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Abstract 

The rapid global spread and dissemination of SARS-CoV-2 has provided the virus with 
numerous opportunities to develop several variants. Thus, it is critical to determine 
the degree of the variations and in which part of the virus those variations occurred. 
Therefore, in this study, methods that could be used to vectorize the sequence data, 
perform clustering analysis, and visualize the results were proposed using machine 
learning methods. To conduct this study, a total of 224,073 cases of SARS-CoV-2 
sequence data were collected through NCBI and GISAID, and the data were visual-
ized using dimensionality reduction and clustering analysis models such as T-SNE 
and DBSCAN. The SARS-CoV-2 virus, which was first detected, was distinguished from 
different variations, including Omicron and Delta, in the cluster results. Furthermore, 
it was possible to examine which codon changes in the spike protein caused the vari-
ants to be distinguished using feature importance extraction models such as Random 
Forest or Shapely Value. The proposed method has the advantage of being able to 
analyse and visualize a large amount of data at once compared to the existing tree-
based sequence data analysis. The proposed method was able to identify and visualize 
significant changes between the SARS-CoV-2 virus, which was first detected in Wuhan, 
China, in December 2019, and the newly formed mutant virus group. As a result of clus-
tering analysis using sequence data, it was possible to confirm the formation of clusters 
among various variants in a two-dimensional graph, and by extracting the importance 
of variables, it was possible to confirm which codon changes played a major role in 
distinguishing variants. Furthermore, since the proposed method can handle a variety 
of data sequences, it can be used for all kinds of diseases, including influenza and 
SARS-CoV-2. Therefore, the proposed method has the potential to become widely used 
for the effective analysis of disease variations.
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Introduction
Just before entering into the new year 2020, a group of unknown pneumonia patients in 
Wuhan, Hubei province, China was confirmed to be infected with a novel coronavirus, 
Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) [1]. The first whole 
genome sequence of the SARS-CoV-2 virus was released by the National Centre for Bio-
technology Information (NCBI) Genbank on January 5, 2020 [2]. The first human-to-
human transmission of this virus was confirmed on January 14, 2020; however, the virus 
had already spread to many countries around the world by that time. As the situation 
quickly worsened, the World Health Organization (WHO) declared a SARS-CoV-2 pan-
demic on March 11, 2020.

Since the start of the pandemic, various mutations in SARS-CoV-2 have been 
observed, and more variations continue to emerge [2, 3]. The rapid global spread and 
dissemination of SARS-CoV-2 has given the virus numerous opportunities to mutate. 
In particular, mutations such as D614G in its spike protein enhanced the viability of the 
virus [4, 5]. It is therefore critical to determine the level of SARS-CoV-2 mutation and in 
which part of the virus those mutations have occurred. Therefore, many researchers are 
trying to analyse coronaviruses from various perspectives and approaches in order to 
track newly emerging variants and determine their characteristics. Studies reported that 
mutations may occur according to geographic location by comparing viral sequences 
collected from Asia, Africa, Europe, North America, South America and Oceania with 
the SARS-CoV-2 virus that was First emerged in Wuhan, China in December 2019 [6, 
7]. The mutations in various parts of the spike protein are known to affect areas such 
as infectivity, disease severity, or interaction with the host [8, 9]. Furthermore, studies 
showed that mutations in the virus may affect the effectiveness of vaccines [10, 11]. Con-
sequently, many studies argued that it is of paramount importance to continuously mon-
itor and conduct research on changes that occur in the virus.

Next Generation Sequencing (NGS) based characterization has contributed to 
increase insight into SARS-CoV-2 genome organization and transcriptional complex-
ity [12, 13]. One of the most used methods to track mutations of SARS-CoV-2 through 
these NGS-based data is by analysing the phylogenetic tree. Phylogenetic analysis forms 
evolutionary relationships or trees, and traces their evolution. Since there was insuffi-
cient data at the beginning of the SARS-CoV-2 epidemic, a phylogenetic tree was used 
to investigate the mutation of the virus [14–16]. Phylogenetic analysis is also used in 
the field of discovering effective therapeutic candidates for viruses [17]. Morel, B. et al. 
proposed a numerical mapping method using machine learning to predict the protein 
interaction between SARS-CoV-2 and humans, which is an important factor in under-
standing the biological activity of organisms [18]. Furthermore, phylogenetic analysis 
and geographic location were used to determine the specificity of SARS-CoV-2, and 
research based on this data are currently underway [6, 7, 19–22]. However, Khan, A. 
et al. argued that it was not easy to infer phylogeny using large amounts of data, as vari-
ants of SARS-CoV-2 appeared over time and there were too many sequence data for a 
few variants [16]. As a result, unless a large budget and manpower were invested, ana-
lysing a large amount of data at once and visualizing it in the analysis using existing tra-
ditional sequencing data was difficult. Even if new data was analysed, it was difficult to 
distinguish whether the new virus was a mainstream virus or a non-mainstream virus. 
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Therefore, a methodology that can perform analysis together by maximizing the over-
flowing SARS-CoV-2 sequencing data is required. By analysing a large amount of data 
together, it was possible to analyse the data more objectively and find out how many 
viruses are in a group and how many viruses are occurring in a specific period, where in 
the world they are occurring, and what differences exist between the variant groups.

In this study, different methods were proposed that can be used to vectorize the SARS-
CoV-2 spike protein sequence data collected from the NCBI Genbank and Global Initia-
tive for Sharing All Influenza Data (GISAID), perform clustering analysis, and visualize 
the results. After pre-processing a total of 224,073 SARS-CoV-2 sequencing data using 
the method proposed, it was possible to verify that various mutations were clustered by 
several characteristics. In addition, it was possible to visualize this as a two-dimensional 
graph and display the results in a table classified into various indicators for statistical 
analysis. The proposed methodology also allowed researchers to examine mutant viruses 
and determine which codons of the spike protein were modified before investigating 
those codons. The rest of this paper is organized as follows: The Methods section out-
lines which data was used to test the proposed method and describes the methods that 
were used to pre-process and vectorize the data. The section also explains t-Stochas-
tic Neighbour Embedding (t-SNE), a dimensionality reduction technique used to visu-
alize data, and briefly introduces the Density Based Spatial Clustering of Applications 
with Noise (DBSCAN) techniques used to cluster the pre-processed data. Finally, the 
random forest technique used to find the codons in which the virus mutation occurred 
was described. In the Experiment section, the parameter settings used for the machine 
learning methods (i.e., the t-SNE, DBSCAN, and random forest methods) were briefly 
explained and discussed how the data was structured. Next, the experimental findings 
are briefly described in the Results section before finally presenting the Discussion and 
Conclusion sections.

Methods
Since the spike proteins in SARS-CoV-2 are known to play a key role in mediating 
infection in human cells, this study proposed a method for vectorizing and clustering 
the spike protein sequence data from SARS-CoV-22 [6–10, 21]. In the following Data 
section, the pre-processing method for vectorizing the data was described, and the 
t-SNE and DBSCAN methods used for clustering were briefly explained, as was virus 
distribution visualization based on the pre-processed data. Classical methods such as 
Principal Component Analysis (PCA), Independent Component Analysis (ICA), and 
Multi-Dimension Scaling (MDS) are methods used for reducing the dimension of data. 
However, these classic dimensionality reduction techniques were not suitable for han-
dling very large amounts of data and very high dimensionality. Since then, dimensional-
ity reduction techniques such as Locally Linear Embedding (LLE) and Isometric Feature 
Mapping (ISOMAP) were proposed. The LLE and ISOMAP are methods of learning a 
low-dimensional space that preserve the structure of a high-dimensional space using 
nearest neighbours’ information. However, LLE and ISOMAP are suitable for visualizing 
a data space where manifolds exist, such as swissroll data, rather than visualizing the 
embedding space of deep learning models. Therefore, these methods were not suitable 
for visualization of high-dimensional data because they did not preserve the information 
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required for visualization. Recently, methods such as t-SNE and Autoencoder are the 
most widely used methods. The t-SNE works well for data with different distributions 
for each feature because it captures the distribution-based hidden factor of high-dimen-
sional features very well. Furthermore, as it is not very sensitive to parameter setting, it is 
a technique suitable for non-professionals to use. Finally, Autoencoder is one of the lat-
est dimensionality reduction techniques based on deep learning. However, Autoencoder 
has a problem in which performance changes significantly depending on how layers are 
added or parameters are adjusted. As a result, unless you are an expert in the field, there 
are significant limitations associated with this technique. For these reasons, in this study, 
t-SNE, which can be used by anyone and has good performance, was adopted as the 
dimensionality reduction method. To judge the performance of various dimensionality 
reduction techniques, results from MDS, LLE, ISOMAP, t-SNE, and Autoencoder were 
added using sample data from the collected data in Additional file 1. Finally, after the 
data have been clustered, the Random Forest technique was used to identify the part of 
the sequence data which played a big role in dividing the cluster. Features that played 
a major role in clustering were explored because significant mutations were expected 
to have occurred in those features. Next, we briefly described the sources from which 
the data used in this study were collected, what types of data were used, and how the 
data were pre-processed. In addition, brief description how and for what purpose the 
machine learning techniques utilized were used.

Data

The SARS-CoV-2 spike protein sequences were collected from two open-source data-
bases, NCBI’s SARS-CoV-2 Data Hub and GISAID [23, 24]. The SARS-CoV-2 sequenc-
ing data provided by NCBI and GISAID was collected and used because the sequencing 
data provided by both databases is the most used in SARS-CoV-2 research worldwide. 
After SARS-CoV-2 was discovered, sequencing data of this virus was published for 
the first time in the GenBank of the NCBI [25]. In the early days of the virus spread, 
a lot of SARS-CoV-2 sequencing data was provided through the GenBank, and many 
SARS-CoV-2 related studies were conducted using the sequencing data collected from 
the GenBank [26–30]. Therefore, in this study, data provided from NCBI’s GenBank was 
used as the initial data. Since then, GISAID has been provided by tagging the type of 
mutation in sequencing data after various mutated viruses have occurred and started to 
spread. The GISAID database is also being actively used in various recent SARS-CoV-2 
related studies [7, 19–22]. Since the NCBI database provides the SARS-CoV-2 virus for 
each gene, the nucleotide sequences encoding spike proteins were selected and down-
loaded (collection period: Dec. 2019–Jan. 2021). The mutant virus information about 
SARS-CoV-2 was also downloaded from GISAID’s newly established EpiCoV™ platform 
and used in the whole genome form. Since mutant virus data were not provided for each 
gene, each whole genome was extracted and used after matching the site of the gene on 
the whole genome through alignment with the spike protein of the virus first discovered 
in Wuhan, China (accession number: MT019529.1, protein ID: QHU36824.1). The NCBI 
GenBank’s accession number MT019529.1 SARS-CoV-2 sequencing data is one of the 
first virus sequencing data collected in Wuhan, China, and is one of the several SARS-
CoV-2 reference viruses. In many studies, sequencing data alignment was performed 
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using MT019529.1 data, one of the reference data, so this study also performed sequenc-
ing data alignment using the data [20, 31–33]. Protein ID QHU36824.1 is an ID indicat-
ing the part corresponding to spike Protein among the entire SARS-CoV-2 sequencing 
data. A spike protein corresponding to protein ID QHU36824.1 was analysed in various 
SARS-CoV-2 studies, and since this study also aimed to analyse mutations in the spike 
protein, the portion corresponding to protein ID QHU36824.1 in the overall sequencing 
data was extracted and used [34–37]. Variant virus data were obtained from six strains, 
namely B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617 (Delta), B.1.1.529 (Omi-
cron), B.1.640 and some unlabelled data were collected. A maximum of 5,000 sequences 
were used per month to avoid overfitting the data, and not more than 10 sequences were 
extracted per collection day to avoid virus clustering on a specific day.

Annotation information was categorized by country and area, year, month, and date of 
collection to analyze the sequences. The NCBI provides sequence data that are divided 
into different proteins, including ORF, nucleocapsid, spike, or envelope proteins. Spike 
proteins mediate infections in human cells, and they are the targets of most vaccine 
strategies and antibody-based therapeutic approaches [38, 39]. Continent, country, year, 
and month information was tagged together in the collected data. The data used in the 
present study were data collected by NCBI from December 2019, when this corona virus 
was first discovered in Wuhan, China, to February 2021, and data collected by GISAID 
from January 2020 to December 2021. By region, the following number of data sam-
ples were collected: Data was collected and analysed from six continents: Asia, Africa, 
North America, South America, and Oceania, with the exception of Antarctica, where 
no confirmed cases have occurred. The reference virus was discovered in Wuhan, China 
in 2019, and mutations such as Alpha, Beta, and Gamma were identified in the second 
half of 2020, Delta mutations in the first half of 2021, Omicron mutations, and 490R-GH 
mutations were discovered in the second half of 2021. Regarding the collected data, a 
detailed table of data collected by each continent and a detailed table of data collected by 
variant were added to the Additional file 1.

In this analysis, each virus was represented by one variation vector, and these vectors 
were then used for the clustering analysis, which is a differentiating method from the 
other analyses. The most pertinent issue in SARS-CoV-2 research is whether mutations 
have happened since the original virus was detected, and if so, what these mutations look 
like. In this study, the spike protein of the virus first discovered in Wuhan, China (acces-
sion number: MT019529.1, protein ID: QHU36824.1) was set as the reference sequence, 
and any virus sequence collected later was compared with this reference sequence to 
vectorize any mutation progress. In detail, the method for generating a variation vector 
proceeds as follows:

First, multiple sequence alignment (MSA) was performed between the reference 
sequence and each target sequence using the mafft program [40]. Two aligned sequences 
with the same length (3,822 bp), including gaps as a result of MSA, were sequentially 
divided into individual codon units, each of which consist of three bases, and then 
any variations between the reference and target sequence from the beginning of the 
sequence to the end were counted. Based on these counting results, a 61 × 61 matrix was 
generated, which is the total number of codons encoding amino acids in both rows and 
columns (Fig. 1).
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To use the collected data as input for machine learning processing, pre-processing 
was needed. First, a method for vectorizing the sequence data was proposed. To vec-
torize the sequence data, a piece of reference data must first be selected, then each col-
lected piece of data was compared to the reference data to identify any differences. For 
example, as shown in Fig.  1, the similarity by codon between the reference data and 
target data can be expressed as a heatmap. In the heatmap, blue dots refer to 0 simi-
larities while other dots mean a similarity of 0 to 1. The similarity by codon can also be 
expressed as a matrix. As each data sequence consisted of 61 values, the pre-processed 
data was in the form of a 61 by 61 matrix, so one set of comparative data was composed 
of 3,721 attributes (61 × 61 = 3,721). In this study, one of the SARS-CoV-2 virus cases 
that occurred in Wuhan, China in January of 2020 (accession number: MT019529.1, 
protein ID: QHU36824.1) was selected as the reference data. Then, all the accumulated 
data used in this analysis was pre-processed into a form in which it was usable for our 
experiments according to the proposed method. A custom python code was written to 
pre- and post-process all the sequence data used in this study, and the MySQL Database 
Management System was used to effectively manage the collected data.

t‑SNE

Since a single sample in our experiments consisted of 3,721 attributes, the t-SNE tech-
nique was used to compress all samples into two-dimensional data to visualize and 
display the data. Various visualization methods can be used to help understand high-
dimensional data. Since humans are familiar with and understand two- and three-
dimensional space, it was necessary to reduce the dimensions of high-dimensional 
data while preserving all similarities between points in the original data space so that 
two vectors that were similar in high-dimensional space still appear similar when rep-
resented in two-dimensional space. One of the most effective dimension reduction 
methods was the t-SNE technique. t-SNE is used to expresses high-dimensional data 
low-dimensional space by finding a low-dimensional embedding vector that preserved 

Fig. 1 Process of generating a 61 × 61 variation matrix through comparative analysis of the aligned reference 
and target sequences at the codon level
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the neighbour structure in the high-dimensional data. t-SNE can achieve more stable 
embedding results than other dimension reduction algorithms for vector visualization 
because t-SNE converts the distance between pieces of data into stochastic probabilities 
and uses these for the embedding [41].

DBSCAN

After the data dimensions have been reduced using t-SNE, each sample was labelled 
using DBSCAN to see how the data was clustered. The DBSCAN is a density-based clus-
tering approach that clusters data by assuming that "similar data will be distributed close 
to each other" [42]. DBSCAN is a clustering algorithm that does not specify the number 
of clusters. Dense areas, which are called dense regions of data, were considered to con-
stitute a cluster, while relatively empty areas were considered to be boundaries separat-
ing clusters. In simple terms, if there are more than m points within a radius e of a point, 
then this area is recognized as a cluster. These m and e are parameters to be set when 
using DBSCAN. In the beginning stages of DBSCAN, the target number of clusters does 
not need to be determined, allowing for nonlinear border clustering with the added ben-
efit of noise resistance.

Random forest

The importance of the features in the data was calculated using the random forest tech-
nique; specifically, this technique was used to predict what part of the virus mutated and 
formed different clusters. The random forest model is an ensemble machine learning 
model that forms several decision trees and passes new data points through each tree at 
the same time, then votes using the classification results from each tree, and the result 
with the most votes is given as the final classification [43]. Some trees generated by the 
random forest method can become overfitted; however, by creating numerous trees, 
occasional results that suffer from overfitting do not significantly affect the final predic-
tion result. The random forest method measured the importance of a feature based on 
how much it contributes to improving accuracy and node impurity [43]. This allows us 
to extract the parts of the data that play an important role.

Experiments
Experimental settings

For this experiment, a total of 224,073 SARS-CoV-2 spike protein sequences were col-
lected from various countries around the world over the period from December 2019 
to December 2021. This data was pre-processed using one virus found in Wuhan, China 
in January 2020 as the reference sequence. Each data entry consisted of 3,721 attributes, 
and the dimensions of the data were reduced using t-SNE to visualize the data. Then, 
the data was clustered and labelled using DBSCAN. Through the t-SNE data dimension 
reduction technique, the dimensions of our data were reduced to two, and a value of 
3,000 was used as the learning rate parameter. For the DBSCAN clustering technique, 
the eps and minimum sample parameters were chosen as 2 and 10, respectively, as these 
values produced the best clustering results. In the selection of variable importance for 
the random forest classifier, 80% of the data was used as training data and the remaining 
20% was used as validation data to see whether the model actually classified each cluster 
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well. The verification results showed that the variables selected by the random forest 
technique were important variables. If the proposed method can show how viruses form 
significant clusters, this will make it possible to directly check how active variations of 
SARS-CoV-2 have progressed. Further, the country as well as occurrence month and 
year information tagged in the data can be used to determine when and where these 
variations occurred. The collected data cover samples from a total of 125 different coun-
tries, with 56,139 data points from the United Kingdom, accounting for 25% of the total, 
and the second-most observations coming from the U.S., making up about 19% of the 
total. Countries such as France, Mexico, Australia, and India followed in terms of the 
number of samples provided.

Clustering analysis results

After using t-SNE to reduce the dimensions of the pre-processed data into two, 
DBSCAN was used to cluster the 224,073 samples into 672 different clusters, as shown 
in Fig. 2. Next, clusters containing more than 1,120 samples, which were approximately 
0.5% of the clusters, were extracted to eliminate relatively small groups and identify 
thicker stems. However, among the small groups, the clusters containing the new vari-
ants Omicron and B.1.640 were added and displayed. In total, 41 different clusters were 
extracted in this way, and 124,387 samples were included in these extracted clusters. 
This means that over 55.5% of the total data was included in the top 23 clusters, which, 
again, only account for 6.1% of all clusters. The proposed method confirmed that differ-
ent variants form a cluster when the colour corresponding to each variant in Fig. 2a was 
applied using GISAID data that gave variant information combined. Moreover, despite 
the fact that large amounts of data were clustered without labels, the data formed many 
distinct clusters, thus confirming that numerous variations have already occurred in the 
spike proteins. It was also confirmed that only a small number of clusters became wide-
spread. To examine the characteristics of each cluster, information such as where and 
when the virus occurred was organized and examined.

Table  1 shows the types of viruses that make up clusters consisting of more than 
1,120 data. Viruses that were labelled as “Not Known”, indicated that the viruses did 
not have virus mutation information. Therefore, these viruses could be the reference 
viruses first discovered in December 2019, or they could be the Alpha, Beta, Delta, 
or Omicron mutations. By examining at the time when the virus was identified or 
by searching at viruses that bind together in the same cluster, it was possible to fig-
ure out what kind of mutation these "Not Known" viruses were. Viruses in cluster 
6, which consisted only of “Not Known” viruses, were the only group that contained 
viruses discovered in 2019, and could be considered as reference viruses. Groups 61, 
121, 130, 134, 138, 140, etc., can all be considered as Delta variants because the only 
Delta variant was bound with the “Not Known” virus. In addition, it can be seen that 
cluster 536 was a recently discovered mutation, and clusters 650 and 651 were Omi-
cron mutations. It can be seen that most of the clusters except for some clusters such 
as 9 and 104 were grouped with data tagged with a specific variant. Although sev-
eral mutant viruses were included in groups 9 and 104, they could be regarded as 
mis-tagged because the number of specific mutations among them was very small. 
The credibility of the above interpretations was strengthened by the results shown in 
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Fig. 2 Results of clustering using Density Based Spatial Clustering of Application with Noise (DBSCAN): a 
shows clusters containing over 1,120 data points, and b shows the types of variants tagged in each virus by 
colour: In (a), it can be seen that numerous viruses gather to form a specific cluster, and in (b), it can be seen 
that one cluster tends to consist of a specific mutant virus
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Table 1 Number of viruses included in each label and degree of composition compared to total 
virus to be analysed, type and distribution of variants included in each label, and number of viruses 
included in the label by year

Labels Variant3 Year Total

2,019 2,020 2,021 Count

1 Not Known/NCBI – 2,715 – 2,715 2,715

4 Not Known/NCBI – 1,908 1 1,909 1,909

6 Not Known/GISAID – 141 5 146 2,229

Not Known/NCBI 12 2,071 – 2,083

9 Delta – – 1 1 16,896

Not Known/GISAID – 1,581 892 2,473

Not Known/NCBI – 14,202 220 14,422

42 Not Known/GISAID – 9 3 12 1,346

Not Known/NCBI – 1,325 9 1,334

61 Delta – – 19 19 2,550

Not Known/GISAID – 4 2,288 2,292

Not Known/NCBI – 233 6 239

90 490R-GH – – 1 1 3,886

Delta – 2 1,162 1,164

Not Known/GISAID – 28 2,266 2,294

Not Known/NCBI – 404 23 427

96 Alpha – – 10 10 1,147

Delta – – 18 18

Not Known/GISAID – 30 962 992

Not Known/NCBI – 120 7 127

104 Delta – – 769 769 5,024

Not Known/GISAID – 165 3,766 3,931

Not Known/NCBI – 276 46 322

Omicron – – 2 2

121 Delta – – 569 569 3,034

Not Known/GISAID – – 2,465 2,465

124 Delta – – 34 34 1,306

Not Known/GISAID – – 1,272 1,272

125 Alpha – 861 1,370 2,231 4,447

Delta – – 476 476

Not Known/GISAID – 14 1,620 1,634

Not Known/NCBI – 48 58 106

130 Delta – – 21 21 1,260

Not Known/GISAID – – 1,239 1,239

134 Delta – – 234 234 1,619

Not Known/GISAID – – 1,385 1,385

138 Delta – – 112 112 1,219

Not Known/GISAID – – 1,107 1,107

140 Delta – – 18,411 18,411 22,761

Not Known/GISAID – – 4,350 4,350

141 Delta – – 821 821 2,800

Not Known/GISAID – – 1,977 1,977

Not Known/NCBI – 1 1 2

142 Delta – – 3,637 3,637 9,165

Not Known/GISAID – – 5,528 5,528
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Table 1 (continued)

Labels Variant3 Year Total

2,019 2,020 2,021 Count

148 Delta – – 51 51 1,165

Not Known/GISAID – – 1,114 1,114

149 Delta – – 744 744 4,597

Not Known/GISAID – – 3,853 3,853

150 Delta – – 857 857 1,431

Not Known/GISAID – – 574 574

153 Delta – – 1,802 1,802 2,342

Not Known/GISAID – 1 539 540

159 Delta – – 316 316 1,229

Not Known/GISAID – – 913 913

165 Delta – – 1,049 1,049 2,303

Not Known/GISAID – – 1,254 1,254

170 Delta – 1 548 549 1,656

Not Known/GISAID – 1 1,097 1,098

Not Known/NCBI – 6 3 9

174 Delta – – 194 194 1,130

Not Known/GISAID – – 936 936

178 Delta – – 1,606 1,606 2,076

Not Known/GISAID – – 470 470

180 Delta – – 225 225 1,482

Not Known/GISAID – – 1,257 1,257

185 Delta – – 962 962 1,371

Not Known/GISAID – – 409 409

196 Delta – – 1,486 1,486 1,967

Not Known/GISAID – – 481 481

212 Delta – – 330 330 1,595

Not Known/GISAID – – 1,263 1,263

Not Known/NCBI – 2 – 2

226 Delta – – 13 13 1,125

Not Known/GISAID – – 1,112 1,112

232 Delta – – 257 257 1,253

Not Known/GISAID – – 996 996

240 Delta – – 4,266 4,266 4,999

Not Known/GISAID – – 733 733

244 Alpha – – 9 9 1,226

Delta – – 1,077 1,077

Not Known/GISAID – 1 133 134

Not Known/NCBI – 3 1 4

Omicron – – 2 2

469 Delta – – 2,010 2,010 2,047

Not Known/GISAID – – 37 37

536 490R-GH – – 111 111 127

Not Known/GISAID – – 16 16

596 Delta – – 1,368 1,368 1,509

Not Known/GISAID – – 133 133

Omicron – – 8 8

616 Delta – – 1,230 1,230 1,232

Omicron – – 2 2
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Fig. 3, which showed the similarity between each cluster. Figure 3 is a similarity heat 
map between clusters drawn by arranging clusters with high similarity to each other. 
Viruses formed nine clusters according to their similarity, and each cluster was given a 
name from A to I. Table 2 shows how many viruses belonging to each group occurred 
each quarter. Viruses from group A, including cluster 6, which were first discovered 
in December 2019 and peaked in the second quarter of 2020, whereas viruses from 
group B began to be discovered in the second quarter of 2020 and peaked in the third 
quarter. Next, in the case of cluster 125 including the alpha mutation first discovered 
in the UK, as shown in Fig. 2, although the alpha and delta mutations showed distinct 
clusters, they were organized into the same cluster. Therefore, in cluster 125, only the 
data tagged with the alpha mutation were separately extracted and the experiment 

Table 1 (continued)

Labels Variant3 Year Total

2,019 2,020 2,021 Count

650 Omicron – – 814 814 814

651 Omicron – – 398 398 398

Fig. 3 A heatmap showing the similarity between each virus cluster and clusters similar to each other 
in groups A to I (the brighter the more similar; the darker the more dissimilar): Clusters 6, 9, and 42 with 
high similarity within group A were confirmed to be the reference virus first discovered in Wuhan, China in 
December 2019, 125 with low similarity is the Alpha variant called the British variant, viruses of group B are 
viruses with no variant information discovered in Oceania since mid-2020, viruses of groups C, D, E, F, G are 
Delta variant, viruses of group H are 490R-GH, and finally, group I of the virus was identified as an Omicron 
variant
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was conducted. Then, it can be seen that viruses belonging to groups C, D, E, F, and 
G, including clusters of viruses currently classified as Delta variants, were discovered 
little by little in the first quarter of 2021, after which the number exploded in the sec-
ond quarter. Interestingly, the virus tagged with the ’Delta’ variants was divided into 
several clusters and groups. In response, we examined whether there are differences 
causing the variants classified similarly as ’Delta’ to be divided into several different 
clusters and groups, and further investigate whether the viruses belonging to differ-
ent groups than the first discovered virus group were caused by changes in any par-
ticular part of the virus. An experiment was conducted to see if it was divided into 
several clusters and groups. Subsequently, it can be seen that the 490R-GH mutation 
and the Omicron mutation, which began to be discovered in the fourth quarter of 
2021, form different clusters. Each of the variants defined so far was classified due to 
mutations in a specific part of the virus, and the appearance of groups according to 
variants in the figure proved that the proposed model classified mutant viruses well. 
Furthermore, even though the virus is classified as a variant of the same kind due to a 
certain large characteristic change, subtypes due to other minor mutations may occur. 
A variant called Delta Plus appeared as a new branch from the Delta variant, and 656 
and 269 mutations were observed, respectively [44]. Therefore, it is very important 
to identify and analyse subtypes due to small changes in the same variant group as 
shown in the results of Fig. 3.

Feature importance extraction analysis results

The random forest and shapely value (SHAP) were used to extract which part of the data 
was characteristic of each cluster. Here, 80% of the data was used as training data for 
the model while the remaining 20% was used to verify that the model was able to cor-
rectly classify the input data into appropriate clusters. In both the random forest and 
shapely value models, the classification accuracy for each cluster was over 99%, so it can 
be considered that the features extracted through the random forest or shapely value 
were important. Using feature importance extraction models, an attempt was made to 
determine which codons and amino acids played a major role in distinguishing each 
group. The cluster with the largest number of clusters in each group was designated as 
the cluster representing the group, and the differences between the clusters were exam-
ined. That is, the differences between clusters 9, 1, 125, 140, 536, and 650 were analysed 
through feature importance extraction models.

The random forest results for the four different clusters are shown in Fig. 4. The heat 
maps shown in Fig. 4 indicated which parts of the data played a decisive role in divid-
ing the clusters. The closer a colour is to white in the heatmap, the more important that 
feature is in splitting the cluster. By contrast, the closer the colour is to black, the smaller 
of a role that feature plays. All points were expressed as values between 1 and 0, and the 
sum of the 3,721 values was 1.0. The value of each point indicated the percentage of the 
contribution made by the corresponding feature when dividing the cluster. Each heat-
map showed the features that played a big role when the corresponding column cluster 
and row cluster were divided.

Feature importance extraction using SHAP was performed to compare the analysis 
results of the latest feature importance extraction technique and the classic random 
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forest technique. The SHAP is one of the latest feature importance extraction techniques 
based on deep learning and is widely used recently as a tool to explain the prediction 
results of deep learning-based models. Figure 5 shows the result of feature importance 
extraction through SHAP using deep learning-based Light Gradient Boosting Method 
(LGBM). Figure 5 overlays feature importance and feature effects. Each point in Fig. 5 
is a Shapley value and observation value for a feature. The x-axis was determined by the 
Shapley value and the y-axis was determined by the feature. Colour indicated the value 
of a feature from low to high, and as overlapping points were nested in the y-axis direc-
tion, the distribution of Shapley values per feature can be seen. Also, the features were 
sorted according to their importance. Each feature was indicated by a number, and each 
number indicated an index in Table 3. That is, each number indicated a codon matching 
the index in Table 3.

We examined at the codon differences between virus 9, which belongs to cluster A 
and contains a reference sequence that originally appeared in Wuhan, China, and other 
groups using Random Forest and SHAP. Table 4 shows the feature importance extracted 
from each feature importance extraction model. The higher the priority value in both 
models, the more important the feature is. In general, deep learning-based predictive 
models showed better performance when a large amount of data was collected. The two 
models showed similar results in clusters 1, 125, and 140 with a large number of data. 
However, in the case of new variants, 490R-GH and Omicron, the performance of the 
SHAP model using deep learning-based LGBM appeared to be poor because the num-
ber of data was relatively small. Therefore, subsequent analysis was conducted based on 
the results of using a random forest, which showed relatively good performance even 
when the amount of data was small.

In Table  4, it can be seen that the virus in cluster 1 showed changes in Glutamine 
(CAG) and AGC (Serine), which was the next-most prevalent after the virus in cluster 

Fig. 4 Features that played a large role in the classification of each cluster extracted through the random 
forest (the closer to white, the greater the role): 3,721 variables were displayed as 61 × 61 images, and 
features that played a major role in classifying each cluster are displayed in bright colours. It can be confirmed 
that only a small number of features are mutated between clusters 9 and 1, and it can be confirmed that 
many mutations are occurring among other clusters
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9 was first found. The changes in ACA (threonine), GCU (alanine), CCU (proline), AAU 
(asparagine), GAC (aspartic acid), UCA (serine), GAU (aspartic acid), CUC (leucine), 
GGU (glycine) were detected in the group in which only the Alpha variant was extracted 
from cluster 125. Changes in CCU (proline), CUG (leucine), GGU (glycine), ACU (thre-
onine), GAU (aspartic acid), and ACA (aspartic acid) were detected in cluster 140, which 

Fig. 5 Features that played a major role in the classification of each cluster extracted through Shapely Value 
(SHAP): Each graph shows which codon change had a great effect on distinguishing cluster 9 from other 
clusters, and from the top, they are listed in order of the most influential variable among 3,721 variables. In 
other graphs other than the first graph comparing clusters 9 and 1, the smaller the variable value is, the closer 
to the 9th cluster, and the larger the variable value, the closer to the other clusters. Conversely, in the first 
graph, the larger the variable value, the closer it is to cluster 9, and the smaller it is, the closer it is to cluster 1

Table 3 Codons according to the index number: The codon number shown in each graph in Figs. 4 
and 5 indicates the codon corresponding to the index number in the table

Index Codon Index Codon Index Codon Index Codon Index Codon Index Codon

1 UUU 12 AUG 23 CCA 34 UAC 45 GAA 56 AGA 

2 UUC 13 GUU 24 CCG 35 CAU 46 GAG 57 AGG 

3 UUA 14 GUC 25 ACU 36 CAC 47 UGU 58 GGU 

4 UUG 15 GUA 26 ACC 37 CAA 48 UGC 59 GGC 

5 CUU 16 GUG 27 ACA 38 CAG 49 UGG 60 GGA 

6 CUC 17 UCU 28 ACG 39 AAU 50 CGU 61 GGG 

7 CUA 18 UCC 29 GCU 40 AAC 51 CGC 

8 CUG 19 UCA 30 GCC 41 AAA 52 CGA 

9 AUU 20 UCG 31 GCA 42 AAG 53 CGG 

10 AUC 21 CCU 32 GCG 43 GAU 54 AGU 

11 AUA 22 CCC 33 UAU 44 GAC 55 AGC 
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represented the Delta variation with the highest global prevalence (threonine). 490R-
GH, CCU (proline), ACU (threonine), GAU (aspartic acid), GAC (aspartic acid), AAU 
(asparagine), AGA (arginine), CCA (proline), UUU (phenylalanine), AUU (isoleucine), 
UAU (tyrosine), and GAG (glutamic acid) were found in Cluster 536, the most recently 
discovered mutation. Lastly, changes in AGC (serine), GGU (glycine), ACU (threonine), 
GAC (aspartic acid), AAU (asparagine), and AAG (lysine) were observed in the Omicron 
mutation, which has recently become a hot topic.

Discussion
In our study, we vectorized sequence data of the portion corresponding to the spike 
protein of SARS-CoV-2 from a large sample cohort around the world. By applying vari-
ous machine learning techniques to this vectorized data, it provides information on 
how each sequence data forms a group according to the difference in sequence, and 
what codons are changed in viruses constituting different groups. Various characteris-
tics appear through mutations in different codons for each mutation, and these muta-
tions affect various characteristics such as virus transmission power and immunity. For 
example, mutation of important residues in the RBD of the spike protein can enhance 
the interaction and thus increase the ability of virus to spread [4]. Also, as described by 
McCallum et al., mutations in the spike protein may make the vaccine or treatment less 
effective [4]. Repetitive mutations in the same region are also found in several viruses, 
which, according to Van Dorp et al., is likely a positive selection phenomenon indicat-
ing adaptation of SARS-CoV-2 in the human host [45]. In addition, some recurrent 
mutations may have been induced by host immunity, showing no evidence of increased 
viral transmission [46]. However, a significant proportion of the detected anomalies are 
indicative of individual events based on what can be inferred from the available data. 
This indicates the need to further collect SARS-CoV-2 isolates and monitor for emerging 
mutants [47]. Therefore, it is very important to understand the characteristics of each 
virus by analyzing which codon changes were found in existing and emerging mutations.

The mutation of each codons found in various groups identified using suggesting 
method is compared to results of several related prior studies to verify if the experimen-
tal results of this study are reasonable. According to [4, 45], glutamine and serine both 
play important roles in improving ACE2 binding. It can therefore be inferred that the 
group B virus spread more rapidly than existing viruses at the time due to mutations in 
its glutamine and serine.

According to Gómez, C. E., Perdiguero, B., and Esteban, M., the Alpha variant was 
found to have amino acid modifications within six major residues of the receptor bind-
ing domain (RBD) [46]. Therefore, it can be inferred that the cluster 125 virus, in which 
the same 6 amino acid mutations were found as shown in Table 4, was the Alpha variant. 
In addition, in this study, threonine and serine mutations were distinguished as impor-
tant features in the alpha variant, and a previous study suggested that the serine and 
threonine mutations found in the alpha variant enhance the local hydrogen bonding net-
work, thereby enhancing the binding affinity for ACE2 [47]. Therefore, it can be consid-
ered that the proposed method captures the important mutations of the Alpha variant 
well. After the alpha variant was generated and propagated, a delta variant with very 
strong diffusivity was discovered.
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As shown in Table  4, the CCU (proline) mutation in the Delta variant is the amino 
acid that played the biggest role in distinguishing the delta from the reference. A recent 
study related to the delta variant asserted that proline mutation played a very impor-
tant role in changing the dominating variant into delta [48]. Also, the changes in CUG 
(leucine) and ACA (threonine), which have the next highest feature importance, were 
used as indicators to classify delta variants [49, 50]. It is known that a specific region of 
the N-terminal domain of the spike protein was vulnerable to antibody recognition and 
attack, and the accumulation of mutations in these antigenic supersites increased the 
possibility of immune escape [51]. However, since a mutation was detected in GGU (gly-
cine) belonging to the region considered to be an antigenic supersite in the Delta vari-
ant, it was one of the most important parts of vaccine-related research [44]. This glycine 
mutation could also be extracted as an important feature in the results of this study. As a 
result, it was discovered that the suggested method correctly identified the delta variant 
that caused the most confirmed cases after the reference virus, as well as the codon that 
played a key role in delta variant differentiation.

At the end of 2021, new variants Omicron and 490R-GH were reported. Through this 
study, it was confirmed that both variants exhibited distinct characteristics and consti-
tute different clusters. In Omicron, as shown in Table 4, AGC, UCA (serine) and ACU, 
ACA (threonine) mutations that enhance the binding affinity for ACE2 by enhancing the 
local hydrogen bonding network in the Alpha variant were identified. In addition, as a 
mutation in GGU (glycine) related to immunity was also observed, it was expected that 
the Omicron variant would have much higher spreading power than the existing refer-
ence virus.

In the new variant 490R-GH, as shown in Table 4, CCU, CCA (proline), which played 
a major role in dominating the Delta variant, and ACU (threonine), which was used to 
differentiate the Delta variant, were found. While many of the new mutations closely 
resembled the Delta variant’s features, aspartic acid, asparagine, and arginine were also 
detected, necessitating further research into how these additional mutations may affect 
them.

Conclusion
In this study, the sequence data of the SARS-CoV-2 virus was pre-processed into numer-
ical data, vectorized, and visualized in two-dimensional space that can be more easily 
interpreted by humans. Data and similar viruses were clustered using the method pro-
posed in this study. The approach compared sequence data to selected reference data, 
which in this example is the original virus, and then calculated the similarity between 
the target and reference sequences for each region, with the results expressed in a matrix 
form. It was feasible to vectorize the virus sequences using a variety of techniques before 
performing a clustering analysis because this type of data may be quantified. This made 
it easier to observe the occurrence of virus mutations.

One of the most noteworthy parts of this study is that each sequence data was digi-
tized and vectorized through the proposed pre-processing method. Through digitization 
and vectorization of sequence data, it was possible to consider a method that actively 
utilizes computing power such as machine learning for numerous sequence data. By 
applying a machine learning technique that can handle large amounts of data at once to 
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sequence data analysis, we were able to take advantage of several advantages over con-
ventional methods. Existing tree-based methods have limitations in comparative analy-
sis of large amounts of data. However, the proposed method analysed a large amount of 
data at once and used only computing power and several predictive models in a more 
objective way to distinguish variants and extract major amino acid mutations. Through 
the cluster analysis results, the formation of clusters between various variants can be 
confirmed in a two-dimensional graph, and the observed major amino acid mutations 
have been shown to be quite accurate through the results of recent related studies. Fur-
thermore, it was confirmed that the Omicron and 490R-GH variants, which were dis-
covered relatively recently and did not have a lot of data, were distinguished well. Our 
approach also has the advantage of being able to quickly identify which parts of the virus 
have mutated and allows us to easily examine the differences between mutated groups. 
In this study, we only focused on the nine largest groups of the mutated virus with the 
highest number of cases; however, we are continuously collecting data and analysing it 
to find new mutations. Since the proposed method can handle a wide variety of data 
sequences, it can be used for all kinds of diseases, including influenza and SARS-CoV-2. 
As such, we expected that the proposed method has the potential to become one of the 
most effective methods for the analysis of disease mutations.

In summary, through the proposed method, it is possible to quickly and accurately 
identify a virus through dimensionality reduction and clustering analysis without exam-
ining countless virus sequences one by one. In addition, as discussed in the discussion, it 
is not limited to simply determining which virus a virus is, but it is also possible to deter-
mine which part of the sequence in which each mutation occurs. So far, there has been 
no research case in which viral sequence data is vectorized and analyzed using various 
predictive models, including machine learning techniques, like the method proposed. 
Furthermore, there was no tool that could scatter a large amount of data in two dimen-
sions to see how viruses form a community. The proposed methodology is a very origi-
nal method that compares several viruses with a single reference virus and quantifies 
sequence data based on virus similarity, and is a methodology that serves as a corner-
stone for objective analysis based on a large amount of sequence data.

Through this study, it was possible to identify which codon and amino acid mutations 
are important in various variants, but there was a problem that needs to be understood 
through other additional experiments to determine what role these parts play. Therefore, 
in future research, it is necessary to extract the RBD or Furin Cleavage Site, which has 
a great influence on the spread of the virus, or the NTD-Antigenic Supersite, which is 
highly related to immunity, and conduct the experiment. Furthermore, it is believed that 
more research is needed to determine what features exist across variations that share 
mutations in the same amino acid.
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