
RESEARCH ARTICLE

Bayesian hierarchical models for disease

mapping applied to contagious pathologies

Sylvain Coly1,2, Myriam GarridoID
1*, David Abrial1, Anne-Françoise Yao2
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Abstract

Disease mapping aims to determine the underlying disease risk from scattered epidemiolog-

ical data and to represent it on a smoothed colored map. This methodology is based on

Bayesian inference and is classically dedicated to non-infectious diseases whose incidence

is low and whose cases distribution is spatially (and eventually temporally) structured. Over

the last decades, disease mapping has received many major improvements to extend its

scope of application: integrating the temporal dimension, dealing with missing data, taking

into account various a prioris (environmental and population covariates, assumptions con-

cerning the repartition and the evolution of the risk), dealing with overdispersion, etc. We

aim to adapt this approach to model rare infectious diseases proposing specific and generic

variants of this methodology. In the context of a contagious disease, the outcome of a pri-

mary case can in addition generate secondary occurrences of the pathology in a close spa-

tial and temporal neighborhood; this can result in local overdispersion and in higher spatial

and temporal dependencies due to direct and/or indirect transmission. In consequence, we

test models including a Negative Binomial distribution (instead of the usual Poisson distribu-

tion) to deal with local overdispersion. We also use a specific spatio-temporal link in order to

better model the stronger spatial and temporal dependencies due to the transmission of the

disease. We have proposed and tested 60 Bayesian hierarchical models on 400 simulated

datasets and bovine tuberculosis real data. This analysis shows the relevance of the CAR

(Conditional AutoRegressive) processes to deal with the structure of the risk. We can also

conclude that the negative binomial models outperform the Poisson models with a Gaussian

noise to handle overdispersion. In addition our study provided relevant maps which are con-

gruent with the real risk (simulated data) and with the knowledge concerning bovine tubercu-

losis (real data).

Introduction

Disease mapping aims to determine the underlying disease risk from scattered data [1] and to

represent it on a smoothed colored map [2]. This methodology has been introduced by Besag

[3] to study the distribution of different cancers in the USA [4]. Since then, its scope of
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application has significantly expanded: it is used for a wide range of human and animal pathol-

ogies and also in many other fields of application (climatology, prevention of natural disasters,

etc). However, this methodology keeps being dedicated to non-infectious diseases whose inci-

dence is low and whose distribution is spatially (and eventually temporally) structured. The

distribution of cases must be quite similar to a Poisson distribution, thus the incidence of the

studied phenomenon should be low. As disease mapping is a spatiotemporal smoothing

method, naturally data must be spatially and temporally dependant. As this approach is

applied on non-contagious pathologies, the spatial and temporal correlations are classically

due to the structure of unknown environmental cofactors. They may also be linked to the

repartition and structure of the population.

Disease mapping methodology is based on Bayesian inference, which aims to estimate

parameters using the realization of events and some assumptions concerning the studied phe-

nomenon. These assumptions can include some covariates and processes which handle the

structure of the risk, according to the specific knowledge of the epidemiologists, in order to fit

the model to the problem. The Bayesian framework particularly suits disease mapping issues

as it models limited data; indeed for each period and each area, a single value is recorded.

Since its introduction, the disease mapping methodology received many major improvements

to adapt to other contexts: modeling various rare non-infectious diseases [5, 6], taking into

account environmental and population covariates [7–10], integrating the temporal dimension

[11, 12], dealing with missing data [13–15] or overdispersion [16–18], etc.

An important development would be to apply this approach to rare infectious pathologies.

If for frequent diseases, representing the cases over the population provides very informative

maps, it is not the case for rare pathologies. In fact, the few cases bring very limited informa-

tion. For non-infectious phenomena, disease mapping methodology provides relevant risk

maps handling the spatial (or spatiotemporal) correlation of the data implied by factors related

to the environment or the population. In the context of a contagious disease, the outcome of a

primary case can in addition generate secondary occurrences of the pathology in a close spatial

and temporal neighborhood. In this case, besides the correlations due to external factors,

extra-dependencies are due to contagion (direct transmission) and/or indirect transmission

(for diseases vectorized for instance by ticks, flies, mosquitoes, etc). The outcome of a primary

case highly increases the probability of the outcome of secondary cases in a close spatial and

temporal neighborhood. Depending on the spatial and temporal scales, the secondary cases

may occur in the same area and during the same period, thus local overdispersion may appear,

due to the high frequence of null values and the occurrence of extreme values. The secondary

cases may also occur in the neighboring regions and/or during the following periods, thus

infectious diseases generally show higher spatial and temporal dependencies.

Other statistical methods are dedicated to the analysis of contagious data. On the one hand,

when the exposed individuals are clearly identified and when the relations between them are

well known, graphs and networks provide a relevant framework to study the spread of conta-

gious diseases. When the literature fully describes an ecological system including a pathogen

and its hosts, dynamic models are very relevant. However both of these methods cannot be

applied at a much larger scale (e.g., country), because the links between all individuals and all

the mechanisms explaining the propagation cannot be obtained. On the other hand, monitor-

ing methods of outbreaks can be used to study epidemic diseases as for instance influenza or

acute gastroenteritis. Nevertheless this approach is only relevant when the incidence of a

pathology is high enough. As a conclusion, there is a lack of statistical methods to evaluate the

risk at the scale of a country in the context of contagious diseases whose incidence is low.

The aim of our study is to propose a generic disease mapping method dedicated to rare

infectious diseases, i.e., diseases for which the outcome of a case involves the likely occurrence
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of other cases in their (spatial and temporal) neighborhood and for which the number of cases

remains quite low. In this context, data are generally locally overdispersed and strongly spa-

tially and temporally structured. We test flexible distributions at the first level to handle local

overdispersion. We also consider lots of deterministic functions and random processes to

model the spatial (and enventually temporal) dependencies. Relevant methodological choices

would provide efficient disease mapping models to describe data concerning rare infectious

pathologies. Thus we test a wide range of models in order to determine which ones are the

most adapted to handle contagion. We first recall the structure of the Bayesian hierarchical

models used in the context of disease mapping and explains our methodological choices. Then

we describe the contagious framework of our study, in particular our bovine tuberculosis data

and the way we simulated other datasets, congruent with an infectious pathology. In our

results we show the best models to fit contagious data and highlight the interest of such an

approach in spatial epidemiology. We conclude giving a short synthesis concerning our results

and points out some relevant prospects.

Materials and methods

Bayesian hierarchical models for disease mapping

Three-level Bayesian hierarchical models are usually used in the context of disease mapping.

The first level defines the probability distribution which rules the outcome of the cases. Its

parameters depend on the size and the structure of the population [15, 19, 20] and on the rela-

tive risk in each area and for each period. The second level defines this risk and appears as a

combination of environmental cofactors [7–10], of processes which handle the spatial correla-

tions, and of an unstructured heterogeneity of data. In this context, the spatial (and eventually

temporal) dependencies can be considered as the expression of unknown covariates. The third

level defines the prior distributions of all the parameters introduced in the first two levels.

Finally, we deal with model selection, since many models are tested.

Since the first works on this topic, the components of the three-level Bayesian hierarchical

models have considerably evolved to address different issues: inclusion of environmental and

population covariates, integration of the temporal dimension, adaptation to missing or over-

dispersed data. More precisely, various distributions are used at the first level to describe the

outcome of the phenomenon of interest, and lots of deterministic functions and stochastic

functions have been tested at the second level to describe the structure of the risk. We aim to

apply disease mapping to contagious pathologies. In the general context of infectious diseases,

the secondary cases can occur in the same area and during the same period, or in a close spatial

and temporal neighborhood of the primary case. Other specific transmission modes (influ-

enced for instance by the behavior of the individuals and/or their movements) can also have

an important influence on dissemination. But they are disease specific and would not be con-

sidered in this article as we want to study a generic methodology.

The contagion can imply both local overdispersion (when secondary cases are in the same

geographical unit at the same time) and a strong spatial and temporal structuration (when sec-

ondary cases are in a close spatial and/or temporal neighborhood). Therefore the models con-

sidered to handle contagion must take into account both aspects. On the one hand, the local

overdispersion can be handled by overdispersed distributions (in extenso distributions which

allow values of mean and variance to be different) and/or by random processes which model

the individual heterogeneity. On the other hand, high spatial (and enventually temporal) cor-

relations are handled by functions (of position and/or time) and/or structured random pro-

cesses at the second level at the Bayesian hierarchical models. In the following sections we aim
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to present the main modelization possibilities and to highlight which methodological choices

seem relevant to address infectious diseases.

Another specificity of our study is that we do not focus on a specific disease, even if we illus-

trate this study with bovine tuberculosis data. In fact we neither try to explain the causes nor to

define the risk factors of this disease, thus we do not consider cofactors in our models. More

precisely we consider no stratification of the population by covariates at the first level of the

hierarchical models, and no environmental covariates at the second level. However, if one

focuses on a given precise phenomenon, one can easily add relevant cofactors, as in most of

the studies in the literature.

In that follows, we consider a studied region A divided into n geographical areas {Ai}i2[[1,n]].

The duration of study is divided intom periods {τj}j2[[1,m]]. We assume that Y = (Yij)ij is a set

such that Yij is the number of cases in Ai (i 2 [[1, n]]) for the period τj (j 2 [[1,m]]). Most of

the analyses in the literature consider data aggregated over administrative areas, even if they

are very irregular. Indeed these have very different shapes and sizes, and they are obviously

non-equivalent. In this study, we consider spatial data which are aggregated in small hexagons

in order to avoid this potential bias.

Probability distribution of cases (first level). The first level sets the distribution Dist of

the number of observed cases Yij for any (i, j) 2 [[1, n]] × [[1,m]],

Yij � Dist:

The mean of this distribution is

EðDistÞ ¼ Eij:Rij

where Eij is the expected number of cases and Rij is the relative risk in the area Ai during the

period τj. Eij is usually calculated under the assumption of a constant disease rate in A, so this

value is proportional to the size of the population in Ai, which is supposed to be constant dur-

ing the time period.

The Poisson and binomial distributions have been firstly used at the first level in the context

of disease mapping. As the population size is large and the incidence of the studied pathologies

is low, the Poisson distribution is particularly suitable to model such data. Even if the binomial

distribution was employed in several early disease mapping studies, most of the spatiotemporal

studies still model cases as the realization of a Poisson distribution

Yij � PðmijÞ

[11, 21, 22]. Besides this distribution being the most commonly used to model count data, it

especially appears as the standard distribution in the disease mapping setting. Moreover, it

involves only one parameter and less complexity. We deal with the Poisson distribution in

order to compare classical models to the ones we particularly propose. Nevertheless other dis-

tributions have been tested in several studies to handle various problems coming from the

data, such as for instance overdispersion, missing values, under-detection of the pathology,

etc. In particular, two (or more) parameter distributions (negative binomial [16, 17], general-

ized Poisson [18], etc) have been tested to handle the potential overdispersion of data. This

overdispersion can result in the outcome of extreme values and in the high frequence of null

values. Even if the Poisson distribution is not really adapted to overdispersed data, the unstruc-

tured heterogeneity is modeled, in many studies, at the second level with a Gaussian white

noise. In the context of rare infectious pathologies (we deal with), the outcome of secondary

cases in the same geographic area and during the same period may increase the local overdis-

persion; thus, we test a two-parameters distribution, which would be more flexible and more
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adapted to handle locally overdispersed data. We consider the negative binomial distribution

(NB):

Yij � NBðmij; mij:sijÞ

where sij is the local overdispersion. The negative binomial distribution has been used in sev-

eral studies [17, 23], especially for data with high variability. The NB model may better fit the

data as the incorporation of a second parameter increases its flexibility, but it also increases the

global model complexity. Zero-Inflated (ZI) distributions have been considered in order to

deal with missing data [13–15]. As we do not focus on a given pathology, we do not expect

missing values, thus in our context the ZI distributions do not appear as the most relevant

ones. However, if under-detection of the studied disease is suspected, one can easily replace

the Poisson and the negative binomial distributions with ZI distributions.

The Bayesian framework allows using the scientific knowledge concerning the disease of

interest, especially concerning the links between the pathology and personal factors (sex, age,

ethnic origin, etc). Indeed, these factors can be taken into account at the first level of the model

[20, 24]. If the structure of the population is different in the subdivisions of the area of interest,

and if a population cofactor has a significant influence on the outcome of the pathology, the

population can be stratified and the resulting data are standardized by categories.

Structure of the risk (second level). In the framework of disease mapping studies, the

second level of Bayesian hierarchical models is dedicated to the environmental cofactors

related to the pathology of interest, and to the remaining structure of the risk Rij. More pre-

cisely, at this level, ln(Rij) is defined as the sum of covariates and terms which take into account

the spatial and/or temporal correlations. Thus the log-linear model is defined by

lnðRijÞ ¼ CovðijÞ þ Uij þ Tij þ Vij þ �ij;

where Cov(ij) is a combination of (generally fixed) effects due to the known cofactors which

can vary among both time and space, Uij, Tij and Vij respectively describe the spatial, temporal

and spatiotemporal structuration of data, and �ij handles the residual unstructured heterogene-

ity of the distribution of the cases. This log-linear combination of spatially and temporally

structured terms seems relevant since, as, in our context of infectious diseases, one case

involves several other ones, neighboring in time and space.

Spatial term Uij. As all the population and environmental factors related to a disease cannot

be easily determined, even for non-infectious diseases, significant spatial dependencies subsist

in the data from neighboring regions [2]. Thus, most of the disease mapping studies focus on

the determination of the most relevant spatial processes. A spatial trend has been considered

for Uij [11], however it implies a strong a priori on the distribution of the risk. A classification

of the region into areas showing different risk levels has also been tested [25]; this approach

seems particularly relevant if one suspects a strong influence of an environmental cofactor.

Many spatial processes have been introduced to model spatial correlations without making

assumptions concerning the repartition of the risk. Thus various Conditional AutoRegressive

processes (CAR) have been created for Uij: the Intrisic AutoRegressive process [26] the Besag-

York-Mollie model [27], Cressie’s model [28] and Leroux’s model [29]. These CAR models are

the most popular terms to handle spatial correlations and to provide smooth maps of the risk.

Temporal term Tij. Handling the temporal evolution of the geographical distribution of the

cases has been one of the major improvements of the disease mapping methodology [11, 12].

Since 2000, most of the studies in the literature have integrated temporal components. Initially,

deterministic functions of time have been tested for Tij: 1) the temporal trend [11], 2) polyno-

mial functions of time [30] and 3) splines [21]. Even if more flexible functions have then been
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tested for Tij, they impliy strong assumptions concerning the temporal evolution of the pathol-

ogy. Moreover, for these deterministic functions, the disease risk is supposed to follow the

same evolution in all the geographic areas. Thus, stochastic processes have also been tested. In

fact, they appear relevant for contagious data as the outcome of a case highly increases the

occurrence of other cases in the neighborhood, when the evolution of the risk is not similar for

every areas as in the case of contagion. Temporal Random Walks (RW) [10, 31] have been

used to model Tij. Finally more and more complicated AR processes have been considered [17,

22], including temporal CAR processes [15, 31]. In this case, each period has for only neighbor

the previous period. These processes seem more flexible, and thus more relevant to model ran-

dom temporal evolutions and to smooth the risk over time. Nevertheless some of these pro-

cesses (splines, polynomial functions, high order AR processes) depend on many parameters;

it can be difficult to estimate them if the study period is short.

Spatiotemporal term Vij. In earlier analyses, the spatiotemporal term consists in a linear

function of time Vij = ai.τj whose regression coefficient ai 2 R (for i 2 [[1, n]]) depends on the

location [11, 21, 32]. Such a spatiotemporal interaction corresponds to a strong assumption,

since it models a smooth temporal variation from the initial map; it results in quite similar risk

values for neighboring regions but allows distinct temporal evolutions for each area. However,

most of the studies which model the spatiotemporal interaction use stochastic processes, espe-

cially temporal versions of spatial terms for Vij. Indeed, Nobre (2005) tested the relevance of

Intrinsic AutoRegressive (IAR) processes with variance depending on the period [33]. In the

same way, spatial CAR terms which vary over time have been introduced for Vij in some stud-

ies [7, 8, 24]. They seem able to model flexible evolutions of the risk in different regions. How-

ever they do not appear well-adapted to model a diffusion of the risk as they do not consider a

real spatiotemporal neighborhood. Few publications [34–36] proposes a particularly relevant

approach to model propagation as it assumes the influence of past values measured in the

neighborhood for the estimation of the risk [34].

Spatial and temporal terms to handle infectious diseases. In the context of contagion, a case

may involve several other ones, close in time and space; thus the contagion may result in a

reinforcement of the spatial and/or temporal structure. For this reason, we particularly want to

test the relevance of spatial, temporal and spatiotemporal processes in the structure of the risk.

To avoid making strong assumptions on the spatial or temporal evolution of the studied dis-

eases, we ignore all the deterministic functions of time or space. We consider spatial, temporal

and spatiotemporal Conditional AutoRegressive (CAR) processes since they are particularly

convenient to produce smoothed maps when the risk is well structured. Moreover CAR pro-

cesses are the most popular approach to model spatial correlations. In addition, we ignore a
priori how the heterogeneity of the risk is structured, thus it seems relevant to consider similar

processes for each term Uij, Tij and Vij. Then we consider

lnðRijÞ ¼ Uij þ Tij þ Vij þ �ij

and test all its sub-models, where �ij handles the unstructured heterogeneity and Uij, Tij and Vij
are CAR processes expressed as

Uij � N
X

i02di

Ui0j=CardðdiÞ; s1

 !

;

Tij � N
X

j02dj

Tij0=CardðdjÞ; s2

0

@

1

A;
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Vij � N
X

ði0 ;j0Þ2di�dj

Vi0 j0=ðCardðdiÞ:CardðdjÞÞ; s3

0

@

1

A;

where di ¼ fi0 2 ½½1; n��=AiRsAi0 g, dj ¼ fj0 2 ½½1;m��=tjRttj0 g and ðs1; s2; s3Þ 2 ðR
�

þ
Þ

3
. Rs and

Rt are respectively defined as the spatial and temporal neighborhood relations, i.e., AiRsAi0 ,
Ai and Ai0 are adjacent, and tjRttj0 , tj and τj0 are adjacent. For each period, we choose as the

temporal neighbors both the past and the future periods. Indeed in the framework of retro-

spective analyses, considering both past and future values provides more information and

leads to more robust estimates. Following this idea and the approach of Knorr-Held, we pro-

pose a spatiotemporal CAR process for which each value is influenced by the past and the

future values in the spatial neighborhood.

Unstructured heterogeneity �ij. In most of the studies, the linear predictor includes a Gauss-

ian noise with a constant variance to take into account the individual unstructured heteroge-

neity [22, 31, 32]. Data related to infectious pathologies are particularly overdispersed. A

Gaussian term whose variance depends on the period and the region has been tested to model

particularly strong heterogeneity [34, 37], however it implies a very high number of parameters

and may result in very noisy maps. Gaussian components have been also used to model struc-

tured heterogeneity by adding an aggregation effect. For instance, Abellan (2008) considered a

more flexible alternative by summing two Gaussian variables whose variance is very different

[38]. Such a term seems relevant when the areas or the period can be divided into two different

classes. We choose the Gaussian white noise

�ij � N ð0; s4Þ;

where s4 2 R
�

þ
, to model the overdispersion of the data. This term is considered in the litera-

ture as a relevant approach to model the unstructured heterogeneity. To take into account the

local heterogeneity, the relevance of both the binomial negative distribution and the Gaussian

noise can be compared.

Weights. In his studies, Cressie introduced weight coefficients [28] for the structural com-

ponents in order to quantify the contribution of each structural component [37]. Such compo-

nents can facilitate the model fitting but can also increase model complexity. Each of the CAR

terms we consider may explain the structure of the risk. However, it can be complicated to

determine the contribution of each of these components. Thus, in this context, the weight coef-

ficients introduced by Cressie seem relevant [28]. They can also improve or worsen the conver-

gence of simulated MCMC (Markov Chains Monte Carlo). For these reasons we want to test

models in which the risk is

lnðRijÞ ¼ a:Uij þ b:Tij þ c:Vij þ �ij ð1Þ

together with all its sub-models, with or without all the weight coefficients, in extenso with a, b,
c equal to 0, 1 or to be estimated.

Hyperparameters (third level). The third level of Bayesian hierarchical models consists

in a set of conditions which determine the prior distributions of the parameters of the two first

levels. In general, no assumption based on the knowledge of the phenomenon of interest con-

cerning such parameters are assumed as they are too weakly related to this phenomenon. This

is why non-informative distributions should be considered, as for instance the infinite uniform

improper distribution. This third level can impact the convergence of the method, so authors

use distributions and values which enable and facilitate the convergence of their models. In

practice, to ease the convergence, they choose poorly informative distributions (instead of

PLOS ONE Bayesian hierarchical models for disease mapping applied to contagious pathologies

PLOS ONE | https://doi.org/10.1371/journal.pone.0222898 January 13, 2021 7 / 28

https://doi.org/10.1371/journal.pone.0222898


non-informative distributions) as for example the uniform distribution Uð0;MÞ whereM> 0

is large [39], or the Gamma distribution Γ(�, �) where � > 0 [17, 23, 34]. As Gaussian distribu-

tions are very commonly used to describe the structure of the risk, variance is the parameter

which is the most frequently used at the third level. In most of the studies, the precision param-

eter (inverse of the variance) follows a Gamma distribution whose parameters have very low

values. Thus, if τi = 1/σi, where σi is the variance of the IAR and Gaussian variables, we assume

τi* Γ(0.01, 0.01) for i 2 {1, 2, 3, 4} in accordance with studies of Knorr-Held, Lowe and Char-

ras-Garrido [17, 23, 34]. Much less numerous studies using the weight coefficients have been

realized, however some consider a Gamma distribution for the weight coefficients suggested

by Cressie [28], thus we assume a, b, c* Γ(5, 5).

Deviance information criterion. Most of the studies in disease mapping use the Deviance

Information Criterion (DIC), introduced by Spiegelhalter in 2002, as a model comparison

method [40]. The DIC is the sum of the expectation of the deviance D, calculated by DðyÞ ¼
� 2logðPðyjyÞÞ þ C (with θ the set of unknown parameters of the model, y the data, C a con-

stant), and the effective number of parameters, noted pD and defined as pD ¼ �DðyÞ � Dð�yÞ ¼
EyðDðyÞÞ � DðEyðyÞÞ by Spiegelhalter [40]. This criterion penalizes both the non-fitness

(deviance) and the complexity of the model (effective number of parameters). Models with

smaller DIC values are considered to be better. This generalization of the Akaike and the

Bayesian Information Criterions (AIC and BIC) is described as particularly efficient when the

estimations have been obtained by MCMC simulations and follow a Gaussian distribution

[41]. The DIC is used in every spatiotemporal disease mapping study [22, 24, 34] and is

described as particularly relevant to compare nested models [41]. This indicator can be easily

computed and is meant to be a good trade-off between goodness-of-fit and complexity. The

DIC appears as the only criterion dedicated to this context, in particular if the underlying risk

is not known, thus this criterion appears as the most relevant approach for our study. Some

studies show that this criterion can overfit the data and some difficulties to estimate the effec-

tive number of parameters have been identified [42–45]. However the variants of the DIC

which have been developped in order to handle its main drawbacks can be difficult to compute

or can’t be used when the underlying risk is unknown, and all of them are only used in isolated

studies. Thus we choose the DIC to compare our models.

Application of disease mapping methods to contagious data

Our models are applied on both real and simulated data. Concerning real data, we choose the

bovine tuberculosis as this pathology is quite uncommon in France and is an infectious dis-

ease. The aim of this Section is to describe our bovine tuberculosis data, and show how we sim-

ulated data in order to test our methodological choices. We then give an exhaustive list of the

models we tested and give some clues concerning the estimation of the parameters and their

computation.

Bovine tuberculosis data (France, 2001-2010). We consider the Metropolitan France

(excluding Corsica) as the study area. The country is divided into 448 hexagons (noted Ai,
with i 2 [[1, 448]]) measuring 40 kilometers. The study period extends from 2001 to 2010 and

is considered year by year (noted τj, with j 2 [[1, 10]]). We consider cattle farms as population

data. They have been provided by the DGAl (the French Directorate for Food) [46] and are

supposed to be constant over time. S1 Fig shows their repartition. We notice that most of the

cattle farms are situated in the Northwest, in the Center and in the far Southwest of the coun-

try. At the opposite, there are no cattle breedings in a large area around Paris and in the South-

east of France. We also remark that cattle farms are far fewer near the coasts and the borders

than inland.
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Bovine tuberculosis is a disease caused by a bacterium which can affect the cattle [47] and

also contaminate humans [48], principally in developing countries. In France, no human case

occurs and the country is officially free of the disease, in extenso less than 0.1% of the national

herd is contaminated. Nevertheless, this pathology remains a major challenge. In fact more

than 100 contaminated cattle farms are identified each year (Table 1). Tens of millions of

euros are spent each year to address this issue and to prevent the outcome of other cases. Some

geographical areas, in particular the Dordogne and the Côte-d’Or [49], and in a lesser extent

the Camargue and the Southwest [49], are particularly concerned by bovine tuberculosis (Fig

1). Brittany and Auvergne, which are among the principal farming regions, are rather unaf-

fected (S1 Fig) [49]. However, maintaining the officially free of TB status is a major economic

and sanitary issue.

The cases are defined as contaminated cattle farms and were recorded per year and per

hexagon. The location and the date of bovine tuberculosis cases were provided by the DGAl

[46]. Most of the cases occur in the regions identified as at risk. Nevertheless many isolated

cases occurred in other areas, in particular in the neighborhood of the Dordogne and of the

Côte d’Or. The number of cases clearly increases over the time between 2001 and 2010

(Table 1). However, the number of hexagons concerned by this pathology tends to decrease

during the same period. Moreover, more extreme values occur in the end of the period, espe-

cially in Côte-d’Or and in Dordogne. Thus cases tend to be more and more numerous and

concentrated in the previously mentioned regions over the time.

Table 1. Evolution of the number of cases.

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Number of cases 64 48 56 44 72 77 80 85 66 111

Infected hexagons 42 34 34 34 45 35 27 31 32 32

Extreme values (>5) 0 1 1 0 2 5 5 3 1 5

https://doi.org/10.1371/journal.pone.0222898.t001

Fig 1. Evolution of the repartition of bovine tuberculosis cases over the years.

https://doi.org/10.1371/journal.pone.0222898.g001
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The bovine tuberculosis data illustrates the fact that the contagion may imply high spatial

and temporal correlations (Fig 2). In fact, if a hexagon is contaminated, cases occur the year

before or the year after in this same hexagon (scheme T2 in Fig 2) with a probability about

three times higher than if the hexagon is not contaminated (T1). Besides, if a hexagon is con-

taminated, cases occur at the same year in at least one adjacent hexagon (S2) with a probability

which is twice the probability if there is no case in the hexagon (S1). Finally, if a hexagon is

free at a date, cases occur the year before or the year after in at least one adjacent hexagon

(ST1) with a probability which is two-thirds the probability if the hexagon is contaminated

(ST2).

Dealing with the overdispersion from health data is an important issue in epidemiology,

in particular for disease mapping. We remarked that bovine tuberculosis data (noted

Yij, with i 2 [[1, 448]] and j 2 [[1, 10]]) shows a high level of overdispersion: in fact

sij ¼ VarðYijÞ=EðYijÞ � 5:44. Overdispersion may be due to spatiotemporal dependencies,

however this value is particularly high and must mainly be due to the outcome of grouped

cases in some areas during some periods (local overdispersion). More precisely, if we com-

pare the distribution of cases with the quantiles of a Poisson distribution, we easily notice

Fig 2. Correlations of areas with and without cases.

https://doi.org/10.1371/journal.pone.0222898.g002
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that null values are over-represented, extreme values (> 5) occur more frequently, and there

is a lack of values equal to 1.

Simulated data. In addition of the analysis of real data, we test our method on simulated

datasets in order to check their ability to describe the real risk for a pathology of interest, and

to draw robust conclusions from our study.

Deterministic building of the true risk. We firstly set a uniform disease risk among the terri-

tory. In order to model basic contagious processes, we simulated in each dataset 3 circular dis-

ease outbreaks. More precisely, they were defined as 3 hotspots around which the risk

exponentially decreases. The radius (around 100km) has been chosen congruently with bovine

tuberculosis outbreaks which concern 3 (Dordogne) to dozens hexagons (Southwest). These 3

outbreaks (Fig 3), common to all the datasets, showed different characteristics, in order to sim-

ulate different basic scenarios:

• the first one (O1) was constant over time in risk intensity and moved from Northwest to the

Southeast at a speed of about 100km per year in order to cover a large range of the country,

see S2A Fig;

• the second one (O2) was constant over time in location (Northeast of the country) and risk

intensity, see S2B Fig;

• the third one (O3) was constant over time in location (Southwest) while its risk intensity

increased geometrically from 2001 (no outbreak) to 2005 (a maximum extend similar to O1

and O2) then decreased geometrically from 2006 to 2010, leading to a growing and then

decreasing circular outbreak, see S2C Fig.

The risk values were then standardized, so their global product was 1. The outbreaks have

been designed to test the detection ability of the models in 3 basic situations: stationarity,

move, grow and decrease.

Fig 3. Risk map with the 3 outbreaks.

https://doi.org/10.1371/journal.pone.0222898.g003
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Simulation of the cases. Cases were finally simulated using population data, the global inci-

dence of the bovine tuberculosis we used as example and resulting risk values. We distinguish

4 scenarios including or not local overdispersion (CO versus NO):

(COLR). Constant Overdispersion and Large differences in Risk levels;

(COSR). Constant Overdispersion and Slight differences in Risk levels;

(NOLR). No Overdispersion and Large differences in Risk levels;

(NOSR). No Overdispersion and Slight differences in Risk levels.

For each scenario we simulated 100 datasets using Poisson distribution when there is no

overdispersion (NOLR, NOSR) and Negative Binomial distributions in case of overdispersion

(COLR, COSR). This leads to a total of 400 simulated datasets. With the Negative Binomial,

the overdispersion value has been chosen as VarðYijÞ=EðYijÞ ¼ 5:5, in line with real data. The

ratio between the lowest and highest risks is defined as 16 for Large differences in Risk levels

(LR), and 4 for Slight differences in Risk levels (SR). The large differences are expected to be

quite easy to detect, while the slight differences may be more challenging and explore the limits

of the method. Similarly, the local overdispersion may complicate outbreak detection and the

accuracy of risk estimation.

S3 Fig shows an example of a dataset obtained for the scenario (COLR). We remark that in

this scenario, cases are very scattered. Congruently with the overdispersion implied by the neg-

ative binomial distribution, there is a high proportion of null values (� 92%) and many high

values occur (over 10% of the non-null values are over 5). Despite the low risk values in Brit-

tany for the later period, many cases occur in this region. It can be explained by the very high

population of cattle farms.

Our models to handle contagion. As we said in Section Bayesian hierarchical models

for disease mapping, we tested both the Poisson and the negative binomial distribution.

At the second level, we tested all the combinations of spatial, temporal and spatiotemporal

CAR processes and Gaussian white noise. We also tested the relevance of the weights

suggested by Cressie to quantify the contribution of each of these processes to the

global (structured and unstructured) heterogeneity of the risk values. We test 60 different

models.

For the rest of this paper, the names of the different models are built with the same follow-

ing structure:

• characters 1-5: distribution at the first level (“poiss” for the Poisson distribution and

“nebin” for the negative Binomial distribution);

• characters 6-10: presence (“param”) or absence (“nopar”) of the weigth parameters;

• character 12: presence (“S”) or absence (“x”) of the spatial CAR process;

• character 14: presence (“T”) or absence (“x”) of the temporal CAR process;

• characters 16-17: presence (“ST”) or absence (“xx”) of the spatiotemporal CAR process;

• characters 19-22: presence (“gaus”) or absence (“xxxx”) of the Gaussian white noise.

Thus, for instance, the model named poissnopar_S_x_ST_xxxx is characterized

by Yij � PðlijÞ and ln(Rij) = Uij + Vij (An exhaustive list of the tested models is given in S1

Table).

PLOS ONE Bayesian hierarchical models for disease mapping applied to contagious pathologies

PLOS ONE | https://doi.org/10.1371/journal.pone.0222898 January 13, 2021 12 / 28

https://doi.org/10.1371/journal.pone.0222898


Estimation and computation aspects

Disease mapping methods used to require MCMC simulations to estimate the parameters.

These simulations use initial data (cases and population repartition), the structure of the

Bayesian hierarchical models and the eventual covariates to estimate (spatially and/or tempo-

rally) smoothed values of the risk for each region and each period. More recently Integrated

Nested LAPLACE Approximations (INLA) [35, 50] are mentioned to perform the estimations.

However, INLA was not of so common use at the beginning of this study. Thus, to focus com-

parisons with previous works on Negative Binomial distribution and spatiotemporal CAR, we

chose to estimate the parameters with the software BUGS. This MCMC estimation method has

been commonly used in spatiotemporal disease mapping [9, 22, 38] to perform the inference

of the parameters.

The Bayesian framework with MCMC estimation implies long calculation durations in the

context of intensive simulation studies and requires parallel computing to perform the analy-

ses, thus we used the HTCondor system to allocate jobs to the different cores (about 150). We

realized scripts encoded in the C++ language to treat the resulting files. We used the software

R to create all the preliminary files needed by BUGS (data, scripts and models) and HTCondor

(submission files), to analyze the results and to realize maps. We also used the R libraries

CODA, RPostgreSQL, rgdal, spdep and scales to import the results of BUGS, to inter-

pret the results, and to build the maps of the risk.

Results: Best models to fit contagious simulated data

We consider a wide range of models (see S1 Table) to deal with overdispersion and chose the

DIC as model comparison method. We compute the parameters for all the 400 datasets (100

replicates associated to each of the 4 scenarios) and all the 60 models. Thus these analyses pro-

vide lots of risk values, of risk maps and of DIC values whose interpretation can be delicate.

Figs 4–7 show, for each model, the repartition of the DIC values based on the 100 replicates for

each considered scenario. Table 2 describes the best models for each scenario according to the

average value of the DIC over all the replicates. We included all the models for which the DIC

does not exceed the best DIC by more than 10. We also compute average values of the DIC to

determine the most relevant strategy for each scenario (Table 3).

In every analysis, models which include weight coefficients fail to fit the data. Every model

with weights has a higher DIC value on average than the same model without weight coeffi-

cients. The differences between models with and without weight parameters are particularly

strong in the case of overdispersed data. Besides, for each simulated scenario, the best ranking

for a model with weights is always beyond the tenth place. Thus such models are always con-

sidered as irrelevant to quantify the contribution of each component to the heterogeneity of

data. Thus for the rest of this section we will only consider models without weights.

We now look for the best models and the most relevant strategies to handle local overdis-

persion and a particularly strong spatiotemporal structure.

Handling local overdispersion

We deal with three situations, depending on the type of dataset: overdispersed data (scenarios

(COLR) and (COSR)), non-overdispersed data with a weakly contrasted risk (scenario

(NOLR)) and non-overdispersed data with a weakly contrasted risk (scenario (NOSR)). The

best models are quite different according to this classification.

Overdispersed data. The best models for the scenarios (COLR) and (COSR) have similar

characteristics (Figs 4 and 5); namely all are negative binomial models without the Gaussian

noise term (Table 2). These models have very similar mean values for the DIC and show the
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lowest DIC dispersion among all the models; however, the repartitions of the associated DIC

values show slight differences (Fig 4). The Poisson models without the Gaussian noise �ij have

also quite similar distributions despite higher DIC mean values, and they also have quite low

DIC variance values. The negative binomial models with the Gaussian white noise have DIC

mean values comparable to Poisson models without Gaussian noise term; however, their DIC

variance values over all the replicates are particularly high, and depend also on the structure of

the risk. Lastly, the Poisson models with a Gaussian noise �ij have DIC values with very high

means and variances. In addition, for this class of models, the different structures of the risk

provide very different DIC values.

One can also notice that the differences between the mean values of the DIC for the two dis-

tributions are much higher for scenarios (COLR) and (COSR) (overdispersed data, Figs 4 and

5) than for (NOLR) and (NOSR) (non-overdispersed data, Figs 6 and 7). The overdispersion

particularly highlights the differences between relevant and inadequate models (Table 3).

If we consider all the 32 models without weights, we see that the negative binomial models

better fit on average the outcome of cases if overdispersion is assumed (Table 3). We also

notice that for each combination of the terms of the structure, the negative binomial model

outperforms the Poisson model. Besides, the models with the Gaussian white noise �ij lead to

much higher DIC values.

The results show that the negative binomial model is well adapted to model the remaining

variability due to local overdispersion, even if is not tested in most of the studies in the

Fig 4. Distribution of DIC values for the scenario (COLR).

https://doi.org/10.1371/journal.pone.0222898.g004
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literature. We also notice that in our context, the Gaussian noise term �ij is not relevant to

model overdispersion for both the Poisson and the negative binomial models, even if this term

is used in most of the studies dealing with overdispersed data. Moreover, the use of the Gauss-

ian white noise seems redundant when a negative binomial distribution is tested. For the Pois-

son models, contrary to what one could expect, the Gaussian noise �ij does not seem

interesting to handle the local overdipersion, regardless of the values of the risk.

Non-overdispersed highly contrasted data. We notice that the two best models for the

scenario (NOLR) use a negative binomial distribution (Table 2). However, 16 models can be

considered as relevant (distance to the best model of average DIC values smaller than 10): 9 of

them are negative binomial models and the 7 others are Poisson models (without noise). Nev-

ertheless, if we consider all the models and all the datasets, we can notice the negative binomial

models generally better fit the outcome of cases when risk values are highly contrasted (scenar-

ios (COLR) and (NOLR)) (Table 3).

Concerning the distributions of the DIC values for each model, we notice that all the mod-

els with the Gaussian component �ij have a very similar ranking and present small differences

of the mean and the variances of their DIC values (Fig 6). Despite the fact that the best model

includes a Gaussian noise term (Table 2), in general this parameter is not relevant on average.

The negative binomial models with the Gaussian noise �ij provide slightly higher DIC values

than the ones without �ij. Besides, the Poisson models with the Gaussian noise component �ij

Fig 5. Distribution of DIC values for the scenario (COSR).

https://doi.org/10.1371/journal.pone.0222898.g005
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have the highest DIC values and show the highest variance (despite their wide use to model

overdispersed data in the literature).

The data generated with highly contrasted risk values are overdispersed: the variance of the

number of cases by hexagon and by year being much higher than the mean. The heterogeneity

resulting from this overdispersion is strongly structured; the Gaussian white noise �ij is irrele-

vant to model this variability. In this context, the Poisson and negative binomial distributions

show the same relevance.

Non-overdispersed weakly contrasted data. Contrary to the scenarios (COLR) and

(COSR), the 7 best models for the scenario (NOSR) are all Poisson models, without the Gauss-

ian noise component �ij (Table 2). They all have a very similar distribution of their DIC values.

It is also the case for the negative binomial models, even if their DIC mean values are higher

than for the Poisson models (Fig 7). The Poisson models with a Gaussian white noise term �ij

provide on average better DIC values than the negative binomial ones. However the distribu-

tion of DIC values for such models is more dispersed.

The DIC values are more similar for all the models for the scenario (NOSR) than for over-

dispersed data (scenarios (COLR) and (COSR)). For instance, for (NOSR), the average differ-

ence of DIC values between the negative binomial and the Poisson models is + 78; this

difference is −813.4 for (COLR). The differences of DIC mean values for the models with and

without the Gaussian noise �ij is even more significant for (COLR) than for (NOSR).

Fig 6. Distribution of DIC values for the scenario (NOLR).

https://doi.org/10.1371/journal.pone.0222898.g006
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As expected, the Poisson distribution appears as the most relevant to model non-overdis-

persed and weakly contrasted data (NOSR) (Table 3). In this context, the Gaussian noise com-

ponent is not an interesting approach to model the unstructured heterogeneity, even if its

inclusion does not penalize the models a lot.

Synthesis. In conclusion, for scenarios (COLR), (COSR) and (NOLR), the negative bino-

mial models without a Gaussian white noise are generally the best ones. It is also the case in

general for (NOLR) even if the cases are simulated by a Poisson distribution. It appears that

the negative binomial distribution is on average more adapted to both overdispersed data and

data with strong differences of levels of risk. At the opposite, the Poisson distribution is partic-

ularly well adapted to weakly contrasted and not overdispersed data coming from the scenario

(NOSR). For all the scenarios, the Gaussian white noise is generally irrelevant. Thus it appears

that the binomial negative distribution is well adapted to handle the overdispersion of data,

whether the high heterogeneity is due to local overdispersion (frequent occurrence of high val-

ues, high frequence of null values) or to a strong (spatial and temporal) structuration of the

risk.

Handling strong spatiotemporal correlations

Beyond the local overdispersion, the outcome of secondary cases can imply strong spatial and

temporal correlations. We aim to test if CAR processes are relevant to handle these dependen-

cies and to determine which CAR components are the most suitable.

Fig 7. Distribution of DIC values for the scenario (NOSR).

https://doi.org/10.1371/journal.pone.0222898.g007
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Relevance of CAR processes. The CAR models have been widely used in the literature to

handle the structured heterogeneity. We have tested all the combinations of the three possible

CAR components Uij, Tij and Vij. All these terms are relevant on average to model the structure

of the risk for each scenario (Table 3). The temporal CAR component Tij for (COSR) is the

only exception.

Table 2. Best models according to the DIC.

Scenario of simulation Ranking Model DIC

Value Diff. from the best

(COLR) 1 nebinnopar_S_x_ST_xxxx 3561.6 0

2 nebinnopar_S_T_xx_xxxx 3562.8 +1.2

3 nebinnopar_S_x_xx_xxxx 3563.0 +1.4

4 nebinnopar_x_T_xx_xxxx 3563.3 +1.7

5 nebinnopar_x_T_ST_xxxx 3563.3 +1.7

6 nebinnopar_x_x_ST_xxxx 3564.7 +3.1

7 nebinnopar_S_T_ST_xxxx 3566.7 +5.1

8 nebinnopar_x_x_xx_xxxx 3569.1 +7.5

(COSR) 1 nebinnopar_S_T_xx_xxxx 3486.4 0

2 nebinnopar_S_T_ST_xxxx 3486.6 +0.2

3 nebinnopar_x_T_ST_xxxx 3486.6 +0.2

4 nebinnopar_x_x_ST_xxxx 3486.7 +0.3

5 nebinnopar_S_x_ST_xxxx 3486.7 +0.3

6 nebinnopar_x_x_xx_xxxx 3486.8 +0.4

7 nebinnopar_S_x_xx_xxxx 3487.2 +0.8

8 nebinnopar_x_T_xx_xxxx 3488.5 +2.1

(NOLR) 1 nebinnopar_x_x_ST_gaus 3573.3 0

2 nebinnopar_S_x_xx_xxxx 3577.9 +4.6

3 poissnopar_x_x_ST_xxxx 3578.1 +4.8

4 poissnopar_x_T_xx_xxxx 3578.1 +4.8

5 poissnopar_S_x_ST_xxxx 3578.1 +4.8

6 poissnopar_S_T_xx_xxxx 3578.1 +4.8

7 poissnopar_S_T_ST_xxxx 3578.1 +4.8

8 nebinnopar_x_x_xx_xxxx 3578.1 +4.8

9 nebinnopar_x_T_xx_xxxx 3578.1 +4.8

10 nebinnopar_S_x_ST_xxxx 3578.1 +4.8

11 nebinnopar_S_T_xx_xxxx 3578.1 +4.8

12 nebinnopar_S_T_ST_xxxx 3578.1 +4.8

13 nebinnopar_x_T_ST_xxxx 3578.3 +5.0

14 poissnopar_x_T_ST_xxxx 3579.6 +6.3

15 poissnopar_S_x_xx_xxxx 3580.9 +7.6

16 nebinnopar_x_x_ST_xxxx 3581.6 +8.3

(NOSR) 1 poissnopar_x_x_ST_xxxx 3495.2 0

2 poissnopar_x_T_xx_xxxx 3495.2 0

3 poissnopar_x_T_ST_xxxx 3495.2 0

4 poissnopar_S_x_xx_xxxx 3495.2 0

5 poissnopar_S_x_ST_xxxx 3495.2 0

6 poissnopar_S_T_xx_xxxx 3495.2 0

7 poissnopar_S_T_ST_xxxx 3495.2 0

https://doi.org/10.1371/journal.pone.0222898.t002
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Nevertheless, the impact of the structure of the risk for the value of the DIC does not seem

as significant as the distribution of the cases and the inclusion of the Gaussian white noise �ij.

In fact, for each of the 4 scenarios, the differences of average DIC values between the models

which include a CAR term and those which do not include it are in general much lower than if

one compares the results for each distribution, or for the inclusion of the Gaussian noise �ij

(Fig 3). These differences are particularly low for the scenario (COLR) (Fig 2).

The spatial CAR process Uij was used in the context of purely spatial disease mapping stud-

ies. The term Uij and the temporal term Tij were then used in the context of spatiotemporal

risk mapping. The spatiotemporal CAR component Vij, which assesses the influence of the

neighboring areas at the previous and the following periods, is not used a lot in the literature.

Beyond the relevance of the CAR terms, our analysis shows that considering both the spatial

and the temporal dimensions is well adapted to model the structure of the risk. In fact for the

four scenarios, the best models all integrate both dimensions: Vij, Uij + Tij, Uij + Vij, Tij + Vij
and Uij + Tij + Vij are in general more relevant than Uij, Tij or no structure at all.

Importance of the structure for overdispersed data. The two best models for the sce-

nario (COLR) and the five best for the scenario (COSR) include both the spatial and the tem-

poral dimensions. This implies that the overdispersion influences not only the local

overdispersion, but also the strength of the structure of the risk. In particular the spatial CAR

component Uij is particularly relevant to model the risk associated to the scenario (COLR).

Besides, the three best models for the scenario (COSR) integrate at least two CAR terms (Uij +
Tij, Uij + Tij + Vij and Tij + Vij), even if the modeled risk is defined as weakly contrasted. Thus

it appears that the overdispersion implies the outcome of well structured cases.

Considering a negative binomial model with the Gaussian noise �ij fails to model all the het-

erogeneity of the data, and the remaining heterogeneity is structured. In fact, for the scenario

(COLR), the best models use the negative binomial distribution and take into account both the

spatial and the temporal dimensions. For the scenario (COSR), the most relevant distribution

is also the negative binomial and the best structures of the risk include two or three CAR

terms. Conversely, the spatiotemporal structure does not handle all the heterogeneity of the

risk, thus the negative binomial distribution is needed. For (COLR) and (COSR), the models

which consider the Poisson distribution and the Gaussian noise �ij show very high DIC values,

but the only ones which are acceptable integrate the spatiotemporal CAR process Vij. This

term seems necessary to offset the variability involved by the Gaussian noise. For both the sce-

narios (COLR) and (COSR), if we focus on the models which include the negative binomial

distribution and the Gaussian noise term �ij, the three best of them have at least two CAR com-

ponents among Uij, Tij and Vij.

Table 3. Average DIC values.

Scenario (COLR) (COSR) (NOLR) (NOSR)

Distribution Poisson Negative binomial 4592.7 4516.0 3641.1 3517.1

3729.3 3617.7 3585.3 3595.1

Spatial CAR process Uij No 4217.4 4077.5 3627.1 3558.0

Yes 4111.6 4028.8 3598.4 3554.4

Temporal CAR process Tij No 4192.8 4045.7 3632.8 3565.7

Yes 4129.1 4058.6 3593.1 3546.5

Spatiotemporal CAR process Vij No 4331.0 4164.4 3628.0 3557.7

Yes 4012.2 3947.4 2597.6 3554.7

Gaussian white noise �ij No 3857.0 3769.6 3578.6 3546.0

Yes 4465.0 4317.4 3643.9 3566.2

https://doi.org/10.1371/journal.pone.0222898.t003
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Relevance of the spatiotemporal CAR process Vij for highly structured and/or overdis-

persed data. Contrary to the spatial and temporal CAR components Uij and Tij, the spatio-

temporal one Vij is not widely used in the context of disease mapping. However in the

framework of our analysis, this term appears as relevant to describe the structure of the risk,

sometimes in addition to the CAR components Uij and/or Tij. For all the scenarios, including

the spatiotemporal CAR term Vij is more relevant than not considering it. Nevertheless, the

gain is not really significant in the case of the scenario (NOSR), contrary to the scenarios

(COLR), (COSR) and (NOLR), associated to local overdispersion and/or highly contrasted

risk values. The best models to describe datasets for which the risk is highly contrasted (scenar-

ios (COLR) and (NOLR)) include the spatiotemporal CAR component Vij. For the scenario

(COSR), four of the five best models also include this term.

The spatiotemporal CAR component Vij appears as particulary relevant when a Gaussian

white noise �ij is included. The only model considered as the most relevant and which contains

the Gaussian noise term �ij is nebinnopa_x_x_ST_gaus, which includes the spatiotempo-

ral CAR process Vij. For scenarios (COLR), (COSR) and (NOLR), the best Poisson models

with the Gaussian noise term �ij also integrate the spatiotemporal CAR process Vij. The same

remark remains true for the negative binomial models with the Gaussian noise component �ij.

Synthesis for simulated data study

The analysis of the simulated data shows that the negative binomial models are more relevant

than the Poisson models to handle locally overdispersed and/or strongly structured data. The

Poisson distribution better suits non-overdispersed and weakly structured data. Besides, using

negative binomial distribution appears as much more relevant than Poisson models with a

Gaussian white noise, contrary to preceding literature. Beyond this local overdispersion, the

heterogeneity handled at the second level remains well structured.

The CAR processes, which are used in a wide range of disease mapping studies, appear as a

suitable way to take into account this structuration of the data. Overdispersed data, in particu-

lar, need the use of several CAR components to model the structure of the risk. Moreover, the

spatiotemporal CAR process, whose use is not so frequent, is very relevant in our context and

can balance poor modeling choices such as the Gaussian white noise.

The CAR processes and the negative binomial distribution are well adapted to model

respectively the structured and the unstructured heterogeneity of the risk. They provide com-

plementary information, thus both are needed to describe the risk.

Lastly the weight coefficients fail to quantify the contribution of each term.

Application to bovine tuberculosis data

We applied disease mapping to bovine tuberculosis data, both to determine the most relevant

models in this context and to test how congruent is the estimated risk with the knowledge

about this pathology. We remark that 12 among the 14 the Poisson models with weight param-

eters (a, b, c) failed to converge. Besides, the two models (poissparam_S_T_xx_xxxx
and poissparam_S_T_xx_gaus) which succeeded in converging showed some estima-

tion errors as their computed DIC value is +1. It also clearly appears that the DIC is more dis-

persed in the real data case than in the simulations (S2 Table); indeed the differences between

the top-ranked models are higher than in the simulated data case (� 10 DIC points between

the 1st and the 2nd, the 2nd and the 3rd, the 3rd and the 4th, etc.).

The top-ranked model is nebinparam_S_T_ST_xxxx. It shows the relevance of the

binomial negative distribution compared to the Poisson model with the Gaussian white noise

�ij. We can also see that the three CAR components Uij, Tij and Vij suit the structure of the risk
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(Table 4). Besides, to address these real data, weight parameters seem suitable to quantify the

contribution of each CAR process in the global heterogeneity of the risk when the estimation

succeeded. For this best-ranked model, we have a = 0.84, b = 1.83 and c = 1.69, thus

lnðRijÞ ¼ 0:84Uij þ 1:83Tij þ 1:69Vij:

Thus it appears that bovine tuberculosis relative risk is highly temporally correlated (b> a),
congruently with the repartition of the cases (Fig 1). However, all the three terms have a signif-

icant influence. Moreover the seven top-ranked models include weight parameters, and the

fourteen top-ranked models are negative binomial models, thus our methodological choices

(negative binomial with CAR components) appear as relevant to model these infectious disease

cases.

Fig 8 shows the estimated bovine tuberculosis risk for the best model (nebinpar-
am_S_T_ST_xxxx). We remark that its repartition is quite scattered, so the interpretation is

quite difficult for many regions; however, a few conclusions can be drawn. Indeed the risk is

particularly high in the Southwest and in Camargue. Besides the risk seems to decrease over

the time in the regions which are not classically concerned by bovine tuberculosis. Neverthe-

less the estimation seems very sensitive to the randomness and overfits the data; indeed the

outcome of a case has a strong influence on the risk estimated in the neighborhood for all the

periods. The values appear as temporally autocorrelated (b = 1.83), thus the outcome of a case

impacts the risk values for all the study period, but they are not spatially smoothed enough

(a = 0.84) and thus not easily interpretable.

The disease map corresponding to the best model (according to the DIC) for the simulated

data (COLR) nebinnopa_S_x_ST_xxxx seems more relevant to describe the evolution of

bovine tuberculosis in France between 2001 and 2010 (Fig 9). We can especially notice that

this model is the best ranked one (according to the DIC) which do not include the temporal

CAR process. The regions known as being at risk (Dordogne, Côte-d’Or, Camargue, South-

west) are particularly highlighted (S1 Fig). The Center, the North, the Northwest and the

Northeast seem free of bovine tuberculosis. We clearly remark that over the time the high risk

concentrates itself around a few well-known hotspots. The Southeast shows a high level of risk,

but it can be explained by its very low number of cattle farmings that artificially increases the

high risk around. A similar problem appears in the neighborhood of Paris which has quite

high risk values at the beginning of the study period. In this case too, cattle farmings are rare,

Table 4. Average DIC values.

Bovine tuberculosis cases

Distribution Poisson Negative binomiale 3128.7

3075.7

Weight parameters a, b, c No 3131.8

Yes 3008.1

Spatial CAR process Uij No 3108.4

Yes 3080.1

Temporal CAR process Tij No 3338.7

Yes 2878.7

Spatiotemporal CAR process Vij No 3117.6

Yes 3072.1

Gaussian white noise �ij No 3075.9

Yes 3110.0

https://doi.org/10.1371/journal.pone.0222898.t004
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thus the risk estimation is more complicated. Some hexagons show high levels of risk because

of the outcome of some isolated cases, but they do not have an influence on their spatial and

temporal neighbors. Thus this map shows a relevant (congruent with the literature) and inter-

pretable distribution of the bovine tuberculosis risk.

With the bovine tuberculosis data, it clearly appears that all the models with the temporal

CAR component Tij are better ranked than those which do not include this term. However all

the maps resulting from these models are hardly readable (Figs 8 and 9, S4 and S5 Figs); the

risk is not spatially smooth enough to draw epidemiological conclusions. This may be related

to the referenced fact [43, 45] that the DIC could favor overfitted models despite the penaliza-

tion with the effective number of parameters.

The spatial and spatiotemporal CAR components Uij and Vij provide more interesting

maps for epidemiologists. The associated maps are more interpretable as neighboring regions

generally show similar risk values.

Models with CAR components as Uij, Tij or Vij have better DIC mean values, especially

those with Tij (Table 4). In fact, except for two models showing convergence defects, any

model including the temporal CAR Tij component outperforms the other models. Thus, the

differences of the DIC values between models with and without Tij are particularly high. As

expected (according to the ranking of the models for the bovine tuberculosis, see S2 Table),

negative binomial models have on average better DIC values than the other ones. Besides,

models with weight parameters (a, b, c) and a Gaussian noise �ij also have better DIC values.

The analysis of bovine tuberculosis data provides results quite similar with those previously

obtained for simulated data, in particular for (COLR), except the influence of the temporal

Fig 8. Estimated risk for the bovine tuberculosis (model nebinparam_S_T_ST_xxxx).

https://doi.org/10.1371/journal.pone.0222898.g008
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CAR process. For both real and simulated data, the negative binomial models with different

CAR components provide good results according to the DIC. We also remarked that the esti-

mated ranges of the relative risk are more accurate and meaningful with the Negative Binomial

than with the Poisson distribution (Figs 8 and 9, S4–S7 Figs) since maximal values are less

extreme. Contrary to what is commonly said in the literature, the Gaussian noise term is not

relevant in our case, even to model overdispersed data. However, both analyses (simulations

and real data) have slight differences. In particular models with weight coefficients are irrele-

vant for simulated datasets but they are helpful to quantify the contribution of each CAR com-

ponent to model the bovine tuberculosis data. Thus in the context of our simulations, the three

CAR components provide a similar smoothing of the risk.

Conclusion

This study shows that the overdispersion due to contagion is much better modeled by the neg-

ative binomial distribution than by the Gaussian white noise which is commonly used in the

literature. In fact the negative binomial models gave better results in the case of overdispersed

and/or highly contrasted data. However, it appears that non-overdispersed and weakly con-

trasted data are better modeled by the Poisson distribution. As other overdispersed distribu-

tions, such as the so called “contagious distributions”, are known for their goodness-of-fit in

the context of infectious diseases, it would be relevant to test them in the framework of disease

mapping.

Fig 9. Estimated risk for the bovine tuberculosis (model nebinnopar_S_x_ST_xxxx).

https://doi.org/10.1371/journal.pone.0222898.g009
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The spatiotemporal framework is relevant to model cases of infectious diseases as, for both

real and simulated data (for all the 4 scenarios), the most relevant models integrate both the

spatial and the temporal dimensions. On the one hand, the temporal dimension allows to rep-

resent the evolution of the spatial distribution of the risk and provides more extensive informa-

tion about the pathology of interest. On the other hand, the temporal dimension allows the

identification of stable areas over the time and thus the confirmation of its status (free or vul-

nerable) towards the studied phenomenon. In the context of simulated data, it allowed to

model the outcome, the movements and the termination of the simulated outbreaks. More-

over, concerning bovine tuberculosis, the estimated risk increases and concentrates around

the well known hotspots, congruently with the literature. Besides, the areas at risk were per-

fectly delineated, and some of the free regions, as for instance the Brittany and the Auvergne,

were correctly identified. Thus the temporal dimension, with the temporal and the spatiotem-

poral CAR processes, provides a real benefit compared to purely spatial studies. In general, the

CAR processes satisfactorily take into account the structure of the long range heterogeneity

inherent of the data. In particular, the spatial and the spatiotemporal CAR processes provided

smoothed risk maps which are epidemiologically relevant and interpretable since the temporal

CAR process may result in maps which are harder to interpret. When a single specific pathol-

ogy is studied, it can be very relevant to integrate populational and/or environmental terms in

the structure of the risk. Such cofactors can be considered instead of CAR processes or in addi-

tion to them, depending on whether they fully explain or not the structured heterogeneity of

the data.

For the analyses of simulated data we performed, the weight coefficients were identified as

irrelevant. It may be a consequence of the equilibrium between spatial and temporal correla-

tions in our simulations. However, these weights are highly relevant for the real dataset. Thus

it appears that such weights can be useful in case of desequilibrium, for instance when the spa-

tial correlations are stronger than the temporal ones, or conversely. However it would be inter-

esting to test them again in other contexts.

This study shows the relevance of disease mapping to address rare infectious diseases. Most

of the simulated hotspots have been identified, even when the risk values are weakly con-

trasted. The simulated risk was quite difficult to model and the delineation of the estimated

risk is not very smooth. It may be due to the very low concentration of the simulated cases

which are more scattered than the real datasets. We also remarked that our method overesti-

mates the real relative risk in regions which have a very low cattle population, as previously

observed in studies based on purely spatial (and non-contagious) data. Moreover, our method-

ology provided very relevant maps to represent the estimated bovine tuberculosis risk. These

maps are very congruent with the literature concerning the repartition of the risk in France

and its evolution between 2001 and 2010. In particular, the detection of simultaneous clusters

of cases in three regions is very promising and shows the good capabilities of this methodology

to analyse contagious data. The resulting maps also correctly describe the evolution of the risk

and its concentration over time around very small areas, congruently with the known contami-

nation of wildlife in these regions. Thus disease mapping appears as a very relevant way to

investigate infectious diseases whose incidence is low.

In our study, the model selection criterion is a crucial point as we compared 60 models for

each dataset. The DIC (Deviance Information Criterion) is systematically used in the context

of spatiotemporal disease mapping and largely used in the purely spatial context. For the simu-

lated data, it provided an interesting ranking of the different models. The best models, accord-

ing to the DIC, appeared as relevant, because the obtained risk was congruent with the

distribution of the simulated risk and the resulting maps were interpretable. Thus this indica-

tor provided interesting evidences concerning the structure and the repartition of the risk.
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However, in the bovine tuberculosis context, this criterion seemed to choose overfitted models,

for which the estimated risk appeared as too temporally structured, to the detriment of the spa-

tial smoothing. It resulted in maps difficult to interpret, while other non-selected models pro-

vided smoother maps which were much more readable for epidemiologists. Thus it seems

relevant to study the behavior of the DIC in different situations and eventually propose rele-

vant combinations of criteria or new criteria which take into account the smoothing of the esti-

mated risk. Most of the DIC alternatives try to propose a relevant penalization of the deviance.

In contrast, we plan to explore in a forthcoming research how to combine an adequacy indica-

tor such as DIC with smoothing indexes, in order to also take into account the practitioners’

need of interpretability. This could be a way to improve the model comparison in the context

of risk mapping.
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