessel segmentation
is considered to b a pixel-wise binary classification problem (vessel pixel versus non-vessel pixel).
The CNN model with multiple layers differentiates images by analyzing them pixel by pixel, without
considering the whole structure of the retinal vasculature [17]. The CNN model also combines
multi-level features to provide higher segmentation performance. It can produce a vessel probability
map while using the same size retinal images and a single forward propagation process.

3. Methods

3.1. Research Design

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), which is
based on the Cochrane’s Handbook for Systematic Reviews, was used to conduct the current
study [18,19]. A review of the written protocol was drafted (Supplementary Table S1). The process of
this study is given below:

3.2. Search Methods for Identification of Studies

3.2.1. Electronic Database Search

We systematically searched in the widely used search engines, namely EMBASE, PubMed, Google
Scholar, Scopus, and Web of Science, to obtain potentially relevant studies that were published between
1 January 2000 and 15 January 2020, using the most appropriate free keywords (“Retinal vessel
segmentation” or “Retinal blood segmentation” and (“Deep learning” or “DL” or “Convolutional
neural network” or “CNN”, or “Deep neural network”, or “Automated technique”, or “Artificial
intelligence”) (Figure 5).
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3.2.2. Searching for Other Sources

We also carefully searched the bibliography of obtained studies that we deemed to be eligible and
relevant previous review studies for additional study inclusion.
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3.3. Eligibility Criteria

Eligibility was restricted to studies that examined the performance of DL algorithms for retinal
vessel segmentation while using digital images. Studies were included if they fulfilled the following
inclusion criteria: (1) published in English, (2) provided an outcome of DL algorithms and retinal
vessel segmentation, (3) provided information on any of the evaluation metrics, such as accuracy, the
area under receiver operating curve, sensitivity, or specificity, (4) provided clear information about the
image database and the number of images, (5) provided a clear definition of retinal vessel segmentation,
and (6) clearly described the DL algorithms and process used in the retinal vessel segmentation.

Studies were excluded if they were published in the form of a review, editorial, research letter,
letter to editor, or short communication.

3.4. Selection Process

Two authors (MMI, TNP) independently screened all of the titles and abstracts of previously
obtained studies for inclusion in our systematic review and meta-analysis. They selected relevant
studies that are based on the predefined selection criteria. Any disagreement at this stage was resolved
by discussion with a prior agreement; any unsettled conflict was finally settled by discussion with the
chief investigator (YC, L).

The same two authors used data collection forms to extract the relevant information from the
previously obtained studies. MMI and TNP then assessed the obtained studies for duplication by
comparing the publication date, author name, journal name, and sample sizes. Any duplicated study
was excluded.

3.5. Data Extraction

The primary outcome measures were AUROC, sensitivity, and specificity of the performance of
the DL algorithms for retinal vessel segmentation. We also recorded the total number of images used
in the training and testing set. We also recorded data regarding the true positive, true negative, false
positive, and false negative rate. Other data of interest included general information: author name,
publication year, location, sensitivity, specificity, accuracy, AUROC, DL model, camera information,
image pixels, and database.

3.6. Assessment of Bias Risk

Systematic reviews with meta-analysis of diagnostic studies might have heterogeneous findings
due to differences in their study design [20]. Therefore, MMI and TNP independently utilized the
Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool for assessing the quality of
the included diagnostic studies. The QUADAS-2 scale [21] comprises four domains: patient selection,
index test, reference standard, and flow and timing. The first three domains are used for evaluating
the risk of bias in terms of concerns regarding applicability. The overall risk of bias was categorized
into three groups (low, high, and unclear risk bias) (Supplementary Table S2).

3.7. Statistical Analysis

The Meta-Disc (Version: 1.4, U. de Bioestadística, Madrid (España)) software was used to calculate
the evaluation metrics, such as AUROC, sensitivity, specificity, and diagnostic odds ratio. The Meta-Disc
was used to (a) perform statistical pooling from each individual study, (b) assess the homogeneity
with a variety of statistics, including chi-square and I-squared. Six evaluation criteria were developed,
including the area under the ROC (AUROC) curve, sensitivity (SN), specificity (SP), positive likelihood
ratio (LR+), negative likelihood ratio (LR−), and diagnostic odds ratio.

The value of the AUROC curve ≥90, <0.90, <0.80, <0.70, and <0.60 were considered to be excellent,
good, fair, poor, and failed, respectively. An I2 value was calculated to assess the statistical heterogeneity
among the included studies. An I2 value of 0∼25%, 25∼50%, 50∼75%, and >75% were considered
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as very low, low, medium, and high heterogeneity, respectively [7]. The value of I2 was computed,
as follows:

I2 =
100%× (Q− d. f )

Q
(4)

Here, Q = Cochrane’s heterogeneity statistic and d f = degree of freedom. Negative values of I2

are considered as zero; the I2 value is between 0% (no observed heterogeneity) and 100% (maximum
heterogeneity). It allows for calculating the AUC and Q* index, along with their standard errors.

The SE, SP, LR+, LR−, and diagnostic odds ratio are defined, as follows:

SE =
TP

TP + FN
(5)

SP =
TN

TN + FP
(6)

where TP = Vessel pixels classified correctly, FN = Vessel pixels misclassified as non-vessel pixels,
TN = Non-vessel pixels classified correctly, and FP = Non-vessel pixels misclassified as vessel pixels.
The diagnostic odds ratio (DOR) was also computed for assessing how much greater the odds of
having DR are for the people with a positive test result than for the people with a negative test result.
DOR is calculated by the following equation,

DOR =
Positive likelihood ratio (LR+)

Negative likelihood ratio (LR−)
=

TP.TN
FN.FP

. (7)

The likelihood ratios were calculated to express how much more frequent the respective finding is
among the individuals with DR than among the individuals without DR.

LR+ =
SE

1− SP
(8)

LR− =
(1− SE)

SP
(9)

The pooled AUROC was plotted with the SE versus (1 − SP) by varying the threshold. The perfect
classifier achieved an AUC value that was equal to 1.

4. Results

4.1. Study Screening

Our initial studies search of the five search engines yielded 2637 studies. 2520 studies were
excluded because of duplication, and 82 out of 117 studies were excluded after reviewing the titles and
abstracts that were based on our pre-specified inclusion criteria. We then reviewed the remaining 35
full-text studies and checked their reference lists for further relevant studies. However, we did not
find any additional potential study. Three more studies were excluded for insufficient data, and one
study was excluded because it was a review. Consequently, we included the remaining 31 studies for
this systematic review and meta-analysis [11–13,22–49]. Figure 6 presents the flow diagram of the
systematic studies search.
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4.2. Study Characteristics

Table 1 presents a total of 31 studies that evaluated the performance of DL algorithms for retinal
vessel segmentation. The publication years ranged from 2015 to 2019. All of the studies used DL
algorithms, like CNN, MResU-Net, or U-Net, for retinal vessel segmentation. The range of accuracy
and AUROC was between 0.85 and 0.99. Seven types of publicly available databases, such as DRIVE,
STARE, CHASEDB1, HRF, TONGREN, DRIONS, and REVIEW, were used in their studies (Table 2).
The REVIEW database only had 16 images and the DRIONS database had a maximum number of 110
images. Each image had pixel-level vessel annotation provided by experts, and ground truth was used
for image annotation (Figure 7).
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Table 1. Characteristic of included studies.

Author Year Model Dataset SN/SP Accuracy AUROC

Samuel [22] 2019 CNN
DRIVE 0.82/0.97 0.96 0.98
STARE 0.89/0.97 0.96 0.99

HRF 0.86/0.86 0.85 0.96

Jebaseeli [23] 2019 TPCNN

DRIVE 0.80/0.99 0.98 -
STARE 0.80/0.99 0.99 -

REVIEW 0.80/0.98 0.99 -
HRF 0.80/0.99 0.98 -

DRIONS 0.80/0.99 0.99 -

Li [24] 2019 MResU-Net
DRIVE 0.79/0.97 - 0.97
STARE 0.81/0.97 - 0.98

Hu [25] 2019 S-UNet
DRIVE 0.83/0.97 0.95 0.98

CHASEDB1 0.80/0.98 0.96 0.98
TONGREN 0.78/0.98 0.96 0.98

Dharmawan [26] 2019 Hybrid U-Net
DRIVE 0.83/0.97 - 0.97
STARE 0.79/0.98 - 0.98

HRF 0.81/0.97 - 0.98

Jin [27] 2019 CNN
DRIVE 0.73/0.98 0.96 0.97
STARE 0.80/0.98 0.96 0.98

Guo [28] 2019 BTS-DSN
DRIVE 0.78/0.98 0.95 0.98
STARE 0.82/0.98 0.96 0.98

CHASEDB1 0.78/0.98 0.96 0.98

Leopold [29] 2019 PixelBNN
DRIVE 0.69/0.95 0.91 0.82
STARE 0.64/0.94 0.90 0.79

CHASEDB1 0.86/0.89 0.89 0.87

Lin [30] 2018 CNN
DRIVE 0.76/- 0.95 -
STARE 0.74/- 0.96 -

CHASEDB1 0.78/- 0.95 -

Chudzik 2018 CNN
DRIVE 0.78/0.97 - 0.96
STARE 0.82/0.98 - 0.98

Jiang [31] 2018 CNN

DRIVE 0.75/0.98 0.96 0.98
STARE 0.83/0.98 0.97 0.99

CHASEDB1 0.86/0.98 0.96 0.98
HRF 0.80/0.80 0.96 0.97

Sekou [32] 2018 CNN DRIVE 0.76/0.98 0.95 0.98

Hajabdollahi [33] 2018 CNN STARE 0.78/0.97 0.96 -

Yan [34] 2018 CNN
DRIVE 0.76/0.98 0.95 0.97
STARE 0.77/0.98 0.96 0.98

CHASEDB1 0.76/0.96 0.94 0.96

Guo [35] 2018 MDCNN
DRIVE 0.78/0.97 0.95 0.97
STARE - - -

Oliveira [36] 2018 CNN
DRIVE 0.80/0.98 0.95 0.98
STARE 0.83/0.98 0.96 0.99

CHASEDB1 0.77/0.98 0.96 0.98

Soomro [37] 2018 CNN
DRIVE 0.73/0.95 0.94 0.84
STARE 0.74/0.96 0.94 0.85

Tan [38] 2017 CNN DRIVE 0.75/0.96 - -

Mo [39] 2017 CNN
DRIVE 0.77/0.97 0.95 0.97
STARE 0.81/0.98 0.96 0.98

CHASEDB1 0.76/0.98 0.95 0.98
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Table 1. Cont.

Author Year Model Dataset SN/SP Accuracy AUROC

Zhou [40] 2017 CNN

DRIVE 0.80/0.96 0.94 -
STARE 0.80/0.97 0.95 -

CHASEDB1 0.75/0.97 0.95 -
HRF 0.80/0.96 0.95 -

Dasgupta [13] 2017 CNN DRIVE - 0.95 0.97

Şengür [41] 2017 CNN DRIVE - 0.91 0.96

Orlando [42] 2016 CNN

DRIVE 0.78/0.96 0.95
STARE 0.76/0.97 -

CHASEDB1 0.72/0.97 0.95
HRF 0.78/0.95 0.93

Yao [43] 2016 CNN DRIVE 0.77/0.96 0.93 -

Li [44] 2016 CNN
DRIVE 0.75/0.98 0.95 0.97
STARE 0.77/0.98 0.96 0.98

CHASEDB1 0.75/0.97 0.95 0.97

Maji [45] 2016 CNN DRIVE - 0.94 -

Lahiri [46] 2016 CNN DRIVE - 0.95 0.95

Liskowski [47] 2016 CNN
DRIVE 0.75/0.98 0.95 0.97
STARE 0.81/0.98 0.96 0.98

Fu [48] 2016 CNN
DRIVE 0.72/- 0.94 -
STARE 0.71/- 0.95 -

Fu [11] 2016
CNN + CRF

layer

DRIVE 0.76/- 0.95 -
STARE 0.74/- 0.95 -

CHASEDB1 0.71/- 0.94 -

Melinscak [12] 2015 CNN DRIVE 0.72/0.97 0.94 0.97
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Table 2. Description of databases.

Dataset Number of Image Description Camera Resolution
(Pixel)

Dataset
Partition

DRIVE 40

Dataset was collected from 400
diabetic patients aged between 25

and 90 years. 40 photographs were
randomly selected, 33 did not show
any sign of DR, and 7 showed signs

of mild early DR.
Training set: Single manual

segmentation
Testing set: Two manual

segmentation

Canon CR5 nonmydriatic
3CCD camera with a 45◦

field of view (FOV)
565 × 584

Yes
Training: 20
Testing: 20

STARE 20

Images were collected from DR,
PDR, ASR, HTR, etc. patients. Each

image has pixel-level vessel
annotation provided by two experts.
Performance is computed with the
segmentation of the first observer as

ground truth.

TopCon TRV-50 fundus
camera with a 35◦ FOV 700 × 605 No

CHASE_DB1 28

Subset of retinal images of
multiethnic children from the Child

Heart and Healthy Study in
England. (https://blogs.kingston.ac.

uk/retinal/chasedb1/)

Nidek NM-200-D fundus
camera with a 30◦ FOV 1280 × 960

Yes
Training: 20

Testing: 8

HRF 45

Data were collected from 15 healthy
patients, 15 glaucomatous patients,
and 15 diabetic retinopathy patients
separately. It contains a binary gold

standard vessel segmentation
images that are determined by a
group of experts (experience in

retinal images analysis).

Canon CR-1 fundus
camera with a field of view

of 45◦ and different
acquisition setting

500 × 2500 No

TONGRE 30

Images collected from 30 people at
the Tongren Beijing Hospital, where

five of these images show a
pathological pattern (glaucoma).

NR 1880 × 281
Yes

Training: 15
Test: 15

DRIONS 110

Dataset contains high resolution
images of blood vessels, 25 images

were from patients with chronic
glaucoma while the remaining 85
images were from hypertensive

retinopathy patients.

Analogical fundus camera
approximately centered on

the ONH
600 × 400

Yes
Training: 60

Test: 50

REVIEW 16

The dataset includes retinal images
with 193 vessel segments,
demonstrating a variety of

pathologies, and vessel types (8
high-resolution, 4 vascular diseases,
2 central light reflex, 2 kickpoint). It
also contains 5066 manually marked

profiles. It has been marked by
three observers.

NR 1360 × 1024 to
3584 × 2438 No

DRIVE = The Digital Retinal Images for Vessel Extraction database; STARE = The Structured Analysis of the Retina
database; CHASE_DB1 = The Child Heart and Health Study in England database; HRF = High-Resolution Fundus;
REVIEW = Retinal Vessel Image set for Estimation of Widths, DR = Diabetic retinopathy, PDR = Proliferative
diabetic retinopathy, ASR = Arteriosclerotic Retinopathy, HTR = Hypertensive Retinopathy.

4.3. Deep Learning Performance in Retinal Vessel Segmentation

The summary estimate for the retinal vessel segmentation sensitivity of DL systems was 0.77 (95%
CI: 0.77–0.77) and the specificity was 0.97 (95%CI, 0.97–0.97) based on the 23 studies that utilized the
DRIVE data set (Table 3). The summarized AUROC was 0.96 (Figure 8).

https://blogs.kingston.ac.uk/retinal/chasedb1/
https://blogs.kingston.ac.uk/retinal/chasedb1/
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Table 3. Summary Estimates of DL performance in retinal vessel segmentation.

SE with 95% CI SP with 95% CI LR+ with 95% CI LR− with 95% CI DOR with 95% CI

DRIVE
Human experts 0.77 0.97 NR NR NR

DL * 0.77 (0.77–0.77) 0.97 (0.97–0.97) 28.19 (24.21–32.82) 0.23 (0.22–0.25) 120.57 (99.66–145.86)

STARE
Human experts 0.89 0.93 NR NR NR

DL * 0.79 (0.79–0.79) 0.97 (0.97–0.97) 31.02 (30.77–31.28) 0.21 (0.21–0.21) 136.67 (135.42–137.0)

CHASE_DB1
Human experts 0.83 0.97 NR NR NR

DL * 0.78 (0.78–0.78) 0.97 (0.97–0.97) 22.97 (22.75–23.20) 0.23 (0.23–0.23) 109.27 (108.0–110.56)

HRF
Human experts NR NR NR NR NR

DL * 0.81 (0.81–0.81) 0.92 (0.92–0.92) 10.32 (10.26–10.38) 0.21 (0.21–0.21) 51.75 (51.35–52.16)

* Note: DL = Deep Learning, NR = Not Reported, SE = Sensitivity, SP = Specificity, LR = Likelihood Ratio,
CI = Confidence Interval, * = Summarized.
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(C) CHASE_DB1, and (D) HRF.

The 18 studies that used the STARE data sets had significantly higher sensitivity but the same
specificity as the DRIVE data set. The summarized AUROC was 0.97, and the pooled sensitivity and
specificity were 0.79 (95% CI: 0.79–0.79) and 0.97 (95%CI, 0.97–0.97), respectively (Figure 9). The 10
studies that used the CHASEDB1 data set for evaluating the performance of DL in retinal vessel
segmentation had a summarized AUROC of 0.96, and the pooled sensitivity and specificity were 0.78
(95%CI, 0.78–0.78) and 0.97 (95%CI, 0.97–0.97), respectively (Figure 10). Furthermore, six studies that
used the HRF data set to assess the performance of DL in retinal vessel segmentation had a summarized
AUROC of 0.94, and the pooled sensitivity and specificity were 0.81 (95%CI, 0.81–0.81) and 0.92 (95%CI,
0.92–0.92) (Table 3), respectively (Supplementary Figure F1-F4).
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4.4. Performance Comparison for Models in the Different Databases

Table 4 provides the performance of the unsupervised models that were proposed in the literature
in relations of the typical incoherency measurements.
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Table 4. Performance comparison with unsupervised methods for retinal vessel segmentation.

Methods SN SP ACC AUC

DRIVE
Unsupervised

Azzopardi et al. [50] 0.76 0.97 0.94 0.96
Zhang et al. [51] 0.77 0.97 0.94 0.96

Roychowdhury et al. [52] 0.73 0.97 0.94 0.96
STARE

Unsupervised
Azzopardi et al. [50] 0.77 0.97 0.94 0.95

Zhang et al. [51] 0.77 0.97 0.95 0.97
Roychowdhury et al. [52] 0.73 0.98 0.95 0.96

CHASE_DB1
Unsupervised

Azzopardi et al. [50] 0.75 0.95 0.93 0.94
Zhang et al. [51] 0.76 0.96 0.94 0.96

Roychowdhury et al. [52] 0.76 0.95 0.94 9.96

Note: SE = Sensitivity, SP = Specificity, ACC = Accuracy.

5. Discussion

5.1. Principal Findings

This systematic review with meta-analysis assessed the performance of the automated DL
algorithms for retinal vessel segmentation from fundus retinal images. Our key findings are: (a) DL
algorithms showed great performance when they assessed images that were available from four
publicly available databases in terms of sensitivity and specificity; and, (b) the performance of DL
was comparable to that of human experts (Table 3). Our findings suggest that the application of
DL-based tools for retinal vessel segmentation could provide a substitute solution for eye screening,
especially in clinical settings with a limited number of ophthalmologists and a scarcity of resources.
The implementation of AI screening tools in real-world clinical settings can speed up the screening
process, reduce cost, and improve patients care, since the performances of DL-based tools and human
graders were similar.

5.2. Research and Clinical Implications

Automatic segmentation of retinal vessels is one of the most important elements in precision
treatment dealing with huge datasets of retinal images. Manual segmentation is time-consuming
and complex due to its structure and variability across human graders [41,53]. The automatic tool is
clinically effective in segmenting retinal images, and identification might improve accurate diagnosis
by non-retinal experts; therefore, the application of automatic tools to analysis of retinal images could
provide an alternative solution for large-scale fundus images screening, especially in areas with limited
access to ophthalmologic experts [6]. However, the automatic segmentation of retinal images is not an
easy task, and several factors, including light exposure, camera focus, motion artifact, and existing
diseases, can hamper the image quality [54–56]. These potential factors are often responsible for
inhomogeneous image quality and, thus, hamper vessel segmentation. Accordingly, extensive efforts
have been made to segment retinal vessels automatically while using machine learning techniques,
but failed to show superior performance over human graders.

The DL algorithms have shown promising performance comparable to expert segmentation in
fundus images [28,38]. The most unique advantage of DL is the ability to precisely learn and capture
a huge amount of image features with varying hierarchies and locations. It has the great ability to
optimally integrate these features to obtain a desirable finding. The results of our study show that
the DL algorithms were able to segment retinal vessels with performances that were comparable to
that of human experts. The accurate segmentation of retinal vessels assists in making appropriate
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clinical decisions. It will help for screening high-risk patients that need to receive proper treatment,
such as retinopathy, whereas accurate segmentation can guide retinal disease management. DL-based
automatic tools in retinal vessel segmentation could markedly change how retinal disease diagnosis
and management is conducted in the near future. Automatic segmentation of retinal vessels could
become popular in an era where fast, accurate, and low-cost treatment is recommended [40]. It would
be particularly helpful for ophthalmologists who are not trained experts in retinal image identification.
It would also assist experienced eye specialists to make a decision quicker and more accurately. Precise
risk stratification for eye disease treatment, such as glaucoma, DR, would become possible. However,
high quality of the image database is a prerequisite for successfully implementing DL-based automatic
tools into retinal vessel segmentation.

5.3. Strengths and Limitations

Our study has several strengths that need to be addressed. First, this is the first systematic review
and meta-analysis that addressed DL performance in retinal vessels detection. Second, this study
included a total of 31 studies that had used seven different databases to assess the performance of DL.
Our results indicate that DL has immense potential to improve care. Third, we have compared the
DL performance with the performance of human experts and other types of unsupervised methods.
Our study also has some limitations. First, more than two-thirds of the included studies used the
same three databases (namely, DRIVE, STARE, HRF); therefore, we cannot generalize our results as
much as if more databases had been involved in our meta-analysis. However, some studies used the
remaining four databases and achieved similar performances. Second, we did not include any study
that evaluated a machine learning model to assess retinal vessels detection. Third, inherited retinal
degeneration diseases are genetically heterogeneous. Therefore, changes in retinal vessels in fundus
images could be different between patients with the same retinal diseases, and the performance of deep
learning could vary. However, a robust design and a trained CNN model or novel post-processing can
solve this problem.

6. Conclusions

Our current study findings show that DL algorithms achieved clinically acceptable performances
in retinal vessel segmentation. The implementation of DL-based tools in retinal vessel segmentation
can reduce manpower, the cost of retinal vessel screening, and resolve the problem of intra-grader and
inter-grader variability. In the near future, DL techniques may play a significant role in determining
ophthalmological diseases and predicting the prognosis for eye disease patients in an individualized
manner. More careful, comprehensive designs and planning are needed in order to expedite this process.
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