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Abstract

Background

Care-needing older adults and disabled individuals often require handrails for assistance of
movements, such as sit-to-stand movements. Handrails must be set at the appropriate posi-
tion; however, the effects of handrail height on joint movement and center-of-gravity move-
ments during sit-to-stand movement remain unclear. In the present study, we sought to
clarify the effects of handrail height on joint movement, center-of-gravity, and floor reaction
force during sit-to-stand movement.

Methods

Subjects included 16 healthy young adults and 25 older adults who require long-term care.
Kinetic and kinematic measurements during sit-to-stand movement of young adults were
conducted using a 3-D motion analyzer and a force plate. Trunk forward tilt angle during sit-
to-stand movement of older adults was measured using a still image from a video recording.

Results

Using low handrails, sit-to-stand movement resulted in an increased hip flexion angle, ankle
dorsiflexion angle, and trunk forward tilt angle and a greater forward center-of-gravity shift
than when not using handrails in young adults during seat-off. In contrast, using high hand-
rails resulted in a smaller hip flexion angle and trunk forward tilt angle in young adults. The
backward force on the floor was decreased in the low handrail condition, and was increased
in the high handrail condition rather than that of sit-to-stand movement without handrails in
young adults. The effect of handrail height on trunk forward tilt angle was the same in both
healthy young adults and care-needing older adults during seat-off.

Conclusion

Because handrail height affects joint movement and shift in the center-of-gravity during sit-
to-stand movement, handrail position should be selected to match the status of older adults
with functional impairment.
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Introduction

Handrails are used by care-needing older adults and disabled individuals to stabilize their
movements during many daily situations. Most studies on handrails have examined walking
movement [1-4]. Use of handrails reportedly contributes to an increase in walking speed,
reduction in pain while walking, reduction in energy cost, and increase in gait balance control
[1-3]. It has additionally been reported to aid in fall prevention [5]. However, handrails are
also frequently used in situations other than walking, such as sit-to-stand (STS) movement.
When rising from a chair, the base of support narrows from a previously wide, stable seated
position, and the center of gravity (COG) shifts forward. This shift in the COG can greatly
throw off one’s balance. Accordingly, numerous studies have been conducted on STS move-
ment looking at kinematic characteristics and diseases as well as changes in characteristics of
kinematic disorders with aging [6—12]. Fall prevention is critical for care-needing older adults,
in whom falls can result in bone fractures, becoming bedridden, need for long-term care
(LTC), and even death. The decrease in physical functioning with aging in care-needing older
adults has been shown to result in reduced motor control ability and the external environment
exerting a greater impact on STS movement [13-15]. A few studies have analyzed the relation-
ship between handrail position as an environmental factor and STS movement from a chair
[16].

Important elements in natural rising from a seated position are the forward shift of the
trunk, the shift of the COG to a base of support comprised of the feet, the lifting of the gluteal
region from the seat, and the upward shift of the COG due to extension of the knee and hip
joints [17-19]. The handrail must be set at an appropriate position to assist the difficult phase
of the user during STS movement. In a previous study, we examined the effects of handrail
height on lower limb joint moment and joint load during STS movement [20]. We found that
high handrails decreased the total lower limb moment more than low handrails, and that use of
high handrails reduced hip joint load by 55% compared to STS movement without any hand-
rails. Factors involved may be changes in joint movement with handrail height and resulting
changes in the shift of the COG and floor reaction force (FRF). However, the effects of handrail
height on joint movement, COG, and FRF movements during STS movement remain unclear.

We therefore set out to clarify the effects of handrail height on joint movement, COG, and
FREF during STS movement. We mainly examined kinematic elements in healthy young adults.
However, major users of handrails are care-needing older adults. As a previous study showed
that the movement pattern during STS differs between healthy young adults and care-needing
older adults [21], we examined the latter as well.

Methods

Subjects were 16 healthy young adults aged 21-43 years (15 men and one woman; mean age,
23.2 + 5.3 years; mean height, 172.6 + 5.8 cm; mean weight, 65.2 + 6.7 kg; mean + standard
deviation) and 25 care-needing older adults aged 65-93 years (three men and 22 women; mean
age, 77.5 * 8.4 years; mean height, 152.3 + 8.0 cm; mean weight, 51.6 + 7.3 kg). Healthy young
adults were excluded if they had a history of a musculoskeletal or neurological disorder. Care-
needing older adults included two people with cancer, six with Parkinson’s syndrome, five with
diabetes mellitus, five with cerebrovascular diseases, two with cardiovascular diseases, two with
respiratory diseases, one with visual impairment, and two with arteriosclerosis obliterans.
Care-needing older adults used a handrail during STS movement as usual, and were excluded
if they had dementia. All were physically capable of performing STS movement independently
using a handrail. Comparison of the characteristics in the two groups revealed significant dif-
ferences in height and weight (P < .001 for both; paired t-test). Written informed consent was
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obtained from all participants after explanation of the details of this study. The study protocol
was approved by the Clinical Review Board of the Faculty of Medicine, Kagoshima University.

A 3-D motion analyzer (VICON MX3; Oxford Metrics, Oxford, UK) comprising seven
cameras and three force plates (OR6-7, BP400600; Advanced Mechanical Technology, MA,
USA) were used to perform kinetic and kinematic measurements during STS movement by
healthy young adults. We used three force plates, two of which were placed below the right and
left feet respectively, and the third of which was placed under the chair. The sampling fre-
quency was 100 Hz for the motion data and 1000 Hz for the FRF. A video camera (Sony
DCRI150; Sony Inc., Tokyo, Japan) was used to perform kinematic measurements on care-
needing older adults, with a sampling frequency of 60 Hz.

STS movement was compared for three conditions: no handrail (“Without”), high handrails
(“High”), and low handrails (“Low”). Height-adjustable handrails were placed on either side of
the participant. The subjects were instructed to grip the handrail in a way that facilitated the
STS movement and to perform the STS movement at a spontaneous speed. Both arms were
crossed above the chest during the Without condition.

The height of the handrails was adjusted to the greater trochanter in the standing position
(High) or the sitting position (Low), bilaterally. At the start, the participant was seated with
their knee at 90 degrees degrees (Fig 1). The order of conditions was randomized and measure-
ments were taken after three practice trials. The average for the bilateral lower limb in three
measurements was used for data analysis.

Reflective markers were attached to landmarks on the healthy young adults prior to taking
measurements. The Plug-in-Gait model was used for the marker set and analyzed with the 3-D
motion analyzer and force plate [22]. For care-needing older adults, reflective markers were
attached to the acromion, greater trochanter, lateral epicondyle of the femur, and ankle joint
lateral malleolus.

Seat-off is a key instance in STS movement when postural control is most difficult and there
is a large load on the lower limb, and has been analyzed by Mark et al [11] and Papa et al [23].
The seat-off event was decided by the FRF of the chair for young adults, and by visual observa-
tion for care-needing older adults. Therefore, we analyzed the kinetic and kinematic data at

High

Low

C )
Force Plate | Force Plate

Fig 1. Schematic drawing of the motion analysis for young adults during STS movement with and
without handrail support. The FRF of the bilateral lower extremity and chair were measured using three
force plates, respectively. The height of the handrails was adjusted to the greater trochanter in the standing
position (High) or the sitting position (Low), bilaterally.

doi:10.1371/journal.pone.0133747.g001
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seat-off. Segments were defined and the forward tilt angle of the trunk, hip flexion angle, knee
flexion angle, and ankle dorsiflexion angle when the gluteal region left the chair (“seat-off”),
and COG during seat-off were measured on the sagittal plane. The forward tilt angle of the
trunk was calculated as the angle between the trunk segment and vertical line; a positive value
indicates the forward tilt. The vertical and forward/backward components of the FRF were nor-
malized according to the participant’s weight. The instance position of the COG was calculated
as the position relative to the ankle joint; positive values indicate a forward shift of the COG.
Image] (National Institutes of Health; Bethesda, MD, USA) was used to analyze data from
care-needing older adults. Positional information from the acromion and greater trochanter
markers was used to calculate the trunk forward tilt angle at seat-off. Prior to this study, we
tested the consistency between the trunk tilt angles during STS movement measured by the
3-D motion analysis and the video camera using the intraclass correlation coefficient (ICC). A
high consistency was observed between those angles (ICC; 1), 0.971; P < .001).

One-way repeated measures analysis of variance (ANOV A) was performed with handrail
height as a factor to test the effects of the handrail on the various indicators in healthy young
adults. Two-way repeated measures ANOVA was performed to test the trunk forward tilt angle
at seat-off with group (healthy young adults vs. care-needing older adults) and handrail height
as factors. Prior to the repeated measures ANOVA, we tested the sphericity. If sphericity was
not assumed, the Greenhouse-Geisser method was used for analysis. When a significant inter-
action was found, an unpaired t-test was used to examine the differences between groups, and
one-way ANOV A was used to examine the effects of handrail height. The Bonferroni method
was used for the post hoc test. All statistical analyses were performed with SPSS 20.0 (SPSS;
Chicago, IL, USA), with a level of statistical significance of 5%.

Results

For healthy young adults, a significant difference was observed between all conditions for hip
(Table 1; Figure A in S1 Fig; F, 30y = 36.3, P < .001) and knee (Figure B in S1 Fig; F(, 3y = 6.0,
P =.006) flexion angle and ankle dorsiflexion angle (Figure C in S1 Fig; F(5 39y = 5.7, P = .008).
The hip flexion angle was significantly larger in the Low than in the Without condition

(P =.006). In contrast, the hip flexion angle was smaller in the High than in the Without condi-
tion (P =.005). Although the knee flexion angle was larger in the Low than in the Without con-
dition (P =.003), this difference was negligible (2 degrees). The ankle dorsiflexion angle was
significantly larger in the Low than in the Without condition (P = .004). The COG in the

Low condition was located more anterior than that in the other two conditions during seat-off
(S2 Figs Fa20) = 244, P < .001).

Table 1. Results of the joint angle, shift of the COG, and FRF in young adults.

Hip flexion angle Knee flexion angle Ankle dorsiflexion Forward COG shift Backward force of Vertical force of FRF
(deg) (deg) angle (deg) (mm) FRF (N/kg) (N/kg)

Without 93.3 + 9.0**tt 82.7 £ 7.4%* 9.0 £ 4.6%* 18.2 + 30.6** 0.84 £ 0.31** 6.1+ 0.8%*tt

Low 99.4 + 8.511 84774 1151438 52.1 + 31.01t 0.56 + 0.2811 5.2 +£0.8tt

High 87.6+8.1 84375 10.0+5.3 25.5+34.3 0.89+0.28 5.7+0.9

These values are data at seat-off moment. The forward shift of the COG was calculated as positions relative to the ankle joint. The mean and standard
deviation are shown.

Note. COG, Center of Gravity; FRF, Floor Reaction Force.

**P < .01 significant difference between Low condition.

11P < .01 significant difference between High condition.

doi:10.1371/journal.pone.0133747.1001
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Fig 2. Average and standard deviation of forward tilt angle of trunk in young adults and care-needing
older adults during STS movement. The handrail position had similar effect on the forward tilt angle of trunk
for the two groups, showing no significant difference.

doi:10.1371/journal.pone.0133747.9002

The backward FRF differed significantly with handrail height, being highest in the High
condition and lowest in the Low condition (Figure A in S3 Fig; F(; 30) = 33.4, P < .001). The
vertical FRF differed significantly with handrail height, being significantly lower in the Low
and High conditions compared to the Without condition (Figure B in S3 Fig; F(; 39) = 70.1, P <
.001).

A significant interaction was seen in the trunk forward tilt angle between healthy young
adults and care-needing older adults (Fig 2; F 5 75y = 5.2, P = .008). For care-needing older
adults, trunk forward tilt angle was 32.2 + 5.3° in the Without condition, 42.4 + 8.9° in the Low
condition, and 23.4 + 9.2° in the High condition. This angle differed significantly between all
handrail conditions for both healthy young adults (Figure D in S1 Fig; F(, 39y = 37.8, P < .001)
and care-needing older adults (F(, 45) = 81.4, P < .001). The trunk forward tilt angle was signifi-
cantly larger in the Low condition for both care-needing older adults and healthy young adults
than in the other two conditions (P < .009). The angle did not differ significantly between
healthy young adults and care-needing older adults in any condition (P > .106).

Discussion

We tested the effects of handrail position on joint movement and COG shift during STS move-
ment in healthy young adults and in care-needing older adults who actually require handrails.
The vertical FRF during STS movement decreased significantly with both types of handrails,
and the decrease was by 13.7% for the low handrail and 7.1% for the high handrail. We found
that STS movement in the Low condition involved an increased hip flexion angle, ankle dorsi-
flexion angle, and trunk forward tilt angle and a greater forward COG shift than STS move-
ment in the Without condition. In contrast, STS movement in the High condition involved a
smaller hip flexion angle and trunk forward tilt angle than STS movement in the Without con-
dition. The effect of handrail height on trunk forward tilt angle was the same in both healthy
young adults and care-needing older adults.

Normal STS movement begins with a tilting forward of the trunk accompanying hip joint
flexion and ankle dorsiflexion that shift the COG forward. The trunk forward tilt angle facili-
tates the shift of the COG to the base of support. Next, when the gluteal region lifts off from the
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chair, the base of support that was initially large, including the gluteal region, shifts to a narrow
region comprised of the feet touching the ground, and the COG moves to the edge of the base
of support, so that such seat-off motion brings the highest risk of falling. Furthermore, the FRF
is the largest during this phase and the force is in the backward/upward direction. The hip joint
and knee joint exert the maximum extension moment in response to this FRF [24]. This is the
actual moment of seat-off and is a key phase in STS movement as the heavy load on the lower
limbs makes postural control difficult.

When using low handrails, it is necessary to shift the COG forward for loading on the hand-
rail. This may have prompted the flexion of the hip and forward bending of the trunk. Pushing
on the handrail gives the user an upward/backward force from the handrail that may reduce
the vertical and backward FRF. Therefore, low handrails may be effective for individuals whose
COG does not shift forward sufficiently by trunk tilt during seat-off.

However, the increase in trunk forward tilt and backward FRF reduced during STS move-
ment brings the FRF and the center of the knee joint closer together and increases the distance
from the center of the hip joint, thereby reducing the load on the extensor muscles in the knee
joints and increasing the load on the extensor muscles in the hip. It is therefore important to
consider hip joint range of motion for flexion and extensor muscle strength for use of low
handrails. Findings from our previous study are congruent with those of the present study,
showing that centripetal power of the hip joints is larger when using low handrails than when
not using any handrails [20].

STS movement with high handrails was associated with a decrease in hip flexion angle and
trunk forward tilt angle and an increase in backward FRF than in STS movement without
handrails. When pulling on handrails located in a high position, an upward/forward force may
act on the body. Moreover, the backward FRF during seat-off was larger than regular STS
movement, which may reflect a forward force from the handrail [16]. The forward and upward
reactive force created from the handrail decreases the forward tilt of the trunk. This smaller
trunk forward tilt angle and increased backward FRF then brings the FRF closer to the center
of the hip joint and further from the center of the knee joint compared to the Without condi-
tion. This may then result in a decrease in the load to the hip extensor muscles and increase in
the load to the knee extensor muscles. In addition, pulling on the handrail gives a forward/
upward force on the body and reduces the propensity to fall backward. During this STS move-
ment, arm compensation for the forward/upward shift in the COG due to the position of the
handrail can enable assistance of the lifting of the COG that can potentially reduce the load to
the hip extensor muscle in individuals with lower limb paralysis. This method of pulling on a
handrail during STS movement involves a compensation of the COG shift with the arms that
may result in a tendency for a stronger braking force in the lower limbs. As the reduced trunk
tilt induced by the pulling force and increased backward FRF is different from the kinesiology
of the natural STS movement, it is unlikely that STS with a high handrail would be linked to
learning of the STS movement.

Aging is accompanied by a decrease in physical functioning, including reduced muscle
strength in the lower limbs and trunk and limiting of the range of motion, as well as decreased
functioning of the nervous system. These effects may have an impact on various elements of
physical functioning. Age-related changes in physical condition have been widely reported to
increase the difficulty of STS movement [19, 25-28]. An understanding of how to adjust the
environment to enable easy and natural STS by older adults is critical [29-35]. Individuals dif-
fer in their degree and type of LTC needs; however, it is important to adjust the height of hand-
rails to eliminate difficulty in performing STS movement due to physical changes such as
reduced lower limb muscle strength and limited range of motion. Enhancing the STS move-
ment environment may help raise the level of independence of care-needing older adults, and
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decrease assistance need and manpower cost. Achieving the best handrail position may be ben-
eficial to both the care receiver and the caregiver. Adjustments to the living environment based
on the individual’s level of physical functioning should include consideration of the positioning
of handerails to assist in raising the gluteal region.

The effect of handrail height on trunk forward tilt angle was similar in healthy young adults
and care-needing older adults. The positional relationship between the body and the handrail
determines the mechanical effects that the handrail will have on the body. This may be why
similar effects were observed in healthy young adults and care-needing older adults. It is there-
fore reasonable to consider the present findings applicable to care-needing older adults.

In the present study, we did not analyze the types of reactive forces from the handrails. Dif-
ferences in characteristics between the groups, including height, weight, and gender distribu-
tion, may influence the STS movement. Moreover, only a kinematic analysis was performed on
care-needing older adults. Further studies are needed to perform a thorough kinetic analysis,
including the reactive forces from the handrail. Another limitation is that STS movement has
been considered asymmetrical [36, 37]. Effects of leg dominance may therefore play a role. Nei-
ther dominant leg nor dominant hand was included in the criteria tested in the present study.
Further tests that factor in hand and foot dominance are also needed.

Conclusion

We hereby demonstrated that handrail height affects joint movement and shift in the COG
during STS movement. The results showed that low handrails are preferable for individuals
that are capable of tilting their trunk forward and have strong muscles around their hip. In con-
trast, high handrails were more useful for those with difficulty tilting their trunk forward and
weak muscles around their hip. Handrail position should be selected accordingly to match the
situation for older adults, among whom there is great variation in functional impairment.

Supporting Information

S1 Fig. The joint angle of hip (Figure A), knee (Figure B), ankle (Figure C) and trunk for-
ward tilt angle (Figure D) during STS movement in a young adult. Vertical solid line indi-
cates the seat-off.

(TTF)

S2 Fig. The forward shift of the COG during STS movement in a young adult. The position
of the COG was calculated as positions relative to the ankle joint. Vertical solid line indicates
the seat-off.

(TTF)

S3 Fig. The backward force (Figure A) and the vertical force (Figure B) of FRF during STS
movement in a young adult. Vertical solid line indicates the seat-off.
(TIF)

Author Contributions

Conceived and designed the experiments: SK YY. Performed the experiments: SK RK. Ana-
lyzed the data: SK RK YY. Contributed reagents/materials/analysis tools: SK RK. Wrote the
paper: SK RKYY.

PLOS ONE | DOI:10.1371/journal.pone.0133747 July 24,2015 7/9


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0133747.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0133747.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0133747.s003

@’PLOS ‘ ONE

Effect of Handrail Height on Sit-To-Stand Movement

References

1.

10.

1.

12

13.

14.

15.

16.

17.

18.

19.

20.

21,

22,

23.

24.

Chen G, Patten C, Kothari DH, Zajac FE. Gait deviations associated with post-stroke hemiparesis:
improvement during treadmill walking using weight support, speed, support stiffness, and handrail hold.
Gait Posture. 2005; 22: 57-62. PMID: 15996593

Gardner AW, Skinner JS, Smith LK. Effects of handrail support on claudication and hemodynamic
responses to single-stage and progressive treadmill protocols in peripheral vascular occlusive disease.
Am J Cardiol. 1991; 68: 99—105. PMID: 2058566

limker T, Houdijk H, Lamoth CJ, Jarbandhan AV, Rijntjes D, Beek PJ, et al. LH. Effect of balance sup-
port on the energy cost of walking after stroke. Arch Phys Med Rehabil. 2013; 94: 2255-2261. doi: 10.
1016/j.apmr.2013.04.022 PMID: 23702394

Manfre MJ, Yu GH, Varma AA, Mallis Gl, Kearney K, Karageorgis MA, et al. The effect of limited hand-
rail support on total treadmill time and the prediction of VO2 max. Clin Cardiol. 1994; 17: 445-450.
PMID: 7955592

Maki BE, Sibley KM, Jaglal SB, Bayley M, Brooks D, Fernie GR, et al. Reducing fall risk by improving
balance control: Development, evaluation and knowledge-translation of new approaches. J Safety
Res. 2011; 42: 473-485. doi: 10.1016/j.jsr.2011.02.002 PMID: 22152265

Bahrami F, Riener R, Jabedar-Maralani P, Schmidt G. Biomechanical analysis of sit-to-stand transfer in
healthy and paraplegic subjects. Clin Biomech (Bristol, Avon). 2000; 15: 123-133.

Bernardi M, Rosponi A, Castellano V, Rodio A, Traballesi M, Delussu AS, et al. Determinants of sit-to-
stand capability in the motor impaired elderly. J Electromyogr Kinesiol. 2004; 14: 401-410. PMID:
15094153

Chou SW, Wong AM, Leong CP, Hong WS, Tang FT, Lin TH, et al. Postural control during sit-to stand
and gait in stroke patients. Am J Phys Med Rehabil. 2003; 82: 42—-47. PMID: 12510184

DeVincenzo DK, Watkins S. Accidental falls in a rehabilitation setting. Rehabil Nurs. 2012; 12: 248—
252.

Janssen WG, Bussmann HB, Stam HJ. Determinants of the sit-to-stand movement: a review. Phys
Ther. 2002; 82: 866—-879. PMID: 12201801

Mak MK, Levin O, Mizrahi J, Hui-Chan CW. Joint torques during sit-to-stand in healthy subjects and
people with Parkinson’s disease. Clin Biomech (Bristol, Avon). 2003; 18: 197-206.

Schenkman M, Riley P, Pieper C. Sit to stand from progressively lower seat heights—alterations in
angular velocity. Clin Biomech (Bristol, Avon). 1996; 11: 153—158.

Cheng PT, Chen CL, Wang CM, Hong WH. Leg muscle activation patterns of sit-to-stand movement in
stroke patients. Am J Phys Med Rehabil. 2004; 83: 10—16. PMID: 14709969

Mazza C, Benvenuti F, Bimbi C, Stanhope SJ. Association between subject functional status, seat
height, and movement strategy in sit-to-stand performance. J Am Geriatr Soc. 2004; 52: 1750-1754.
PMID: 15450056

Millington PJ, Myklebust BM, Shambes GM. Biomechanical analysis of the sit-to-stand motion in elderly
persons. Arch Phys Med Rehabil. 1992; 73: 609-617. PMID: 1622314

O’Meara DM, Smith RM. The effects of unilateral grab rail assistance on the sit-to-stand performance of
older aged adults. Hum Mov Sci. 2006; 25: 257-274. PMID: 16458382

Kuo YL, Tully EA, Galea MP. Kinematics of sagittal spine and lower limb movement in healthy older
adults during sit-to-stand from two seat heights. Spine (Phila Pa 1976). 2010; 35: E1-7.

Tully EA, Fotoohabadi MR, Galea MP. Sagittal spine and lower limb movement during sit-to-stand in
healthy young subjects. Gait Posture. 2005; 22: 338—-345. PMID: 16274916

Vander Linden DW, Brunt D, McCulloch MU. Variant and invariant characteristics of the sit-to-stand
task in healthy elderly adults. Arch Phys Med Rehabil. 1994; 75: 653—-660. PMID: 8002764

Kinoshita S. Handrail position and shape that best facilitate sit-to-stand movement. J Back Musculoske-
let Rehabil. 2012; 25: 33—45. doi: 10.3233/BMR-2012-0308 PMID: 22398265

Alexander NB, Schultz AB, Warwick DN. Rising from a chair: effects of age and functional ability on per-
formance biomechanics. J Gerontol. 1991; 46: M91-98. PMID: 2030272

Davis |, Ounpuu S, Tyburski D, Gage J. A gait analysis data collection and reduction technique. Hum
Mov Sci. 1991; 10: 575-587.

Papa E, Cappozzo A. Sit-to-stand motor strategies investigated in able-bodied young and elderly sub-
jects. J Biomech. 2000; 33: 1113-1122. PMID: 10854884

Roebroeck ME, Doorenbosch CA, Harlaar J, Jacobs R, Lankhorst GJ. Biomechanics and muscular
activity during sit-to-stand transfer. Clin Biomech (Bristol, Avon). 1994; 9: 235-244.

PLOS ONE | DOI:10.1371/journal.pone.0133747 July 24,2015 8/9


http://www.ncbi.nlm.nih.gov/pubmed/15996593
http://www.ncbi.nlm.nih.gov/pubmed/2058566
http://dx.doi.org/10.1016/j.apmr.2013.04.022
http://dx.doi.org/10.1016/j.apmr.2013.04.022
http://www.ncbi.nlm.nih.gov/pubmed/23702394
http://www.ncbi.nlm.nih.gov/pubmed/7955592
http://dx.doi.org/10.1016/j.jsr.2011.02.002
http://www.ncbi.nlm.nih.gov/pubmed/22152265
http://www.ncbi.nlm.nih.gov/pubmed/15094153
http://www.ncbi.nlm.nih.gov/pubmed/12510184
http://www.ncbi.nlm.nih.gov/pubmed/12201801
http://www.ncbi.nlm.nih.gov/pubmed/14709969
http://www.ncbi.nlm.nih.gov/pubmed/15450056
http://www.ncbi.nlm.nih.gov/pubmed/1622314
http://www.ncbi.nlm.nih.gov/pubmed/16458382
http://www.ncbi.nlm.nih.gov/pubmed/16274916
http://www.ncbi.nlm.nih.gov/pubmed/8002764
http://dx.doi.org/10.3233/BMR-2012-0308
http://www.ncbi.nlm.nih.gov/pubmed/22398265
http://www.ncbi.nlm.nih.gov/pubmed/2030272
http://www.ncbi.nlm.nih.gov/pubmed/10854884

@’PLOS ‘ ONE

Effect of Handrail Height on Sit-To-Stand Movement

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Edlich RF, Heather CL, Galumbeck MH. Revolutionary advances in adaptive seating systems for the
elderly and persons with disabilities that assist sit-to-stand transfers. J Long Term Eff Med Implants.
2003; 13: 31-39. PMID: 12825747

O’Meara DM, Smith RM. Differences between grab rail position and orientation during the assisted sit-
to-stand for able-bodied older adults. J Appl Biomech. 2005; 21: 57-71. PMID: 16131705

Ploutz-Snyder LL, Manini T, Ploutz-Snyder RJ, Wolf DA. Functionally relevant thresholds of quadriceps
femoris strength. J Gerontol A Biol Sci Med Sci. 2002; 57: B144—152. PMID: 11909879

Yamada T, Demura S. Relationships between ground reaction force parameters during a sit-to-stand
movement and physical activity and falling risk of the elderly and a comparison of the movement char-
acteristics between the young and the elderly. Arch Gerontol Geriatr. 2009; 48: 73—77. PMID:
18078678

Baer GD, Ashburn AM. Trunk movements in older subjects during sit-to-stand. Arch Phys Med Rehabil.
1995; 76: 844-849. PMID: 7668956

Chihara T, Seo A. Evaluation of multiple muscle loads through multi-objective optimization with predic-
tion of subjective satisfaction level: lllustration by an application to handrail position for standing. Appl
Ergon. 2013; 45: 261-269. doi: 10.1016/j.apergo.2013.04.006 PMID: 23623604

Mion LC, Gregor S, Buettner M, Chwirchak D, Lee O, Paras W. Falls in the rehabilitation setting: inci-
dence and characteristics. Rehabil Nurs. 2013; 14: 17-22.

Nyberg L, Gustafson Y. Patient falls in stroke rehabilitation. A challenge to rehabilitation strategies.
Stroke. 1995; 26: 838—-842. PMID: 7740577

O’Connor SE. Nursing Interventions in Stroke Rehabilitation: A study of nurses’ views of their pattern of
care in stroke units. Rehabil Nurs. 2000; 25: 224—230.

Rodosky MW, Andriacchi TP, Andersson GB. The influence of chair height on lower limb mechanics
during rising. J Orthop Res. 1989; 7: 266—271. PMID: 2918425

Scarborough DM, Mcgibbon CA, Krebs DE. Chair rise strategies in older adults with functional limita-
tions. J Rehabil Res Dev. 2012; 44: 33—42.

Sato S, Mizuma M, Kawate N, Kasai F, Wada S. Evaluation of trunk sway in sit-to-stand motion using a
pressure distribution measurement system. Jpn J Compr Rehabil Sci. 2012; 3: 6-10.

Talis VL, Grishin AA, Solopova IA, Oskanyan TL, Belenky VE, Ivanenko YP. Asymmetric leg loading
during sit-to-stand, walking and quiet standing in patients after unilateral total hip replacement surgery.
Clin Biomech (Bristol, Avon). 2008; 23: 424—433.

PLOS ONE | DOI:10.1371/journal.pone.0133747 July 24,2015 9/9


http://www.ncbi.nlm.nih.gov/pubmed/12825747
http://www.ncbi.nlm.nih.gov/pubmed/16131705
http://www.ncbi.nlm.nih.gov/pubmed/11909879
http://www.ncbi.nlm.nih.gov/pubmed/18078678
http://www.ncbi.nlm.nih.gov/pubmed/7668956
http://dx.doi.org/10.1016/j.apergo.2013.04.006
http://www.ncbi.nlm.nih.gov/pubmed/23623604
http://www.ncbi.nlm.nih.gov/pubmed/7740577
http://www.ncbi.nlm.nih.gov/pubmed/2918425

