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Abstract

Motivation: Despite experimental and curation efforts, the extent of enzyme promiscuity on substrates continues to
be largely unexplored and under documented. Providing computational tools for the exploration of the enzyme–sub-
strate interaction space can expedite experimentation and benefit applications such as constructing synthesis
pathways for novel biomolecules, identifying products of metabolism on ingested compounds, and elucidating
xenobiotic metabolism. Recommender systems (RS), which are currently unexplored for the enzyme–substrate
interaction prediction problem, can be utilized to provide enzyme recommendations for substrates, and vice versa.
The performance of Collaborative-Filtering (CF) RSs; however, hinges on the quality of embedding vectors of users
and items (enzymes and substrates in our case). Importantly, enhancing CF embeddings with heterogeneous
auxiliary data, specially relational data (e.g. hierarchical, pairwise or groupings), remains a challenge.

Results: We propose an innovative general RS framework, termed Boost-RS that enhances RS performance by
‘boosting’ embedding vectors through auxiliary data. Specifically, Boost-RS is trained and dynamically tuned on
multiple relevant auxiliary learning tasks Boost-RS utilizes contrastive learning tasks to exploit relational data. To
show the efficacy of Boost-RS for the enzyme–substrate prediction interaction problem, we apply the Boost-RS
framework to several baseline CF models. We show that each of our auxiliary tasks boosts learning of the embed-
ding vectors, and that contrastive learning using Boost-RS outperforms attribute concatenation and multi-label
learning. We also show that Boost-RS outperforms similarity-based models. Ablation studies and visualization of
learned representations highlight the importance of using contrastive learning on some of the auxiliary data in
boosting the embedding vectors.

Availability and implementation: A Python implementation for Boost-RS is provided at https://github.com/HassounLab/
Boost-RS. The enzyme-substrate interaction data is available from the KEGG database (https://www.genome.jp/kegg/).

Contact: liping.liu@tufts.edu and soha.hassoun@tufts.edu

1 Introduction

Understanding the rich functionality of enzymes is fundamental in
advancing biochemistry, molecular and synthetic biology and many
other application domains. Enzymes were assumed specific, catalyz-
ing a specific substrate; however, there is now wide consensus that
enzymes are promiscuous, catalyzing many substrates, including
substrates that the enzymes did not evolve to catalyze (Khersonsky
and Tawfik, 2010). Our ability to analyze this inherent promiscuity
has proved instrumental in guiding the direct evolution of novel pro-
teins (Romero and Arnold, 2009), elucidating metabolism in natural
and engineered organisms (Porokhin et al., 2021), and creating
novel synthesis pathway to produce valuable therapeutics and

commodity molecules (Bowie et al., 2020). Despite progress in pro-
tein function annotation and modeling protein–ligand interactions
(mostly focused on drug–ligand interactions), and manual and auto-
mated curation efforts, there remains large gaps in our knowledge of
enzyme capabilities. Computational tools that predict enzyme prom-
iscuity on molecules can augment existing knowledge, guide bio-
logical and biomedical applications and reduce costly experimental
efforts.

Computational approaches for predicting enzyme–substrate
interactions target different applications. Physics-based models,
including molecular docking and molecular dynamic simulations, at-
tempt to identify the most favorable binding mode of a ligand with a
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given target protein These methods require 3D models of both pro-
tein and molecule, and require significant compute time, making
these methods suitable for detailed analysis of a small number of
interactions. Rule-based methods predict site of metabolism or prod-
ucts of enzymatic transformations on a query molecule. Most such
methods, however, utilize hand-curated biotransformation rules
(e.g. Ridder and Wagener, 2008), or applicable to only specific
enzymes (e.g. Tyzack and Kirchmair, 2019), thus limiting their gen-
eral applicability. Machine-learning (ML) approaches have taken
advantage of available enzymatic data and solve many important
questions such the likelihood of enzymatic transformations between
a compound pair, e.g. support vector machines (Kotera et al., 2013),
graph embedding (Jiang et al., 2021), identifying enzyme commis-
sion numbers that act on molecules, e.g. using hierarchical classifica-
tion of enzymes on molecules (Visani et al., 2021), and predicting
the likelihood of a sequence catalyzing a reaction or quantifying the
affinity of sequences on substrates using Gaussian processes (Mellor
et al., 2016). Once trained, ML models provide quick evaluation
and are suited for many bioengineering and biological applications
that require the exploration of the vast interaction space.

To expand the use of ML in predicting enzyme–substrate interac-
tions, we investigate the use of recommender systems (RSs) to rec-
ommend enzymes that are likely to act on specific substrates, and/or
compounds that are suited as substrates for an enzyme. RSs are
heavily utilized in industrial applications. For example, more than
50% of all AI training cycles at Facebook are devoted to training
deep learning recommendation models (Acun et al., 2021). RS, how-
ever, were not used prior for predicting enzyme–substrate interac-
tions. Previously, RS were used for predicting protein–drug
interactions (Bagherian et al., 2021). Many such techniques use col-
laborative filtering (CF) in the form of matrix factorization (MF),
e.g., Multiple Similarities Collaborative Matrix Factorization
(MSCMF) (Zheng et al., 2013), Probabilistic Matrix Factorization
(Mnih and Salakhutdinov, 2008) and Neighborhood Regularized
Logistic Matrix Factorization (NRLMF) (Liu et al., 2016).

As the performance of CF hinges on learned embeddings of the
users and items, prior RS techniques aimed to utilize auxiliary (side)
data to learn improved embeddings. Many techniques enhance CF
using similarities among proteins and among drugs, e.g. MSCMF
(Zheng et al., 2013) or neighborhood regularization, e.g. NRLMF
(Liu et al., 2016), and REMAP (Lim et al., 2016), with the goal of
minimizing distances between a protein (or a drug) and its nearest
neighbors in the latent space. Other RS aim to integrate auxiliary
data by fusing knowledge graphs (e.g. Wang et al., 2021), or inte-
grating multi-source data (e.g. Gao et al., 2018; Zhu et al., 2017). In
practice, auxiliary data is complex and often exhibits multiple rela-
tional aspects: item labels may be hierarchical, and users may share
a group label (zip code, building address or profession). The com-
mon practice to concatenate auxiliary data with the learned embed-
ding does not necessarily maximally exploit the relational aspect of
the data. A general methodology for computing enhanced embed-
dings based on relational data and other complex heterogeneous
auxiliary data therefore remains a challenge.

We present in this article a novel technique, Boost-RS, for
enhancing the performance of RS by ‘boosting’ the embedding vec-
tors through auxiliary learning tasks. Boost-RS integrates the pri-
mary CF task with boosting tasks that aim to upgrade the
embedding vectors based on available heterogeneous auxiliary data.
The integration of user and item attributes addresses the interaction
matrix sparsity issue and has already shown RS performance
improvements (Bagherian et al., 2021; Sun et al., 2019). To minim-
ize negative transfer from the auxiliary tasks to the main task, the
CF and the boosting tasks are dynamically weighted (Liu et al.,
2019). Each auxiliary task is designed to maximally utilize the avail-
able auxiliary data. Importantly, to learn from relational data,
Boost-RS uses contrastive learning, which contrasts positive and
negative samples to learn discriminative representations in a self-
supervised manner. Contrastive learning is applied through triplet
loss (Weinberger and Saul, 2009), where the model is trained to pro-
duce representations such that, for a given anchor example, a posi-
tive example is closer to the anchor than a negative example.

We demonstrate Boost-RS’s effectiveness by applying it to the
enzyme–substrate interaction prediction problem. Through multi-
tasking, Boost-RS integrates the primary CF task with boosting tasks
that aim to upgrade the embedding vectors based on available het-
erogeneous auxiliary data. For enzymes, we exploit the Enzyme
Commission (EC) hierarchical relationships and the enzyme func-
tional orthologs. For substrates, we utilize the molecular fingerprints
and substrate–substrate biotransformation relationships due to func-
tionally similar enzymes. We formulate a hierarchical loss on the EC
relationship. We use contrastive learning on the enzyme functional
orthologs and the biotransformation relationships. Our main contri-
butions are:

• Creating a flexible and generalizable framework, Boost-RS, that

enriches the embedding vectors for CF-based RSs via multi-

tasking on individual and relational heterogeneous auxiliary

data.
• Showing that applying multi-tasking on contrastive learning on

relational data may outperform other techniques such as concat-

enation with learned embeddings and multi-labels learning.
• Demonstrating the generality of the Boost-RS framework by

showcasing its applicability to three recent neural network base-

line CFs: Deep Matrix Factorization (DMF) (Xue et al., 2017),

Neural Graph Collaborative Filtering (NGCF) (Wang et al.,

2019) and Neural Matrix Factorization (NMF) (He et al., 2017).
• Showing that Boost-RS outperforms state-of-the-art similarity-

based Graph Regularized Generalized Matrix Factorization

(GRGMF) RSs (Zhang et al., 2020).

2 Methods

2.1 Dataset
We apply Boost-RS to the enzyme–substrate interaction prediction
task to recommend substrates to enzymes that are most likely to
interact and vice versa. Our dataset is culled from biochemical reac-
tions in the KEGG database (Kanehisa and Goto, 2000). As most
biochemical reactions are reversible, no distinction is made between
substrates and products, and hence interacting molecules are
referred to as compounds or substrates interchangeably. Reactions
form a bipartite graph that can be captured as a binary interaction
matrix between enzymes and substrates (Fig. 1A), where each row
represents a compound, and each column represents an enzyme. A
matrix entry is set to 1 if the compound and enzyme participate the
same reaction, therefore representing a positive interaction instance.
An entry is set to 0 in case there is no catalogued enzyme–substrate
interaction. Compounds that are common to many enzymatic reac-
tions, including cofactors such as ATP and NADH and metals, are
excluded from the matrix. To ensure valid data splits, enzymes or
compounds with a single entry in the interaction matrix are also
excluded. In total, 17 627 enzyme–compound interactions are col-
lected. They involve 4768 enzymes and 6397 compounds. As all
non-positive interactions are unknown, they are assumed as negative
interactions and their corresponding matrix entries are set to zero.
The interaction matrix is therefore sparse with 0.06% positive
entries.

2.2 Auxiliary data
Four attributes are collected or derived from the KEGG database
and are used for training auxiliary tasks:

Enzyme Commission (EC) numbers. Each enzyme is associated
with an EC number (Webb, 1992) that comprises four numbers, sep-
arated by dots, starting with a number that broadly represents the
enzyme class, then the sub-class, sub-subclass and a final number
that reflects the specificity of the enzyme toward a small group of
substrates. As the EC numbers are hierarchical, the auxiliary learn-
ing task of EC prediction can be formulated as such. The EC num-
bers have 7, 94 and 164 distinct labels in the first three respective
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fields of EC. We only consider the first three fields of EC, as the
fourth index typically denotes specific substrates and cofactors.

Functional Orthologs (KO) numbers. Another enzyme attribute
is its KEGG functional orthology (KO) number (Kanehisa et al.,
2016). A particular KO designation, the letter K followed by five nu-
merical digits, is assigned to a group of genes sharing similar func-
tionality. KO numbers can therefore be considered as a ‘group’
attribute. We utilize 5575 sets of KO designations.

Molecular fingerprints (FP). Based on descriptions for molecules
in the KEGG database, molecular attributes in the form of MACCS
fingerprints (FP) (Durant et al., 2002) are calculated using RDKIT.

Compound–compound biotransformations (CC). The KEGG
database provides biotransformation patterns, designated as
RClasses, shared by multiple substrate-product or compound–com-
pound (CC), pairs. CC pairs under the same RClass are transformed
by enzymes with similar functionality (e.g. hydroxylation or methy-
lation). CC relationships give rise to a compound-centric graph,
akin to a social network. This graph is not a similarity network as
CC pairs are not necessarily similar: a compound may undergo sig-
nificant molecular changes under some enzymatic transformations
(e.g. transferases, ligases).

2.3 The Boost-RS model
2.3.1 Main task: interaction prediction

The main task of the Boost-RS framework (Fig. 1B) is ‘recommend-
ing’ compounds to enzymes (or enzymes to compound). Per the
interaction matrix, an entry yij is 1 for the positive interaction set, P
and yij is 0 for the negative interaction set, N. As in a standard rec-
ommendation task, the main task function, fmainð�; �Þ, predicts the
probability ŷij of interaction using learned enzyme and compound
representations. We denote the representations for compound i and
enzyme j as vi and uj, respectively. The probability of interaction,
ŷij, and task loss, Lmain, are then defined as:

ŷij ¼ fmainðvi;ujÞ; (1)

Lmain ¼
X

i;j

BCEðŷij; yijÞ: (2)

In the simplest form, fmainðvi;ujÞ ¼ v>i uj. In more complex forms,
fmainðvi;ujÞ is calculated using neural networks. The parameters for
fmain and the representations of enzymes and compounds are
updated by minimizing the task loss, Lmain. One such loss is Binary
Cross Entropy (BCE) which measures the difference between the ac-
tual interaction value and the predicted value. Some base CF models
(Section 2.3.4) improves over this loss. The embedding vectors, vi

and uj, are critically important for the recommendation task. To
boost performance, we inject task-relevant auxiliary data for com-

pounds and enzymes into the embedding vectors via multi-task
learning.

2.3.2 Auxiliary tasks

Each auxiliary task calculates attribute probabilities with an auxil-
iary task function and updates representations and parameters based

on the task loss. To address the differing characteristic in relational
attributes, auxiliary losses are defined on individual, hierarchical,
group and pairwise attributes. While we describe the details relevant

to the specific substrate and enzyme attributes, the framework easily
accommodates other attributes with individual and relational
attributes.

Using FP as an individual attribute, we denote the function for
FP prediction as fFP. As each compound fingerprint is a binary vec-

tor, we use BCE to evaluate the prediction accuracy for each vector
entry. The FP prediction function and the FP task loss are defined

as:

ŷFP
i ¼ fFPðviÞ; (3)

LFP ¼
1

jCj �
1

lFP

X
i2C

BCEðŷFP
i ; yFP

i Þ; (4)

where C is the set of compounds, and lFP is the length of the finger-
print vector.

For EC prediction, we capitalize on the EC’s hierarchical struc-
ture, and denote the function for EC prediction as fEC. The loss for
each enzyme is based on the cross entropy loss on each of its field

set, FS1, FS2, FS3 for the first, the first two and the first three fields
of the EC number, respectively. The prediction function and the cu-

mulative task loss for the EC attribute is therefore:

ŷEC
j;FSk
¼ fECðujÞ; (5)

LEC ¼
1

jEj
X
j2E

X3

k¼1

wk � CEðŷEC
j;FSk

; yEC
j;FSk
Þ; (6)

where E is the set of enzymes, and k is indicating which field set, FS,
in EC are we calculating the cross entropy loss on its distinct labels.

And wk is the weight for the FSk field set in EC, and, after some tun-
ing, is set to 1

3, therefore equalizing each field’s contribution to the
loss.

Fig. 1. Boost-RS framework for enzyme–substrate recommendation prediction. (A) Interaction matrix construction from enzymatic reactions. For example for E1, three posi-

tive interactions are added to the matrix. (B) The Boost-RS framework that integrates the main task of interaction prediction with related auxiliary tasks. (C) Collaborative fil-

tering models used as baselines
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When using group attributes and pairwise relationship for the
auxiliary tasks, we denote functions for KO prediction and CC pre-
diction as fKO and fCC, respectively. We utilize triplet loss, with the
intention of pulling the representation of samples in the same set
closer together in the embedding space and pushing away the repre-
sentation of a sample outside the set. A function, dð�Þ, measures the
distance between a pair of representations. The CC loss function is
defined as:

LCC ¼
1

jCj
X

i;Pi ;Ni2C

maxð0; dðvi; vPi
Þ � dðvi; vNi

Þ þ cÞ; (7)

where i an anchor compound, Pi is a compound in the set of com-
pounds has CC pairwise relationship with compound i, Ni is a com-
pound in a set of compounds that does not have an CC relationship
with compound i, and c is a positive margin between the positive Pi

and negative Ni samples.
The KO loss function is defined similarly to the CC loss function,

except that the anchor, positive and negative samples are derived
from the KO group relationships defined on the enzymes. The con-
trastive loss on CC reflect a pairwise relationship within the
compound-centric relational graph, while the loss on KO reflects the
group label distinction.

2.3.3 Dynamic training

The Boost-RS loss, LBoost�RS, is the weighted sum of losses of the
main task and auxiliary tasks:

LBoost�RS ¼ amainLmain þ aauxLaux; (8)

where Laux is the additive losses across the auxiliary tasks, amain and
aaux are weights for the main task and auxiliary tasks, respectively.

The weights of task losses directly influence the performance of
interaction prediction. We use a dynamic strategy to balance the
weights among the main task and auxiliary tasks. The abridged lin-
ear schedule (Belharbi et al., 2016) emphasizes auxiliary tasks in the
early training epochs and shifts the focus to the main task in later
epochs. We assign weights for the main and auxiliary tasks losses as
follows:

amain ¼ min
t

T
;1

� �
; aaux ¼ maxð1� amain; 0Þ; (9)

where t is the current training iteration, and T is time point where
the focus shifts completely to the main task.

2.3.4 Deep-learning baseline RSs

We use three neural-network RSs (Fig. 1C) for the interaction pre-
diction task: DMF (Xue et al., 2017), NGCF (Wang et al., 2019)
and NMF (He et al., 2017). Each RS has its own characteristic and
may be better suited for some applications. We apply Boost-RS to
each of these models.

The inputs to DMF are the rows and columns of the interaction
matrix. Two separate Multi-layer Perceptron (MLP) networks are
trained through fmain to learn compound and enzyme representa-
tions. The similarity of the enzyme and compound representations
are computed using cosine similarity and outputted as the probabil-
ity of the interaction, ŷ. Normalized cross entropy loss is used to
compute the loss between y and ŷ.

To compute fmain, NGCF first applies graph neural network to
the bipartite interaction graph. Graph neural networks (GNNs) are
utilized to learn node representations. GNNs can account for differ-
ent order neighbors including first order neighbors, second order
neighbors and so on. Node representations for enzyme (compound)
nodes that are learned for each level of neighbors are then concaten-
ated. The inner product of the enzyme and compound representa-
tions is then computed. To favor assigning higher predictions for
observed interactions than for unobserved interactions, NGCF uti-
lizes the Pairwise Bayesian Personalized Ranking loss (not shown in
figure).

For NMF, fmain has GMF and MLP working in parallel and are
then followed with a scoring layer. GMF and MLP each learn inde-
pendent representations. A function r calculates the interaction
probability based on the concatenation of the learned representa-
tions. BCE loss is used to compute the loss between y and ŷ.

3 Results

3.1 Experimental setup
We divide positive interactions into training, validation and test sets
at a ratio of 7:2:1. During training and validation, negative interac-
tions are randomly sampled from the unknown interactions at a
negative sampling ratio, which is a hyperparameter that varies
across models. During testing, all unknown interactions are assumed
negative. Positive interactions in the training set are excluded during
sampling.

As the test dataset is imbalanced, where the ratio of positive to
the assumed negative interactions is less than 0.01%, evaluation
metrics are selected to reflect the ability of RS to rank positive inter-
actions ahead of negative ones. Average precision (AP) computes the
average precision after each predicted positive interaction in the
ranked order list provided by RS. AP is utilized for model selection.
To place lower emphasis on the exact ranking of known interac-
tions, R-Precision computes the precision after all R positive interac-
tions have been identified in the ranked order list. The overall
performance at distinguishing between positive and negative interac-
tions is reported using the area under the receiver operating charac-
teristic curve (AUC). We additionally report the Mean AP (MAP)
and the R-Precision across the enzymes and the substrates. As each
enzyme and substrate had a varied number of positives, we also re-
port the MAP for the top 3 items (MAP@3) and the precision on the
top one item (Precision@1).

For the three baseline RSs, we follow the authors’ guidelines on
hyperparameter tuning. The range of hyperparameter search is
specified as follows. The negative sampling ratio for training set is
selected from f1; 5; 10; 15; 20; 25; 30g. The margin in the triplet
loss, c, is selected from f0:5; 1:0; 1:5g. The dimension of the embed-
ding is selected from f128;256; 512; 1024g based on average preci-
sion, where the optimal dimension is 256 for Boost-RS. The
dimension of the two hidden layers of MLPs of fmainð�Þ; fFPð�Þ; fECð�Þ
predictor is selected from f128, 256, 512g. We optimize our models
with the Adam optimizer (Kingma and Ba, 2015) with learning rates
selected among f10�1;10�2;10�3;10�4g. We apply dropout at a
rate selected from f0:0; 0:3;0:5g and L2 norm at a weight selected
from f10�2; 10�3; . . . ;10�6g. For the abridged linear dynamic
weighting strategy, we allow a maximum of 3000 iterations, with
T¼2000. During the first 2000 iterations, the model shifts linearly
from training the auxiliary tasks to the interaction prediction task.
Training is stopped early if there is no improved MAP on the valid-
ation set in 500 consecutive iterations.

3.2 Evaluating Boost-RS on baseline models
We evaluate the performance gain (Table 1A) when implementing
Boost-RS for the three baselines Boost-RS significantly boosts the
performance of every baseline across all metrics. NMF, which is the
best performing baseline, gains 74%, 68% and 10% on MAP, R-
Precision and AUC, respectively, when combined with Boost-RS.
For this work, we use Boost-NMF as our ‘Boost-RS’ model and use
NMF as a baseline model for the rest of the experiments, unless
noted otherwise.

3.3 Multi-label learning via multi-tasking or

concatenation
We create a compound (enzyme) binary multi-label vector for CC
(KO), where each entry of the vector indicates the presence or ab-
sence of an RClass (KO) designation. The length of the vector is the
number of distinct CCs (KOs). For CC, the multi-label vector has
3163 entries, where each compound is involved on average with
1.03 distinct CCs. For KO, the multi-label vector has a length of
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5575 entries, where each enzyme has on average 1.37 distinct KO
designations.

To evaluate the use of contrastive loss in Boost-RS, we construct
a model (Boost-RS_Multi-label) that uses weighted BCE loss to pre-
dict multi-label vectors. Both Boost-RS and Boost-RS_Multi_label
therefore predict the KO and CC labels using multi-tasking, but
with different loss formulations. To further assess the value of
Boost-RS’s multi-tasking abilities on the KO and CC labels, we con-
struct another model (NMF-Concat_Multi-label), where we concat-
enate the GMF and MLP outputs of NMF with the outputs of MLP
layers that encode the KO and CC data. The comparisons
(Table 1B) utilize multi-label KO and CC data along with hierarch-
ical EC and FP attributes. Boost-RS outperforms both models. That
is, using contrastive loss with multi-tasking is the better strategy.
Boost-RS outperforms Boost-RS_Multi-label as contrastive learning
explicitly enforces negative pairs to have distinct representations,
while multi-label training does not. Both Boost-RS and Boost-
RS_Multi-label outperform NMF-Concat_Multi-label may be due
to the sparsity of the KO and CC multi-label vectors, where most
vector entries representing the KO and CC labels are zero.
Importantly, a flexible framework such as Boost-RS allows the judi-
cious selection of the appropriate losses to boost the embeddings
(last row of Table 1A).

We use t-SNE (Van der Maaten and Hinton, 2008) to visualize
learned enzyme and compound representations (Fig. 2) using the
various techniques (NMF, NMF-Concat_Multi-label, Boost-
RS_Multi-label and Boost-RS). Enzyme representations are shown
to the left of each sub-panel. Compound representations are shown
to the right of each sub-panel, where an edge is added between two
compound representations if the two compounds are related via a
CC. For the enzyme representations, each dot is colored with an EC
class. Enzymes in sub-panels C and D form the most distinguishable
clusters when compared with sub-panels A and B as both multi-label
and contrastive learning perform well on KO (see next section).
Across the sub-panels, compound representations initially show no
evident pattern (sub-panel A), but display more defined clusters with
the progression toward sub-panel D. For the compound

representation (right figure of the D sub-panel), there is a node
grouping for compounds that lack a CC relation (on the left side) as
evident by the absence of any edges connecting these compounds.

3.4 Contributions of individual auxiliary tasks
We characterize the contribution of each auxiliary task to the per-
formance of Boost-RS independently of other tasks (Table 1C). We

also contrast each such contribution against using the same data via
concatenation with the baseline NMF model (Table 1D). For both

Boost-RS and NMF-Concat, each auxiliary task contributes posi-
tively to predicting the overall interactions, indicating that these
auxiliary tasks are relevant to the main task and provide additional

information beyond what is captured within CF. For Boost-RS, CC
contributes the most (50% improvement on the overall AP), while

KO, FP and EC show more modest improvements (6%, 10% and
23% respectively). For NMF-Concat, CC improves the baseline
NMF by 15% AP, while KO, FP and EC show limited improve-

ments (2%, 3% and 4%, respectively). Boost-RS(CC) improves en-
zyme and compound MAPs significantly (enzyme MAP by 55% and
compound MAP by 48%). These results indicate that each auxiliary

data improves the learning of compound and enzyme
representations.

Boost-RS consistently improves performance on each tasks over
NMF-concat, with the exception of the KO prediction task on select

metrics other than overall AP, Precision1 for enzymes and MAP for
the compounds. Despite this performance variation and other ex-
perimental evaluations, learning KO using contrastive learning

results in the best boosting performance (last row in Table 1A) as
our model selection is based on AP. We attribute this varied per-

formance to the characteristics of the KO auxiliary data. For KO,
contrastive loss is applied on 779 paired relationships, where there
are multiple pairwise relationships involving all pairs of enzymes

under the same KO group label. In contrast, for CC, contrastive loss
is applied to 7915 paired relationships derived from pairwise com-
pound–compound transformations.

Table 1. Interaction prediction performance evaluation. Boost-RS performance is bolded.

Overall Enzymes Compounds

AP R-Precision AUC MAP R-Precision MAP@3 Precision@1 MAP R-Precision MAP@3 Precision@1

A. Baselines and their boosted models

DMF 0.154 0.344 0.869 0.328 0.251 0.261 0.255 0.281 0.282 0.334 0.332

Boost-DMF 0.192 0.401 0.954 0.374 0.258 0.273 0.294 0.309 0.296 0.362 0.374

NGCF 0.169 0.328 0.810 0.333 0.274 0.278 0.261 0.277 0.297 0.347 0.326

Boost-NGCF 0.223 0.503 0.959 0.552 0.295 0.446 0.393 0.405 0.488 0.566 0.490

NMF 0.280 0.380 0.880 0.339 0.322 0.286 0.309 0.332 0.320 0.362 0.378

Boost-RS (Boost-NMF) 0.488 0.638 0.968 0.595 0.510 0.506 0.545 0.568 0.546 0.620 0.637

B. Group data treated as individual attributes and incorporated into RS via either multi-tasking or concatenation

Boost-RS_Multi-label 0.404 0.492 0.936 0.419 0.411 0.353 0.421 0.452 0.395 0.441 0.490

NMF-Concat_Multi-label 0.396 0.485 0.950 0.430 0.406 0.363 0.413 0.441 0.408 0.454 0.480

C. Interaction prediction with each auxiliary task using Boost-RS

Boost-RS(KO) 0.296 0.377 0.857 0.321 0.315 0.280 0.321 0.349 0.319 0.347 0.381

Boost-RS(FP) 0.309 0.402 0.914 0.370 0.333 0.307 0.327 0.350 0.340 0.388 0.395

Boost-RS(EC) 0.344 0.432 0.880 0.337 0.377 0.294 0.372 0.399 0.325 0.364 0.438

Boost-RS(CC) 0.419 0.548 0.936 0.527 0.447 0.447 0.467 0.492 0.487 0.553 0.546

D. Interaction prediction with each auxiliary data using NMF-Concat_Multi-label

NMF-Concat(KO) 0.285 0.386 0.872 0.346 0.327 0.296 0.319 0.343 0.337 0.375 0.384

NMF-Concat(FP) 0.287 0.386 0.870 0.338 0.329 0.286 0.318 0.344 0.324 0.368 0.386

NMF-Concat(EC) 0.292 0.390 0.879 0.339 0.333 0.289 0.324 0.349 0.320 0.361 0.392

NMF-Concat(CC) 0.322 0.408 0.868 0.351 0.343 0.297 0.351 0.372 0.342 0.380 0.412

E. Interaction prediction comparing Boost-RS framework against similarity-based method

GRGMF(FPþEC) 0.189 0.407 0.946 0.362 0.282 0.266 0.293 0.307 0.281 0.361 0.387

Boost-RS(FPþEC) 0.349 0.456 0.931 0.376 0.377 0.314 0.385 0.408 0.352 0.398 0.453

Note: The best model (Boost-RS) is based on NMF and it exploits auxiliary data via multi-task learning, including hierarchical learning on EC, individual attri-

bute learning on FP and contrastive viewing of KO and CC.
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3.5 Boost-RS versus similarity-based models
We compare Boost-RS with a recent RS, Graph Regularized
Generalized Matrix Factorization (GRGMF) (Zhang et al., 2020).
In addition to implementing MF, GRGMF learns latent node repre-
sentations based on their neighborhood similarity. GRGMF there-
fore provides an alternative model for incorporating EC and FP
auxiliary data. GRGMF takes as input a pairwise compound-
similarity matrix and a pairwise enzyme-similarity matrix, where we
use EC numbers and FP to obtain Jaccard similarity scores. CC and
KO relationships cannot be readily integrated with GRGMF. We
therefore evaluate Boost-RS when using only EC and FP as auxiliary
data. Boost-RS outperforms GRGMF in most metrics, except for the
AUC of GRGMF (Table 1E). The results show that the Boost-RS
framework can effectively capture the auxiliary data.

3.6 Boost-RS exploits and advances biological

knowledge
We present an example (Fig. 3) to highlight how Boost-RS utilizes
biological knowledge to improve performance over NMF. When
trained without regard to CC relationships, NMF cannot exploit
such relationships and predicts low interaction probabilities between
a compound and an enzyme in the test set. However, as Boost-RS
exploits CC relationships, it predicts the interaction correctly. In the
example, RClass RC00017 links many pairs of metabolites, includ-
ing deoxynucleosides C00676 and C02269. The latter pairing is due
to several reactions in the database (not shown in the figure).

Without integrating this CC pairing information into the RS, NMF
predicts an interaction score of 0.01. In contrast, Boost-RS predicts
a score of 0.96. Indeed, C00676 interacting with enzyme 3.1.3.89 is
in our training set, while the interaction between enzyme 3.1.3.89
and C02269 was present in the test set.

We also investigate how Boost-RS improves MAP per enzyme
class when compared to NMF. Apart from EC 7, which has relative-
ly fewer instances in both training and test sets, Boost-RS improves
the MAP for enzyme classes EC 1-6. The largest MAP improvement
is for EC 5 isomerases (by 0.45), and the smallest improvement is
for EC 2 transferases (by 0.17).

4 Conclusion

Our proposed framework, Boost-RS, offers an elegant and generaliz-
able model for boosting learned representations with heterogeneous
auxiliary data for CF RSs. Dynamically, training Boost-RS on mul-
tiple tasks allows evolving their relative weights along the learning
epochs. The learning tasks are applicable to various individual and
relational attributes. While intended as a general framework, we
here demonstrated the utility of Boost-RS for enzyme–substrate
interaction prediction task. We demonstrated Boost-RS on three CF
baseline models. We identified four auxiliary data (molecular finger-
prints, enzyme commission numbers, functional orthologs and bio-
transformation relationships), and proved their relevance for
enhancing interaction prediction. While we assumed all non-positive

Fig. 2. Visualization using t-SNE for learned representation of enzymes and compounds, shown to the left and right of each sub-panel, respectively. (A) Baseline

NMF. (B) Baseline with multi-label KO and CC concatenation (NMF-Concat_Multi-label). (C) Boost-RS with the auxiliary task of learning multi-label KO and CC

(Boost-RS_Multi-label). (D) Boost-RS with triplet loss on KO and CC (Boost-RS)

Fig. 3. Example that shows how Boost-RS exploits CC relationships derived from RClass relationships in KEGG. (A) Legend and KEGG data. RClass RC00017 is associated

with multiple CC pairs, including C00676 and C02269. (B) NMF prediction is not aware of the relationships between C00676 and C02269, and results in a 0.01 likelihood of

interaction between C02269 and enzyme 3.1.3.89. (C) Boost-RS exploits the CC relationships and results in an improved prediction
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interactions as negative, Boost-RS performance may be improved by
the addition of known inhibitory data as hard negative data (Visani
et al., 2021). Importantly, we showed the flexibility of Boost-RS
framework through multi-task learning allows the integration of
various auxiliary data modalities such as individual attributes, group
attributes, pairwise relationship. Replacing relational attributes with
their multi-label representations (not using contrastive-learning
loss), or naively concatenating their multi-label representations to
the embedding at the input (not using multi-task learning) cannot
achieve the same performance as with Boost-RS. We compared
Boost-RS with similarity-based RS models and showed that Boost-
RS outperforms GRGMF when utilizing the same data. Because of
its demonstrated advantages, generality and elegance in integrating
attributes with CF, the Boost-RS framework may prove beneficial
for a diverse set of application. Further, the use of the trained auxil-
iary machinery might prove useful in addressing the cold-start prob-
lem, common across RSs.
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