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The post-translational hydroxylation of prolyl and lysyl resi-
dues, as catalyzed by 2-oxoglutarate (2OG)-dependent oxyge-
nases, was first identified in collagen biosynthesis. 2OG oxyge-
nases also catalyze prolyl and asparaginyl hydroxylation of the
hypoxia-inducible factors that play important roles in the adapt-
ive response to hypoxia. Subsequently, they have been shown to
catalyze N-demethylation (via hydroxylation) of N�-methylated
histone lysyl residues, as well as hydroxylation of multiple other
residues. Recent work has identified roles for 2OG oxygenases in
the modification of translation-associated proteins, which in some
cases appears to be conserved from microorganisms through to
humans. Here we give an overview of protein hydroxylation cata-
lyzed by 2OG oxygenases, focusing on recent discoveries.

The ferrous iron and 2-oxoglutarate (2OG)4-dependent oxy-
genases were first identified as playing roles in the post-trans-
lational modification of collagen, where they catalyze C-3 and
C-4 prolyl and C-5 lysyl hydroxylations (1–3). Subsequently,
2OG oxygenases and related enzymes have been found to have
multiple other biological roles and, at least in plants and
microbes, to catalyze a remarkably wide range of oxidative reac-
tions (4). In animals, the identified reactions catalyzed by 2OG
oxygenases are at present limited to hydroxylation (sometimes
also including sequential oxidation of the resulting alcohols
into aldehydes and acids) and demethylation of N-methylated
groups in proteins and nucleic acids, which likely occurs via

initial hydroxylation of the methyl group. Although the addi-
tion and removal of hydroxyl and methyl groups to proteins
represent small and chemically neutral post-translational mod-
ifications, they can in some cases have profound biological
effects. Indeed, several 2OG oxygenases catalyzing protein hy-
droxylation are current chemotherapeutic targets (5).

In addition to the roles associated with protein modification,
2OG oxygenases function in fatty acid metabolism, carnitine
biosynthesis, and phytanic acid catabolism, as well as in DNA
and mRNA repair, regulation, and modification (6). 2OG oxy-
genases employ a conserved mechanism in which sequential
binding of 2OG to the active site is followed by that of substrate
and then oxygen (4, 7). Oxidative decarboxylation of 2OG
yields a ferryl intermediate (FeIV�O), which reacts with the
substrate to effect 2-electron oxidation, normally hydroxyl-
ation (Fig. 1A). N-Methyl demethylation proceeds via initial
hydroxylation of the methyl group to form a hemiaminal inter-
mediate, which fragments to give formaldehyde and the dem-
ethylated product.

Extensive structural studies have revealed that the catalytic
domains of 2OG oxygenases have a conserved core fold com-
prising a distorted double-stranded �-helix (also known as a
jelly-roll, cupin, or Jumonji-C (JmjC) fold) that supports con-
served binding motifs for ferrous iron and 2OG (Fig. 1B) (8).
The iron is normally complexed by three protein residues com-
prising an HX(D/E) . . . H motif, although there are variations
on this motif, including in potential “pseudo-enzymes.” The
mode of 2OG binding involves electrostatic interactions
between the C-5 carboxylate of 2OG and a basic lysyl or arginyl
residue and normally one alcohol side chain (9). The 2OG binds
to the iron in a bidentate manner, leaving one site free for
water/oxygen binding. Substrate binding promotes release of
the water from the metal, thus promoting oxygen binding (4).
There is greater variation in the mode of substrate binding
when compared with those of Fe(II) or 2OG; substrate binding
can induce substantial conformational changes, which may be
particularly important in the case of macromolecular sub-
strates such as proteins. As yet, there are few studies on the
conformational changes involved in binding of full-length pro-
tein substrates by 2OG oxygenases; a recent study of a prokary-
otic prolyl hydroxylase in complex with its substrate illustrates
the potential for large conformational changes in both 2OG
oxygenase and substrate during binding (10). Further, most
2OG oxygenases acting on proteins have additional “non-cata-
lytic” binding domains. Thus, at least in some cases, 2OG pro-
tein hydroxylases may be best viewed as modulating protein-
protein interactions in a manner in which the catalytic
modification plays a role, but which is not necessarily a sole end
in itself.

The discovery in 2001 that hydroxylation can play physiolog-
ically relevant roles in transcriptional regulation has stimulated
work on the function of the �60 or so human 2OG oxygenases
(11–13). This work has identified new roles for these enzymes
in protein and nucleic acid modifications and revealed that they
likely play roles in all stages of protein biosynthesis in animals,
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i.e. at transcriptional, splicing, and translational levels. Protein hy-
droxylations catalyzed by human 2OG oxygenases are summa-
rized in Table 1. It should be noted that there are other examples of
protein hydroxylases beyond the scope of this review that do not
use 2OG as a substrate and that are structurally unrelated to the
2OG oxygenases (see e.g. Ref. 14). The main purpose of this mini-
review is to introduce the non-expert to the expanding role of 2OG
oxygenases, focusing on protein oxidation; where appropriate we
direct the reader to specialist reviews.

Collagen Hydroxylases

There are three types of 2OG oxygenase with roles in colla-
gen biosynthesis: the C-3 and C-4 prolyl hydroxylases and the
C-5 lysyl hydroxylases, all of which catalyze modifications of
the pro-collagen polypeptide in the endoplasmic reticulum
(1–3). C-4 prolyl hydroxylation of multiple residues in the

Y-position of Gly-X-Y motifs in collagen stabilizes the collagen
triple helical fold (15). C-3 prolyl hydroxylation is less abundant
in collagen and occurs subsequent to C-4 prolyl hydroxylation
(16). The molecular roles of collagen C-3 prolyl hydroxylation
are unclear, although it is proposed to cause local (de)stabiliza-
tion of the triple helix, thus enabling cross-linking (17). Never-
theless, it is clearly of biological importance as evidenced by
animal studies and diseases associated with a reduced level of
such hydroxylation (18). Like C-4 prolyl hydroxylation, colla-
gen C-5 lysyl hydroxylation occurs at the Y-position of Gly-X-Y
motifs (19). Lysyl hydroxylation enables glycosylation (20) and,
after further oxidation of the N�-amino group by an amine oxi-
dase, cross-linking (21, 22).

The roles of 2OG oxygenases in extracellular protein modi-
fications are likely not fully defined. Recent work has identified
a new type of cross-link involving reaction of C-5 hydroxylysine

FIGURE 1. Outline mechanism and characteristic fold of 2OG oxygenases. A, within the active site, Fe(II) (orange) is bound in an octahedral manner by an
HX(D/E) . . . H facial triad. The remaining coordination sites are initially occupied by water molecules, two of which are displaced upon binding of 2OG. Binding
of the substrate (purple) displaces the final water molecule, creating an open coordination site for oxygen (red) to bind. Oxidative decarboxylation of 2OG
generates succinate and CO2 and yields a ferryl intermediate (FeIV�O) that reacts with the substrate to form the hydroxylated product. Note that N-methyl
demethylation (shown in gray) occurs via hydroxylation of the methyl group to form a hemiaminal intermediate that subsequently collapses to yield formal-
dehyde and the demethylated product. B, view from a crystal structure of a PHD in complex with a HIF-1� fragment peptide substrate (Protein Data Bank ID:
3HQR). The core double-stranded �-helix fold (salmon) is conserved in 2OG oxygenases and consists of eight �-strands that form two anti-parallel �-sheets. The
HIF-1� peptide (purple) binds such that the side chain of Pro 564 is oriented toward the metal within the active site. A magnified view of the active site (right)
highlights residues involved in binding Fe(II) (yellow) and 2OG (light blue). Note that in this structure, N-oxalylglycine (NOG) and Mn(II) replace 2OG and Fe(II),
respectively.
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and methionine residues on adjacent proteins to give a sulfili-
mine (-S�N-) link (23). The primary role of, and apparent
selectivity for hydroxylysine in this reaction is unclear, but C-5
hydroxylation may stabilize the sulfilimine link. Overall, the
work on collagen hydroxylases is illustrative of the challenges of
functional assignment of 2OG oxygenases. The link between
the biochemical and biological roles of C-4 prolyl hydroxylation
in stabilizing the collagen triple helix is unusually clear cut; in
the case of C-3 prolyl and C-5 lysyl hydroxylation, the links
between biochemistry and biology are much less clear.

EGF-like Domain Hydroxylation

The first evidence that non-collagen/collagen-like proteins
undergo hydroxylation came with the identification of C-3 hy-
droxylation of aspartyl and asparaginyl residues in EGF-like
domains (24, 25). This work indicated that multiple proteins
might be hydroxylated including coagulation factors (VII, IX,
and X), protein C, complementation factors, thrombomodulin,
the low density lipoprotein receptor, and Notch ligands. These
hydroxylations are catalyzed by aspartyl/asparaginyl �-hydrox-
ylase (ASPH), which localizes to the endoplasmic reticulum
(26). Emerging structural results support the proposal that
ASPH (of which there are �12 human splice variants) has an
unusual active site in that it only has two protein-bound metal
ligands, as it lacks the D/E residue of the typical HX(D/E) . . . H
iron binding motif (27). The ASPH work is important in that it

revealed that a single 2OG oxygenase can catalyze the hydrox-
ylation of multiple protein substrates; such promiscuity is also
manifested by at least one other human/animal 2OG oxyge-
nase, factor inhibiting HIF (FIH) (see below). Like many of the
FIH-catalyzed hydroxylations, the role of ASPH-catalyzed hy-
droxylation is unclear. Some of the ASPH-hydroxylated aspar-
tyl residues are involved in calcium binding, although NMR
studies indicate that C-3 aspartyl hydroxylation does not sub-
stantially alter calcium binding (28). Despite an undefined bio-
chemical role for ASPH-catalyzed hydroxylation, mutations in
ASPH are associated with severe facial abnormalities (27), and
ASPH overexpression is linked to malignant transformation
and poor prognosis in human cancers (29). ASPH knock-out
mice display severe developmental phenotypes including palate
defects and syndactyly; some of this may relate to ASPH catal-
ysis in Notch-mediated signaling, although how is unclear (30).

2OG Oxygenases in Hypoxia Sensing

A breakthrough in functional assignment of the human 2OG
oxygenases, especially with respect to roles in signaling, came
with the identification of two types of 2OG oxygenase involved
in the hypoxic response (11, 12, 31–33). The hypoxic response
in animals involves up-regulation of the �-subunit of the �,�-
hypoxia-inducible transcription factor (HIF), which regulates
the expression of hundreds of genes, the precise set of which is
context-dependent (34). The intact �,�-HIF transcription fac-

TABLE 1
Human 2OG oxygenases catalyzing protein hydroxylation

* Other hydroxylation substrates for the PHDs have been reviewed elsewhere (58).
** Controversial functional assignment.
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tor binds to hypoxic response elements associated with target
genes, as first shown by work with the erythropoietin (EPO)
promoter (35). HIF target genes include those that promote
increased oxygen supply to hypoxic tissues (e.g. EPO and VEGF)
and those enabling a metabolic shift toward aerobic glycolysis
(Warburg effect), which is proposed to conserve oxygen use
(36).

2OG oxygenases play key roles in the hypoxia-sensing mech-
anism of the HIF system. In humans, three prolyl hydroxylase
domain (PHD) enzymes catalyze C-4 prolyl hydroxylation in
two regions of HIF-� isoforms: the N- and C-terminal oxygen-
dependent degradation domains (11, 12, 31, 37). This modifi-
cation substantially increases (�1000-fold) the affinity of
HIF-� for the von Hippel-Lindau protein (38), which is the
substrate-targeting component of an E3 ubiquitin ligase com-
plex, and thus increases signaling for HIF-� degradation (39,
40). HIF-� prolyl hydroxylation and degradation are highly effi-
cient, such that in normal (normoxic) cells, HIF-� is barely
detectable. As oxygen levels decrease, PHD activity decreases,
thus enabling HIF-� levels to rise and the hypoxic response to
be “switched on.” There is substantial evidence arising from
genetic and biochemical studies that the PHDs act as important
hypoxia sensors for the HIF system (41). PHD activity is some-
times limited by iron and 2OG availability, at least in an in vitro
context (42). Nonetheless, biochemical and cellular studies
indicate that PHD2 (the most important of the human PHDs) is
unusually sensitive to changes in oxygen availability, consistent
with its proposed role as a hypoxia/oxygen sensor (43– 45).

A second type of 2OG oxygenase, FIH also acts on HIF-�
subunits (32, 33). FIH catalyzes C-3 hydroxylation of an aspar-
aginyl residue in the C-terminal transactivation domain of
HIF-�, a modification that substantially reduces the otherwise
tight binding of HIF-� to the CREB-binding protein (CBP)/
p300 transcriptional co-activator proteins (13). Thus, in con-
trast to PHD-catalyzed HIF-� hydroxylation, which “makes” a
protein-protein interaction, that of FIH “breaks” a protein-pro-
tein interaction. Interestingly, isolated recombinant FIH is less
sensitive than PHD2 to oxygen availability, a property that is
reflected in the cellular activities of FIH and the PHDs, with the
former being more active under hypoxic conditions (46, 47).
Thus, the PHDs are likely more important than FIH in terms of
their hypoxia-sensing capacity; this property has, together with
the discovery of alternative substrates for FIH (see below), led
to the PHDs being the preferred target for pharmaceutical acti-
vation of HIF-mediated transcription. PHD inhibitors are cur-
rently in late stage clinical trials for the treatment of anemia via
up-regulation of EPO (48). PHD-like enzymes have been iden-
tified in early animals; in Dictyostelium discoideum (which does
not contain HIF), a PHD homologue catalyzes the C-4 prolyl
hydroxylation of the SKP1 subunit of an E3 ligase, a modifica-
tion that enables subsequent glycosylation and that is proposed
to act in a hypoxia-sensing capacity (49). The recent identifica-
tion of a PHD homologue in Pseudomonas spp. suggests pro-
karyotic origins for the animal prolyl hydroxylases (10).

2OG oxygenases are classed into subfamilies based on
sequence similarities within their double-stranded �-helix
domain (50). The PHDs are part of the same structural subfam-
ily as the collagen prolyl hydroxylases, whereas FIH is a member

of the JmjC subfamily (51). Notably, FIH was the first JmjC
protein shown to have activity as a 2OG oxygenase (33). The
distinct biochemical properties of FIH and the PHDs are
reflected in their structures (52–56). Unlike PHD2, FIH is
dimeric and binds 2OG in a different manner and in a larger
pocket than the PHDs. Conformational changes are induced in
substrate binding by both FIH and the PHDs, although current
evidence indicates that they are more profound for the PHDs.

Alternative substrates for both the PHDs and FIH have been
reported (57, 58), although in neither case has the physiological
relevance of the hydroxylation of these potential alternative
substrates been established. Here we limit description to FIH
because of the range of alternative substrates described. As sup-
ported by studies in animals and cells, FIH has been shown to
accept multiple substrates from the ankyrin repeat domain
(ARD) structural family, including Notch, transcription factors,
ion channels, and cytoskeletal ARD proteins (57). Protein anal-
ysis reveals that FIH interacts with multiple ARD proteins, not
all of which undergo hydroxylation (59, 60). In contrast to
HIF-� hydroxylation or collagen C-4 prolyl hydroxylation,
ARD hydroxylation is inefficient, ranging from 0 to 80% (61).
The role of FIH-catalyzed ARD hydroxylation is unclear; in
some cases it can stabilize the ARD fold, but the effect is much
less than, for example, that of C-4 prolyl hydroxylation on the
stability of the collagen triple helix (60). It is proposed that
competition between ARDs and HIF-� for FIH can modulate
the role of FIH in the hypoxic response (62). Because hydroxy-
lated ARDs bind less tightly to FIH than unhydroxylated ARDs,
ARD hydroxylation has the potential to enable a “memory”
effect of hypoxic events (63). Nonetheless, unlike HIF-� prolyl
and asparaginyl hydroxylations, as yet no “switch-like” roles for
ARD hydroxylation have been identified, as is the case for most
2OG oxygenase-catalyzed protein hydroxylations. From a bio-
chemical perspective, FIH-catalyzed ARD hydroxylation is
interesting not only because the canonical ARD structure must
unfold in order for FIH to catalyze hydroxylation (62), but also
because FIH can also hydroxylate histidinyl (as in tankyrase-2)
and aspartyl (as in AnkyrinR) residues in addition to its nor-
mally preferred asparaginyl residue substrates (64, 65). The
substrate scope of purified recombinant FIH is even wider (66).
Thus, FIH is a highly promiscuous oxygenase, a property likely
shared by some other 2OG oxygenases acting on proteins (see
below).

JmjC Histone Demethylases

Post-translational modifications to the tails of histone pro-
teins play central roles in the regulation of gene expression in
eukaryotes (67). Methylation of the N�-amino group of lysyl
residues, especially in the histone H3 N-terminal tail, is well
established as a regulatory mechanism. Unlike lysine N�-acety-
lation, which is transcriptionally activating, N�-methylation can
be either transcriptionally activating or repressive depending
on the context. Although the evidence for demethylation of
histones goes back decades (68), it is only relatively recently that
the enzymes which catalyze demethylation have been identified
and characterized (69 –71). The JmjC subfamily of 2OG oxyge-
nases comprises the largest identified family of lysine demeth-
ylases (KDMs) with �15 human members, but its members
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were identified after the discovery of the flavin-dependent
lysine-specific demethylases (LSDs (69)). The LSDs apparently
operate via a mechanism analogous to other flavin-dependent
oxidases, which limits their substrate scope to di- and mono-
methylated forms of N�-methylated lysyl residues. In contrast,
the JmjC KDMs work via the consensus 2OG oxygenase mech-
anism to give a hemiaminal intermediate, which likely sponta-
neously collapses to give the demethylated product and form-
aldehyde (72). Evidence for this mechanism comes from the
direct and indirect observation of formaldehyde production
and from the use of substrate analogues, some of which react
with JmjC KDMs to give stable alcohol products (73). It is nota-
ble that the JmjC KDMs can act on methyl groups attached to a
positively charged nitrogen (which must be the case for the
trimethylated state), further illustrating the catalytic potential
of 2OG oxygenases. In contrast, the LSDs are proposed to oper-
ate (at least in terms of the oxidation step) on the neutral form
of their substrates.

Protein N�-lysine methylation is a common modification,
and there is accumulating evidence that JmjC KDMs may act on
non-histone substrates (74). Although the only identified bio-
logically relevant reactions catalyzed by the JmjC KDMs are
demethylations, several studies show that they have the poten-
tial to catalyze other types of dealkylation/other reactions (73),
as is the case with some 2OG oxygenases acting on nucleic
acids. Further, likely all or near all JmjC KDMs have additional
non-catalytic domains that are of major functional relevance
(51). This is beautifully exemplified in the case of PHF8
(KDM7B), where the catalytic JmjC domain is guided to its
histone H3 dimethyl-lysine 9 (K9me2) substrate by the interac-
tion of an adjacent plant homeobox domain, which latches onto
the histone H3 K4me3 modification, as shown by crystallo-
graphic and other biophysical analyses (75). Thus, although
there is evidence that context-dependent methylation/demeth-
ylation events are important regulatory processes in transcrip-
tional regulation, it also seems likely that the kinetics of the
non-covalent protein-protein interactions play equally if not
more important roles, although these are considerably more
difficult to qualify in a cellular context. Indeed, the lack of meth-
ods for qualitatively analyzing demethylation is hindering func-
tional assignments, especially of non-histone substrates. It is
also notable that some JmjC KDMs appear to lack some metal
binding moieties and are likely pseudo-enzymes.

JMJD6

The JmjC subfamily of 2OG oxygenases contains both
hydroxylases, such as FIH, as well as demethylases (51). This
dual functionality has led to some controversy in the literature
regarding functional assignment, which is well illustrated by the
case of JMJD6. JMJD6 (as it is now known) was first assigned as
having a key role in apoptosis, acting as a membrane-associated
phosphatidyl serine receptor (76, 77). However, this assign-
ment now seems unlikely to be correct; JMJD6 is a 2OG oxyge-
nase that predominantly localizes to the nucleus. JMJD6 was
then reported as a 2OG oxygenase acting on N-methylated
arginine residues in histone H3, a result that if correct repre-
sents the first biochemical evidence for direct removal of
arginyl methylation (78). However, subsequent work using

NMR and MS analysis of products formed by purified recom-
binant JMJD6 has shown JMJD6 to be a lysyl C-5 hydroxylase
(79); evidence for such activity was also present in an initial
report of JMJD6 as an arginyl demethylase (78). Conflicting
studies have continued to appear regarding the catalytic activity
of JMJD6, leading to the possibility that it has dual functionality.
Nonetheless, although we are somewhat biased, there is clear
evidence that JMJD6 acts as a lysyl C-5 hydroxylase, interest-
ingly giving the 5S- rather than the 5R- stereochemistry, and
thus contrasting with the pro-collagen lysyl hydroxylases (80)
(Fig. 2). The evidence for demethylation of N-methylated argi-
nyl residues is much weaker, and there is no evidence for JMJD6
acting as a KDM.

The situation with respect to the substrates that JMJD6 acts
on is also complex. JMJD6 can act on histones (as a hydroxylase
and, maybe as an arginyl demethylase), although whether this
activity directly regulates transcription is unclear (81). Recent
work has identified a role for JMJD6 in regulating transcrip-
tional pause release (82); this study also reported supporting
evidence for the controversial histone H4 arginyl demethyla-
tion as reported by Chang et al. (78). JMJD6 has been reported
to interact with, and at least under in vitro conditions, cata-
lyze the hydroxylation of lysyl residues in splicing-associated
proteins, as first shown by work on U2AF65 (79). This led to
the possibility that JMJD6 regulates mRNA splicing, a
hypothesis supported by work with model systems. There is
evidence that JMJD6 can regulate splicing of the VEGF
receptor, potentially in a manner regulated by hypoxia
and/or Fe(II) availability (83).

The JMJD6 story is far from complete; there is evidence that
it accepts multiple splicing-related proteins as substrates and
interacts with others it does not hydroxylate (84). Further, it
interacts with RNA (85) and can undergo auto-hydroxylation
(86), and its localization (and hence likely activity) is regulated
by oligomerization (87). Thus, like FIH, but with an even
greater level of complexity, JMJD6 appears to be promiscuous,
possibly having multiple roles, although some may be more
physiologically relevant than others. Overall, the JMJD6 story
to date illustrates the difficulty in making secure functional
assignments with oxygenases that likely have multiple roles;
such assignments require combined biochemical, cellular, and
whole animal studies.

Ribosomal Oxygenases and JmjC Hydroxylases

A growing body of work suggests that 2OG oxygenases are
widespread regulators of translation. The first evidence for this
came from the discovery of two nucleic acid oxygenases, TYW5
and ALKBH8, that catalyze hydroxylation of bases at the “wob-
ble” position of amino-acyl tRNAs: tRNAPhe and tRNAGly,
respectively (88, 89). Recent studies have built on these findings
and shown that several ribosomal proteins and translation
elongation/release factors are also 2OG oxygenase substrates.
To date, three human 2OG oxygenases: MINA53, NO66, and
OGFOD1, have been assigned as “ribosomal oxygenases”
(ROXs). MINA53 and NO66 catalyze C-3 hydroxylation of his-
tidinyl residues in Rpl27a and Rpl8, respectively (90). Like
JMJD6, they belong to the JmjC subfamily and were originally
assigned as histone demethylases acting on tri- and mono-

MINIREVIEW: Hydroxylation Catalyzed by 2OG Oxygenases

20716 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 290 • NUMBER 34 • AUGUST 21, 2015



methylated lysyl residues in histones H3 and H4. However, bio-
chemical and MS analyses support their assignment as protein
hydroxylases rather than demethylases (90). The side chains of
the target histidinyl residues extend into the ribosome core, and
in the case of Rpl8, toward the peptidyl transferase center.
Although the biological consequences of these hydroxylation
events remain to be defined, an effect on translation is consis-
tent with the cellular roles of MINA53 and NO66 in regulating
growth and proliferation (91, 92).

OGFOD1 catalyzes C-3 prolyl hydroxylation of RPS23, a
modification conserved in eukaryotes ranging from yeasts to
humans (93–95). The hydroxylated prolyl residue is located
within the ribosome decoding center; interestingly, hydrox-
ylation at this position has a profound effect on stop codon
recognition in yeast. Tpa1, the Saccharomyces cerevisiae
OGFOD1 homolog, catalyzes two sequential hydroxylations
on the same prolyl residue to give dihydroxyproline in
Rps23p (94); however, the functional significance of the sec-
ond hydroxylation is unclear. Further work is required to
understand the effects of OGFOD1 on protein synthesis in

human cells, as well as the extent to which these are medi-
ated by RPS23 hydroxylation.

Beyond the hydroxylation of ribosomal proteins, 2OG oxy-
genases influence translation via the hydroxylation of ribo-
some-associated proteins. The eukaryotic release factor eRF1
undergoes lysyl hydroxylation, as catalyzed by JMJD4 (96). In
contrast to JMJD6 and collagen lysyl hydroxylases, JMJD4 cat-
alyzes C-4 lysyl hydroxylation (Fig. 2). eRF1 is involved in trans-
lation termination; it recognizes stop codons as they enter the
ribosomal A site and, together with the GTPase eRF3a, triggers
release of the nascent polypeptide chain and ribosome disas-
sembly. The JMJD4-hydroxylated lysyl residue lies in a con-
served NIKS motif, essential for stop codon recognition;
JMJD4-catalyzed hydroxylation of eRF1 increases translation
termination efficiency (96).

ROXs are not only present in eukaryotes; an Escherichia coli
homologue of MINA53 and NO66, ycfD, catalyzes C-3 hydrox-
ylation of an arginyl residue in ribosomal protein L-16 (90).
L-16 is an essential component of the bacterial ribosome,
required for ribosome assembly, aminoacyl tRNA binding, and

FIGURE 2. Hydroxylations catalyzed by human 2OG oxygenases. Human 2OG oxygenases catalyze the stereoselective hydroxylation of prolyl, lysyl,
asparaginyl, aspartyl, and histidinyl residues in protein substrates; the oxygen atom incorporated into the product is shown in red. Note that the stereochem-
istry of JMJD4-catalyzed hydroxylation is unknown. C-P4Hs, collagen prolyl 4-hydroxylases; C-P3Hs, collagen prolyl 3-hydroxylases; PLODs, pro-collagen lysine
2-oxoglutarate 5-dioxygenase enzymes.
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efficient peptidyl tRNA hydrolysis (97). Depletion of the ycfD
gene in E. coli leads to growth retardation accompanied by a
reduction in global translation rate (90). Crystallographic stud-
ies reveal that ycfD is structurally similar to human JmjC pro-
teins, with a conserved jelly-roll fold as well as motifs for bind-
ing 2OG and Fe(II) (98, 99). This is interesting from an
evolutionary perspective, as it suggests that 2OG oxygenases, in
particular those that catalyze protein hydroxylation, may have
prokaryotic origins. This notion is further supported by the
discovery of a prolyl hydroxylase in Pseudomonas spp. (PPHD),
which is related to (and likely an early ancestor of) the HIF

prolyl hydroxylases (10). PPHD catalyzes prolyl hydroxylation
of the translation elongation factor EF-Tu. Although the func-
tional effect of hydroxylation has yet to be determined, this
work provides evidence to support a conserved role for 2OG
oxygenases in translational regulation.

Taken together, these data suggest that the cellular protein
biosynthesis machinery is a common target for 2OG oxyge-
nase-catalyzed hydroxylation. Further functional characteriza-
tion of the human ROXs will be essential to fully understand
their effects on translation and how these relate to their roles in
cellular growth, proliferation, and cancer.

FIGURE 3. 2OG oxygenases involved in protein synthesis. 2OG oxygenases catalyze hydroxylation and demethylation reactions that regulate transcrip-
tional, post-transcriptional, translational, and post-translational processes. The names of enzymes that catalyze hydroxylation are in bold. ALKBH, alkylated DNA
repair protein alkB homolog; TET1–3, ten-eleven translocation 1–3; FTO, fat mass- and obesity-associated protein; TYW5, tRNA wybutosine-synthesizing protein
5; C-P4Hs, collagen prolyl 4-hydroxylases; C-P3Hs, collagen prolyl 3-hydroxylases; PLODs, pro-collagen lysine 2-oxoglutarate 5-dioxygenase enzymes; P4HTM,
transmembrane prolyl 4-hydroxylase.

MINIREVIEW: Hydroxylation Catalyzed by 2OG Oxygenases

20718 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 290 • NUMBER 34 • AUGUST 21, 2015



Summary and Future Perspectives

The past 15 years have seen major advances in our under-
standing of the extent of 2OG oxygenase-catalyzed modifica-
tions to proteins. We now know that such modifications are
likely common in all eukaryotes and in many prokaryotes, but
not archaea. 2OG oxygenase-catalyzed post-translational mod-
ifications to proteins, along with related modifications to
nucleic acids, are involved in all stages of protein biosynthesis in
animals (Fig. 3). Although controversies remain and much
work is still to be done, one can start to envisage how combined
biochemical and cellular approaches will lead to the assignment
of molecular functions for all human 2OG oxygenases, i.e.
defining the reactions they catalyze and the substrate(s) that
they accept. However, for only a few of the identified modifica-
tions are the cellular roles linked to physiology. Notably, these
include the pioneering discoveries of collagen C-4 prolyl hy-
droxylation, HIF-� prolyl hydroxylation, and in some cases, his-
tone demethylation. Future work, guided by genetic analyses,
can now be focused on this objective.
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