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In our everyday lives we regularly engage in complex, personalized, and adaptive

interactions with our peers. To recreate the same kind of rich, human-like interactions,

a social robot should be aware of our needs and affective states and continuously

adapt its behavior to them. Our proposed solution is to have the robot learn how to

select the behaviors that would maximize the pleasantness of the interaction for its

peers. To make the robot autonomous in its decision making, this process could be

guided by an internal motivation system. We wish to investigate how an adaptive robotic

framework of this kind would function and personalize to different users. We also wish to

explore whether the adaptability and personalization would bring any additional richness

to the human-robot interaction (HRI), or whether it would instead bring uncertainty and

unpredictability that would not be accepted by the robot’s human peers. To this end,

we designed a socially adaptive framework for the humanoid robot iCub. As a result,

the robot perceives and reuses the affective and interactive signals from the person as

input for the adaptation based on internal social motivation. We strive to investigate the

value of the generated adaptation in our framework in the context of HRI. In particular, we

compare how users will experience interaction with an adaptive versus a non-adaptive

social robot. To address these questions, we propose a comparative interaction study

with iCub whereby users act as the robot’s caretaker, and iCub’s social adaptation is

guided by an internal comfort level that varies with the stimuli that iCub receives from its

caretaker. We investigate and compare how iCub’s internal dynamics would be perceived

by people, both in a condition when iCub does not personalize its behavior to the person,

and in a condition where it is instead adaptive. Finally, we establish the potential benefits

that an adaptive framework could bring to the context of repeated interactions with a

humanoid robot.

Keywords: human-robot interaction, social adaptability, affective interaction, personalized HRI, emotion

recognition

1. INTRODUCTION

People have a natural predisposition to interact in an adaptive manner with others, by instinctively
changing their actions, tones, and speech according to the perceived needs of their peers (Lindblom,
1990; Savidis and Stephanidis, 2009). Moreover, we are not only capable of registering the affective
and cognitive state of our partners, but over a prolonged period of interaction we also learn which
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behaviors are the most appropriate and well-suited for each one
individually (Mehrabian and Epstein, 1972). This universal trait
that we share regardless of our different personalities is referred
to as social adaptation (adaptability) (Terziev and Nichev, 2017).
Humans are very often capable of adapting to others, though
our personalities may influence the speed and efficacy of the
adaptation. This means that in our everyday lives we are
accustomed to partake in complex and personalized interactions
with our peers.

Translating the ability to personalize interactions into HRI
is highly desirable since it would provide user-personalized
interaction, a crucial element in many HRI scenarios—
interactions with older adults (Kidd et al., 2006; Broadbent
et al., 2011; Sharkey, 2014), assistive or rehabilitative robotics
(Plaisant et al., 2000; Admoni and Scassellati, 2014; Wood
et al., 2017), child-robot interaction (Tanaka andMatsuzoe, 2012;
Paiva et al., 2014), collaborative learning (Jimenez et al., 2015;
Ramachandran et al., 2016), and many others. For a social
robot to be able to recreate this same kind of rich, human-like
interaction, it should be aware of our needs and affective states
and be capable of continuously adapting its behavior to them
(Breazeal and Scassellati, 1999; Cañamero et al., 2006; Kishi et al.,
2014; Vaufreydaz et al., 2016; Ahmad et al., 2019).

However, equipping a robot with these functionalities is not a
straightforward task. One potentially robust approach for solving
this complexity might consist of implementing a framework for
the robot supporting social awareness and adaptation (Cangelosi
et al., 2010). In other words, the robot would need to be equipped
with the basic cognitive functionalities, which would allow it to
learn how to select the behaviors maximizing the pleasantness of
the interaction for its peers, while being guided by an internal
motivation system that would provide autonomy in its decision-
making process.

In this direction, the goal of our research was threefold:
to attempt to design a cognitive architecture supporting social
HRI and implement it on a robotic platform; to study how
an adaptive framework of this kind would function when
tested in HRI studies with users; and to explore how including
the element of adaptability and personalization in a cognitive
framework would in reality affect the users. For instance,
would it bring an additional richness to the human-robot
interaction as hypothesized, or would it only add uncertainty
and unpredictability that would not be accepted by the robot’s
human peers?

In our past works, we have explored adaptation in child-robot
interaction (CRI) in the context of switching between different
game-based behaviors (Tanevska, 2016). The architecture was
affect-based (Tanevska et al., 2018b), and the robot could
express three basic emotions (a “happy,” a “sad,” and a “neutral”
state) in a simple way. These emotions were affected by the
level of engagement the child felt toward the current robot’s
behavior. The robot aimed to keep the child entertained for
longer by learning how the child reacted to the switch between
different game modalities. We have since expanded on the core
concept of a robot’s internal state guiding the adaptation, and
have advanced from the discrete emotional states and one-
dimensional adaptation to a more robust framework. Starting

from the work of Hiolle et al. (2012, 2014) on affective
adaptability, we have modified our architecture to utilize as
motivation the level of comfort of the robot, which is increasing
when the robot is interacting with a person, and decreasing when
it is left on its own.

The robotic platform selected for our study was the humanoid
robot iCub (Metta et al., 2008), and the scenario for testing the
framework’s functionalities was inspired by a typical interaction
between a toddler and its caregiver, where the toddlers tend
to seek the attention of their caretakers after being alone for
a while, but as soon as their social need has been saturated
they lose interest and turn their attention to something else
(Feldman, 2003). The robot therefore acted as a young child,
asking the caretaker’s company or playing on its own. The human
partners could establish andmaintain the interaction by touching
the robot, showing their face and smiling, or showing toys
to the robot. This scenario was deemed suitable for studying
some fundamental aspects of interaction (such as initiation and
withdrawal) with a fully autonomous robot behavior and very
limited constraints to the human activities, as well as in a
seemingly naturalistic context. Furthermore, we verified these
assumptions over the course of several validation and pilot
studies (Tanevska et al., 2019).

In this paper we cover the work we did on developing a
cognitive framework for human-robot interaction; we analyze the
various challenges encountered during the implementing of the
cognitive functionalities and porting the framework on a robotic
platform; and finally we present the user studies performed
with the iCub robot, focused on understanding how a cognitive
framework behaves in a free-form HRI context and whether
humans can be aware and appreciate the adaptivity of the robot.
The rest of the paper is organized as follows: section 2 gives an
overview on the state of art in cognitive architectures, section 3
presents the adaptive framework for our architecture, followed by
section 4 which presents the experimental methods applied in our
study with iCub. Finally, in sections 5, 6 we present the findings
from our study and we touch on our plans for future work.

2. COGNITIVE ARCHITECTURES

A cognitive agent (be it a natural or an artificial one) should
be capable of autonomously predicting the future, by relying on
memories of the past, perceptions of the present, and anticipation
of both the behavior of the world around it as well as of its own
actions (Vernon, 2014). Additionally, the cognitive agent needs to
allow for the uncertainty of its predictions and learn by observing
what actually happens after an action, and then assimilating that
perceptive input into its knowledge about the world, adapting its
behavior and manner of doing things in the process.

Following this, cognition can be defined as the process by
which an autonomous agent perceives its environment, learns
from experience, anticipates the outcome of events, acts to pursue
goals, and adapts to changing circumstances.

In the past decades several different cognitive architectures
have been proposed and tested on artificial agents in a variety of
cognitive tasks—SOAR (Laird, 2012), ACT-R (Anderson et al.,
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2004), Sigma (Rosenbloom et al., 2016), CLARION (Sun, 2006),
ICARUS (Choi and Langley, 2018), and the iCub (Vernon et al.,
2007) to name a few. A comprehensive review can be found in
Langley et al. (2009) and Thórisson and Helgasson (2012).

In particular, for robots engaged in social HRI, the
implementation of some of these cognitive abilities—or of them
as a whole architecture—has been demonstrated in the context
of autonomous social interaction (Adam et al., 2016; McColl
et al., 2016), in studies aimed at the employment of joint action
(Lemaignan et al., 2017) as well as in studies where the robot is
assisting the humans in achieving their goals (Beer et al., 2014).

The architectures proposed have been developed with
different goals, ranging from modeling biological or
psychological phenomena (e.g., model human performance
in cognitive and perceptual tasks—e.g., ACT-R or CLARION),
to trying to model more complex cognitive processes, toward
human-level intelligence, as in the case of SOAR or ICARUS.
Our work places itself within this second category, with the
specific goal of developing a cognitive architecture supporting
autonomous behavior for a robotic platform involved in
interaction with humans.

Rather than relying on existing complete architectures,
designed for context-free human-robot interaction, or even in
a broader sense for general intelligence we opted for a simpler
approach; this decision was made in order to gain more freedom
for future expansions of the architecture and to focus on the
very basic components necessary to establish an interaction. In
this sense, we took a developmental inspiration, focusing on
replicating interactive and adaptive capabilities such as those
observed in toddlers. The architecture relies on the robot
evaluating the affective state of its human peers and their mode
of interacting with the robot as factors which determine the
robot’s own internal emotional condition, and subsequent choice
of behavior. Our framework over its various developments was
tested on the iCub humanoid robot.

3. OUR FRAMEWORK

In light of the considerations reported in the previous section,
our framework for the iCub consisted of the following modules
and their functionalities:

• Perception module, processing tactile and visual stimuli1;
• Action module, tasked with moving iCub’s joint groups2;
• Adaptation module, active only in the adaptive profile for the

robot and in charge of regulating iCub’s social need3.

3.1. Perception Module
The perception module was tasked with processing stimuli from
two sensor groups: tactile stimuli—the data processed from the
skin sensor patches on the iCub on its arms and torso, which
carried information about the size of the area that was touched
(expressed in number of taxels—tactile elements) and the average

1https://github.com/TadasBaltrusaitis/OpenFace/wiki
2https://github.com/robotology
3The code for the adaptation module is in a private repository, but is available on
request.

FIGURE 1 | The two outputs from the perception module. (A) Shows an

example of face detection and toy tracking. (B) Shows in red the area of the

iCub’s torso touched by the participant. (Informed consent of participants has

been obtained for the use of their photo).

pressure of the touch (Cannata et al., 2008); and visual stimuli—
the images coming from iCub’s eye camera, jointly analyzed
for detecting the presence of a face and extracting the facial
expression of the person, as well as for detecting the presence
of some of iCub’s toys. The module was realized using iCub’s
middleware libraries (Metta et al., 2008) for processing the data
from the skin covers on its torso and arms; as well as using
the open-source library OpenFace (Baltrušaitis et al., 2016) for
extracting and analyzing the facial features of the caretaker,
represented by their facial action units (AUs) (Ekman et al., 1978).

The data from the OpenFace library were analyzed in order
to obtain the most salient action units from the detected facial
features. We considered as positive-associated AUs smiling and
cheek raising with crinkling of the eyes, and as negative-
associated AUs brow lowering, nose wrinkling, and raising the
upper lip in a snarl. Presence of all positive AUs was classified as
“smiling” (presence of just a mouth smile but no positive upper
AUs signified a fake smile, and was not classified as “smiling”),
presence of only the brow lowering but without additional
negative AUs was classified as “contemplating” whereas the
presence of all negative AUs signified “frowning.” If neither of
these AUs groups were present in the frame, the user’s affective
expression was classified as “neutral.”

Our perception module did not assign a positive or negative
emotional state and it did not involve training an additional
model from the observed action units; rather, it detected and
provided as output the appearance of the abovementioned
action units. The detected action units signified the person was
exhibiting one of the selected facial expressions, which is an
approach often used in studies where the perceptual component
in the architecture is focused only on facial expressions, and
not on more detailed emotional state (Yalcin and DiPaola, 2018;
DiPaola and Yalçin, 2019).

In addition to the affect detection functionality, the visual
perception consisted also of the color detection functionality,
which was able to detect and track a set of predefined colors,
looking for contours in the image of a certain size (fitting the
size of the toys) and color. Figure 1A shows the simultaneous
detection and tracking of the face of the participant and a
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toy—the center of the face is indicated with a pink circle, the
center of the object with a blue one, and the smaller purple circle
instead indicates where iCub’s attention is at that moment, i.e.,
which stimuli it is tracking. Figure 1B instead shows detected
touch on the tactile covers of iCub’s torso. For the skin there
was some additional processing post-extraction; this was because
during prolonged interaction, the tactile sensors tended to
overheat and give phantom signals. Thus, the data were filtered
to register as touch only areas that were larger than 5 taxels and
recorded average pressure larger than 12.0. These values resulted
from previous experimental exploration of parameters for the
skin sensors, as during the overheating the sensors would register
small pressure points under 5 taxels when there was no actual
touch. These data were processed for the torso and both arms
separately, and sent to the perception module.

3.2. Action Module
The action module communicated with iCub’s middleware
(Parmiggiani et al., 2012) and performed a finite set of actions
by controlling the specific body part in the joint space. iCub
was holding a box of its toys and it could move its arms in an
extending or flexing motion, thus bringing the box closer to the
person or away from them. A looking action was performed every
time iCub was changing its gaze focus, utilizing motions of the
neck and saccadic motions of the eyes. When iCub wanted to
engage with the caretaker, it would straighten up and look for the
person, and then during the interaction engage in gaze-cueing
and looking at objects, whereas when iCub was oversaturated
and wanted to disengage, it would lean down to the table and
away from the person, and look down to its toys, ignoring other
attempts to engage.

3.3. Adaptation Module
This module maintained iCub’s comfort and guided the
adaptation process. In our framework iCub’s comfort was
dependent on the amount of social interaction the robot
was involved in and the motivation in our architecture was
represented by iCub’s striving to maintain it at an optimal level.
The comfort of iCub grew when a person was interacting with it,
whereas lack of any stimuli caused the comfort value to decay.
iCub’s social architecture was also equipped with a saturation and
a critical threshold, which were reached when the interaction was
too intense or was too sparse, respectively.

At the beginning of the interaction with each user, iCub
started with its comfort set at 50% of the maximum value. Then
the comfort level was updated continuously at the beginning of
each cycle of the control loop of the interaction4. This happened
in the following manner:

if (F[t] || T[t]):
C[t] = (F[t]+T[t]+C[t-1]τ)/(τ+0.1)

else:
C[t] = β*C[t-1]

4Referring here to the perception-action control loop of iCub’s architecture.

where C[t] indicates the current comfort level whereas C[t-1] is
the previous comfort level; F[t] and T[t] are the input stimuli
from the visual and tactile sensors, respectively. β and τ are the
social variables dictating the decay and growth rate of the comfort
value, where their initial values were set at β = 0.998 and τ = 500.

When there was a human interacting with the robot (iCub
was perceiving a face in front of it, or registering touch with
its skin), the comfort C[t] at time t was updated using the first
formula, which takes into consideration both modalities in which
the user could interact with iCub, as well as the previous level
of comfort C[t-1]; on the other hand if iCub was not currently
engaged in interaction, its comfort was updated as depicted in the
second formula, which calculated the decay of the comfort. This
formulation implies that a multimodal interaction (receiving
both visual and tactile stimuli) or a longer, steadier interaction
increased the comfort at a faster rate.

The variables τ and β were the growth and decay rates,
respectively. τ modulated how much C[t-1] was taken into
consideration: a smaller τ represented a more rapid growth of the
comfort when stimuli were detected, and a larger value a slower,
steadier growth. β was indicating how quickly C[t] decayed
without stimuli; the smaller the value of β , the more drastic the
decay of the comfort.

If the robot did not receive enough stimulation for a certain
period of time or if it was stimulated toomuch, the comfort could
reach either a critical or a saturation threshold.When one of these
threshold values was hit the system adapted. More precisely, the
adaptation process had the following pattern:

• If the comfort reached the saturation limit (i.e. it exceeded
75% of the total comfort value) this signified that the robot
was overstimulated. To cope with this, the robot entered a
suspension period of 20 s where it ignored all stimuli and
this led to the comfort value going back to the optimal
zone. Moreover, to adapt to future interactions with a very
interactive partner, the robot increased the value of τ by
500. This implied that in the next very intense interaction,
saturation would have happened later.

• If the comfort dropped to the critical level (i.e. it dropped
under 25% of the total comfort value) this signified that the
robot had been left alone for too long. As an immediate
response the robot attempted to engage the caretaker by calling
for attention. If ignored the robot would then enter a 20 s
suspension period, simulate stimuli to itself so as to recover
back to the optimal comfort level and then adapt. In particular,
it increased the value of β by 0.005, in practice increasing the
time before it would have hit again the critical threshold and
ask for attention.

An example of the changes of comfort value during an interaction
involving some threshold hits and the consequent adaptation of
decay rate is reported in Figure 4B and will be described in detail
in section 5.1.

To provide a reference of the framework’s dynamics—the
initial values of the comfort variable, β , and τ provided for
1.5 min of extreme interaction before hitting a threshold (1.5
min of zero stimuli for a critical threshold, and 1.5 min of full

Frontiers in Robotics and AI | www.frontiersin.org 4 October 2020 | Volume 7 | Article 121

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Tanevska et al. Socially Adaptable Framework for HRI

multimodal interaction for saturation). The time limits increased
after each architecture adaptation (i.e., threshold hit), e.g., after
2 adaptations prompted by critical triggers, iCub could be left by
itself for 7.5 min before hitting the threshold again.

The selection of the initial values of τ and β , of the amount
of changes in the parameters during adaptation, of the duration
of the suspension period and of the critical and saturation
thresholds was based on a previous simulation study (Tanevska
et al., 2019): this explored more in depth the impact of each of
these parameters on the behavior of the architecture.

The manner of modifying the τ and β variables was inspired
from the related research done in Hiolle et al. (2012, 2014).
In addition, we implemented the suspension period following
adaptation. Originally the architecture adapted by immediately
resetting the comfort level back to the optimal level and
continuing with the interaction. The suspension period was
included as a factor only after the validation of the original
architecture with participants, during which it was realized
that a continuation of responsiveness of the robot might not
have allowed for the participants to infer that they were doing
something not ideal for the robot. For example—in the case
of saturation, after the instantaneous robot withdrawal, it was
immediately ready again to respond, which induced participants
again to continue to interact in the same manner and trigger
again saturation.

4. MATERIALS AND METHODS

In this study we were interested in exploring whether adaptation
is a necessary functionality for human-robot interaction, and
particularly for the context of free-form social human-robot
interaction. In a scenario where there would not be a clear task
for the human to perform with the robot, would the adaptive
functionality bring anything additional to the interaction? To
address this, we formulated three related questions:

• How much would the adaptive architecture change for each
participant during the interaction, and howwould people react
to such personalization? (This will be answered in section 5.1)

• What would be the subjective evaluation of the participants
for the interaction, and would it depend on the adaptivity of
the robot? (This will be answered in section 5.2)

• Would participants change their way of interaction across
modalities or robot adaptivity level? (This will be answered in
section 5.3).

4.1. Experimental Design
A previous exploratory study illustrated that a screen-based game
interaction scenario did not provide a desired amount of affective
expressiveness in participants (Tanevska et al., 2018a). Since we
had explored the effectiveness of a care-taking scenario in prior
pilot and validation studies with the iCub robot (Tanevska et al.,
2019), we decided to continue in the same direction and expand
the existing experimental setup.

The interaction scenario placed iCub in the role of a toddler
exploring and playing with its toys, while the participants were
tasked as the iCub’s caretaker. In the study in Tanevska et al.

(2019) we investigated the preference of participants for an
adaptive dynamic robotic profile over a static scripted one. We
now placed the focus on a different task—evaluating in greater
detail the effect of the adaptation modality on the interaction in
two otherwise equally dynamic and responsive behavior profiles.
In that direction, the two different “personalities” of iCub were
both equipped with the full cognitive architecture described in
the previous section, with the only difference being that one
profile had the adaptation functionality disabled.

In both behavior profiles iCub’s behavior was guided by its
social skills, and in both conditions iCub began the interaction
with the optimal values of the growth and decay variables as
selected after the simulation study (Tanevska et al., 2019). The
only variation in the profiles was that in the Fixed profile (F)
the values of τ and β remained unchanged throughout the
interaction (regardless of how many times the comfort value hit
the critical or saturation thresholds), whereas in the Adaptive
profile (A) there was the personalization of the architecture to
each participant by modifying the values after each threshold hit.

The interaction between iCub and the participants was mostly
free-form; and while iCub could try during the session to also
initiate interaction, or would actively ask for it after hitting a
critical or saturation point; for the most part participants had the
liberty of guiding the interaction. During the entire interaction
iCub could receive and process stimuli from the participants
which could be tactile (contact with the skin patches on iCub’s
arms and torso) and visual (either observing the participant’s face
at an interacting distance and evaluating the facial expressions, or
detecting toys by recognizing their color and shape).

4.2. Participants
Twenty-six participants in total took part of the caretaker study.
The youngest participant was aged 18 and the eldest 58, with
the average age being 32.6 years (SD = 11.98). The gender ratio
between the participants was 15:10:1 (M:F:NBGQ5).

4.3. Protocol
Participants were evenly distributed in two groups of 13 people,
where one group interacted first in the adaptive and then in
the fixed dynamic setting, and the other vice versa. A session
of interaction in either profile setting lasted 12 min, divided in
three phases of 4 min, the middle one of which was the interval
when participants were asked to work on a secondary task—the
pollinator puzzle (see section 4.4).

Between the two sessions of interaction, as well as at the
beginning and end of the interaction participants answered
questionnaires (more details on the questionnaires in the
following subsection), bringing the total time of commitment
for the participants at around 45–50 min. There were two
environments in which the participants were stationed during
their visit—the office setting and the laboratory setting.

Upon their arrival to the institute, participants were first
brought to the office setting, where they were presented with the
consent form and given time to read through it and sign it. Then,
while still in the office, we informed participants that during

5NBGQ—non-binary/genderqueer.
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FIGURE 2 | The layout of the laboratory setup. Informed consent of

participants has been obtained for the use of their photo.

the experiment there would be several moments during which
they would be given different forms of questionnaires—related to
their personality, relationship to iCub, as well as creativity and
problem solving. This was followed by the familiarization phase
for the pollinator puzzle. The concept and rules of the puzzle
were explained to the participants, and they were presented with
the first pollinator puzzle (the purpose of which was to obtain
the baseline for each participant’s performance). The participants
were timed for 4 min (the amount of time allotted for the
puzzle during the familiarization phase was the same as the
time during the robot interaction). After the time ran out (or if
participants completed the puzzle in less time—after they were
done), we escorted the participants from the office and took them
to the laboratory.

On the way to the laboratory we briefed participants on the
experiment. More specifically, they were told that they would
have roughly half an hour of free interaction with the robot
iCub Reddy, who is equipped with a toddler-like personality. We
informed them of themodalities they could interact onwith iCub,
albeit in an informal way – “iCub can see you, it6 can feel you
when you pet it, it likes hearing you talk to it even though it does
not understand you, it speaks its own language.” Participants
were purposefully informed that iCub likes hearing them because
it was observed in our previous pilot study that people who knew
iCub was not capable of speech recognition did not talk at all to
the robot during the study.

In the laboratory iCub was positioned in front of a table and
holding a box with toys (as shown in Figure 2), some of which
were out of the box and spread across the table at the beginning
of the interaction. The participants were offered a chair in front
of the table facing iCub, but they also had the freedom to sit or
walk anywhere in the room.

When iCub was in a state of interacting with its caretaker, it
maintained mutual gaze and tracked the person’s face, or if the

6The participants who spoke only Italian were briefed in Italian instead of English.
Due to Italian not having a gender-neutral pronoun, iCub was referred to with
“him” in Italian (lui).

person was playing around with some of the toys it would track
the toy that was nearest to it. If the person was not showing any
toys to iCub, it would occasionally break mutual gaze and try to
indicate toys to the person by looking down at a toy and back
to the person (gaze-cueing), by saying the name of the toy or by
moving the box toward the participant. In order to avoid giving
participants the impression that iCub could understand them, the
verbal utterings (which were the names of the colors iCub could
recognize, as well as some encouraging and protesting sounds
in order to attract attention or to disengage) were recorded
in Macedonian (the native language of author A.T.) and then
processed and low-pass filtered so as to both make them sound
more robotic as well as unintelligible to participants.

Additionally participants were reassured that any perceived
lack of interest or reciprocity on iCub’s part was due to the robot
switching its attention to something else (in line with its toddler
personality), and not due to them interacting “in a wrong way.”
This was also deemed necessary to be included in the protocol
due to a similar realization from the previous pilot that some
people were getting worried when iCubwould switch its attention
and they thought they “did something wrong.”

4.4. Secondary Task
With the goal of further exploring the potential benefits of having
critical and saturation thresholds in the architecture, we devised
an approach to manipulate the behavior of the participants
by introducing a timed secondary task at a certain point in
the interaction. This task was designed to observe changes to
the interaction patterns if participants were suddenly given a
secondary task, but the robot was still asking for their attention.

For this, a task needed to be considered that would involve a
cognitive load on the participants, while at the same time being
a task that would neither be too time-consuming (like sudoku),
nor too attention-demanding or distracting (like a phone call
during which participants would be tasked to write down some
information). The solution selected was to present participants
with some easier mathematical problems involving the basic
arithmetic operations; this meant finding a set of numeric puzzles
that would be both simple enough to do in a short time interval,
but also appealing and interesting. The final choice for the
secondary task was the pollinator puzzle7.

The pollinator puzzle is a logic-based, combinatorial number-
placement puzzle, where 10 empty fields are arranged in a flower-
like shape (see Figure 3). The digits 0–9 need to be placed in
the empty fields, each digit appearing one time only without
repetitions, in such a way that each pair of digits gives the
specified result for the operation on the petals. Each puzzle has
only one possible solution following these rules.

4.5. Data Analysis
We collected data from four main sources during the study—
the questionnaires filled by the users; the evaluations of the
filled pollinator puzzles; the video and audio recordings from the
external camera; and the data collected by the robot during the

7https://mathpickle.com/project/pollinator-puzzles/
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FIGURE 3 | Sample pollinator puzzle.

interaction phases from the tactile sensors, internal camera, and
state machine output.

4.5.1. Questionnaires

Participants responded to questionnaires at three points during
the interaction study. The first set of questionnaires was done
after they entered the lab with the robot but before beginning
with the interaction, the second set was halfway through the
interaction (which in reality was the moment after which the
robot switched personalities, unbeknownst to the participants),
and the last set was at the end of the interaction.These three
points in the interaction are labeled as PRE, BETWEEN, and
POST in the Results.

All three sets of questionnaires collected the IOS rating
of closeness between participants and the robot (Aron et al.,
1992), as well as the Godspeed questionnaires on animacy and
likeability (Bartneck et al., 2009). Additionally, in the second
and third set of questionnaires there was also a qualitative open
question asking participants to describe the interaction using
three adjectives, as well as a set of questions related to how they
perceived the interaction with the robot. Finally in the third set
of questionnaires there were two descriptive questions related to
the different sessions, and the TIPI questionnaire.

4.5.2. Pollinator Puzzle

Participants did in total three rounds of the pollinator puzzle.
One was completed as a baseline before starting their interaction
with the robot, one during the first interaction session and one
during the second interaction session. There were two evaluation
metrics for the puzzles—the % of filled fields (out of the 10
empty fields) and the % of accurately filled fields (out of the 10
empty fields).

A combination metric was then designed in order to obtain
a single evaluation value, where if X was the percentage of
completeness and Y the percentage of accuracy, the final metric
Z was obtained as Z = 0.4*X + 0.6*Y. The combination metric
was designed with the goal of taking into account as factors both

the accuracy and the completeness, but give a higher reward for
the accuracy.

4.5.3. Internal Data From iCub

From the iCub itself we recorded the tactile and visual data, as
well as all of the values of the architecture—the fluctuations of the
comfort value and the changes to the decay and growth rates. The
data from the architecture was annotated for each frame received
by the robot with a timestamp and the state (of the state machine)
that iCub was in.

5. RESULTS

5.1. Architecture Dynamics
The cognitive framework developed for iCub was a continuously-
changing one, learning by modifying its social variables and
adapting to the person’s frequency and intensity of interaction.
This means that the ways in which someone interacted with the
robot provoked changes in the internal states of iCub and its
comfort level. Every time a threshold of the robot’s comfort was
hit, iCub adapted the appropriate comfort variable and changed
its behavior accordingly.

If the critical threshold was hit, signifying lack of stable
interaction with the person, iCub modified its decay rate and
as a result could remain in an idle state for longer periods of
time before it would need again to interact with the person.
On the other hand, hitting the saturation threshold meant iCub
was engaged with a person who was more intense in the way it
behaved and interacted with iCub (using multiple modalities and
interacting for a long stable period of time), so iCub modified its
growth rate which enabled it to stay interacting for longer time.

Figure 4 shows the behavior of the architecture and the flow
of iCub’s comfort value for two different participants in different
sessions of interaction. Figure 4A illustrates the behavior of the
architecture for a participant that had its first interaction with the
robot in the Fixed session. Here the critical threshold was hit first
two times while the participant was performing the secondary
task, and the participant ignored the robot’s attempts to engage;
and additional three times in the last phase of the session after
the timer for the secondary task ran out, but in these three
instances the participant was no longer distracted and answered
iCub’s calls.

There are two reasons why the three responded calls are so
close in succession one after the other. The first reason is that
iCub was in the Fixed personality, so it did not adapt to the
person’s reduced interaction during the secondary task. This
explains why the first three (out of the five in total) threshold hits
happened at an identical regular period. The last two threshold
hits instead happen so close to each other since the participant
responded unstably to iCub’s calls, in a manner of giving brief
stimuli and then turning their attention to something else, which
did not provide iCub with enough stability to be comforted.
Instead in the final instance when the critical threshold is hit
the participant’s response was a more stable one, interacting on
several modalities, so as a result iCub’s comfort resumed growing.

Figure 4B, on the other hand, shows the interaction between
iCub and a participant interacting with it for the first time in
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FIGURE 4 | Architecture dynamics: upper graphs depict the variations in iCub’s comfort value over the course of an interaction session, lower graphs depict the

occurrence of stimuli. Critical hits are shown in red dots. (A) Sample FA participant interacting in the first Fixed session. The comfort value hits 5 times critical

threshold, but the decay rate doesn’t change. (B) Sample AF participant interacting in the first Adaptive session. The comfort value hits three times the critical

threshold. After each hit the decay value changes.

the Adaptive session. This participant was less interactive than
the participant in Figure 4A, but even so the total number of
threshold hits was three, out of which only one was not answered.
This demonstrates the effectiveness of the adaptivity of the
architecture, which can be observed also in the decay slope during
the secondary task. After two adaptations of the architecture, the
decay slope is much slower, preventing iCub from hitting another
critical point until very near the end of the interaction.

Regardless of the order of the interaction sessions (AF or FA—
standing for Adaptive-Fixed and Fixed-Adaptive, respectively) or
the phase of interaction, overall during the experiment on average
people hit a threshold on average 1.42 times during one session:
on average 1.79 times during the first session and 1.04 times
during the second.

The total number of threshold hits summed for all participants
was 68, out of which only 2 (3%) were saturation hits, and all
remaining ones (97%) were critical. In these calculations the
first two participants were excluded due to technical reasons
rendering their number of threshold hits unusable.

Figure 5 illustrates the effect of the order of the sessions on
people’s first interaction with iCub. Overall, the participants in
the FA group had noticeably more threshold hits in the Fixed
session than in the Adaptive, whereas the participants in the AF
group had a roughly similar ratio of total threshold hits in the
Fixed and Adaptive sessions.

This was additionally confirmed after running a mixed-model
2-factor ANOVA, with SESSION (levels: adaptive and fixed) and
ORDER (levels: AF,FA; signifying the groups of participants) as
the within and between factors, respectively.

A significant difference was found both over the SESSIONS
[F(1, 22) = 7.87, p = 0.01] and for the interaction [F(1, 22) = 5.27,
p= 0.03]. The ORDER had no significant impact [F(1, 22) = 0.68,

FIGURE 5 | Comparison of average amount of threshold hits per session and

order group. Error bars represent standard error. Asterisks indicate

significant difference.

p = 0.42]. A post-hoc Bonferroni test confirmed that the number
of hits was significantly larger in the Fixed session, for the group
who encountered that as first one (FA group).

A deeper analysis into the individual modes of behavior
are presented in Figure 6. This analysis consisted of measuring
the changes in the architecture for each participant, comparing
for the two different orders of sessions how many times the
thresholds of the architecture were hit, as well as how many
times people responded to the calls for interaction at the
critical threshold.

While a large variety in the number of threshold hits
(ranging from 0 to 6) can be seen in both conditions and
across both session orders, it can be noticed that the majority
of people showed a tendency to respond to the robot’s calls.
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FIGURE 6 | Number of occurred and responded threshold hits per session for FA and AF participants.

FIGURE 7 | Participants in interaction with iCub. (A) Participant working on the pollinator puzzle. (B) Participant interacting with iCub. Informed consent of

participants has been obtained for the use of their photo.

Some participants never hit a critical or saturation threshold
(indicated at the end of both figures), however there were only
two participants who did not respond to the robot’s calls for
engagement, suggesting that in addition to iCub being adaptive
in some cases, participants always adapted to the robot.

The analysis of the architecture dynamics highlights the
differences between the sessions, depending on which was the
starting session for participants, as shown in Figure 5. Fixed-
Adaptive participants had a more challenging first session since
it was both the first session of interaction with the robot,
and the session where the architecture did not adapt to their
interaction particularities. On the other hand, the Adaptive-
Fixed participants’ first session of interaction with the robot was
the one in which iCub was adapting its comfort variables to
their interaction profiles; this contributed to them having less
threshold hits in their Fixed session when compared to their
FA counterparts.

5.2. Subjective Evaluation
The subjective evaluation included exploring the expressed
preference of participants for interacting with iCub in the
Adaptive or Fixed session, their ability to differentiate between
the two different profiles of the robot, and evaluating whether
their IOS and Godspeed ratings changed as a function of
the time spent with the robot or the adaptivity of the robot.

Figure 7 depicts participants in different phases of interaction
with iCub. Before analyzing the data from the questionnaires we
verified their reliability using Cronbach’s Alpha, which yielded a
reliability coefficient of 0.9.

In this study, we wanted to explore the comparison between
two similarly dynamic and responsive architectures, where the
only difference between them was the inclusion of the adaptive
component. We were curious to investigate the effect on the
adaptivity level of iCub to the participants’ self-rated feelings of
closeness with the robot (the IOS rating) and the participants’
evaluation of the robot’s animacy and likeability (the Godspeed
ratings). Figures 8, 9 show the average of the participants’ IOS
and Godspeed evaluations before interacting (PRE), between
the two interaction sessions (BETWEEN), and at the end of
interaction (POST).

A Lilliefors test for normality indicated that the data were
distributed non-normally (all p’s < 0.01), so a statistical
nonparametric analysis was performed on all IOS and Godspeed
ratings. To check the variations between the three different
phases of rating (PRE experiment, BETWEEN sessions, and
POST experiment) we ran three Friedman ANOVA tests.

Participants were consistent in their Godspeed Likeability
and Animacy ratings, and the Friedman ANOVA tests
found significant differences only for the IOS ratings for
both the AF [χ2

(13, 2) = 10.67, p < 0.01] and FA group
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FIGURE 8 | IOS ratings averages across order and phases. Error bars represent standard error. Asterisks indicate significant difference.

FIGURE 9 | Godspeed ratings averages across order and phases. Error bars represent standard error.

[χ2
(13, 2) = 16.47, p < 0.01], however the post-hoc analysis with

a Wilcoxon signed rank test showed that the only significant
difference after Bonferroni correction was for the FA group
between the PRE and BETWEEN ratings (p = 0.015) and PRE
and POST ratings (p= 0.013).

From this analysis what we observed was that participants’
rating of their perceived closeness with iCub changed modestly
as a result of them spending more time in interaction with it, but
not as a function of the adaptivity of the robot. This could signify
that on their part, participants did not perceive any structural
difference between the two sessions. This could be explained
by the assumption that the two sessions were not particularly
different to the participants, who did not exploit the adaptivity
of iCub excessively. Alternately, notwithstanding the differences
experienced by the participants, both sessions could have been
equally “likable” to them.

While people seemed more consistent in their Godspeed
ratings across all sessions, their IOS ratings tended to be more

variable, with bigger differences (usually of 1, but also reaching
2 and 3) between the different sessions. However, the same
conclusion was also evident here; the rating of IOS closeness
increased for most people as a consequence of the prolonged time
spent with the robot, and not as a result of the robot’s adaptability.
It would seem that although there were differences in the two
sessions, people did not change their rating.

This was confirmed also by the free questions they had to
answer after the second session:

- Which session did you prefer and why?
- What was the difference (if any) you noticed between the two
sessions of interaction?

Seventy-seven percent of participants answered that they
preferred the second session because they felt iCub was more
animated or interactive toward them, 19% replied that they
enjoyed both sessions equally and only one participant said he
did not enjoy any of the two. Additionally, 27% answered that

Frontiers in Robotics and AI | www.frontiersin.org 10 October 2020 | Volume 7 | Article 121

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Tanevska et al. Socially Adaptable Framework for HRI

FIGURE 10 | Average percent of interaction times spent in the major states, shown across phases and sessions. Error bars represent standard error. Asterisks

indicate significant difference.

they did not perceive any difference between the sessions, 46%
instead had perceived the robot being more interactive in the
second session (however from those 46% half were FA and half
AF, signifying random chance), and 23% said they learned how
to interact better in the second session.

5.3. Behavioral Evaluation
After analyzing the subjective evaluation, the final step was
processing the behavioral results, which measured how the
interaction between iCub and the participants actually unfolded.
The behavioral evaluation of the participants analyzed whether
people actually interacted differently with the robot across
different phases and modalities. This was considered again as a
function of the time spent with the robot or the session order

(Adaptive-Fixed or Fixed-Adaptive). An additional analysis was
done on into how the participants’ behavior changed during the
dual task.

This section covers the results from the different modalities
of interaction—i.e., how people interacted with iCub on the
three modalities of visual-face, visual-objects (also mentioned
under visual-toys), and tactile; the distribution of iCub’s states
during the interaction and all three phases for each session,
and finally how the secondary task impacted the interaction.
Figure 10 shows the distribution of the states the robot was in
during the interaction.

During the interaction sessions, iCub’s behavior was guided by
a state machine. The three main states were idle, when the robot
was left without stimuli from the user and interacted by itself;
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interact when engagement had happened by either party; and
suspend which iCub entered after hitting a threshold hit and its
call for engagement was not responded to (for critical hits). There
were also more minor, transitional states signaling a change in
behavior or an occurrence of the architecture adapting. However
since these lasted only a few frames (and in real interaction time,
<3 s), they were not taken into account.

From Figure 10 several conclusions can be obtained:

• The interaction pattern among the different phases was similar
between the two groups;

• In the third phase (the interaction after the secondary task)
there seems to be compensation for having previously ignored
the robot, in the form of increased interaction. This can be
seen especially in the Fixed session (regardless of order group),
potentially because the robot asked for more attention without
adapting to the users ignoring it;

• The distribution pattern of the states in the last phase of
the first session tends to carry over to the first phase of
the second session, indicating participants learning how to
interact effectively with the robot. This effect was particularly
not expected for the participants of the AF group, since in
their second session of interaction the architecture values of
the robot were reset, thus, the AF participants essentially
interacted first with a robot that adapted to them, and then
with one that had no adapted specifics;

• The interactive behavior during the dual task seems to change
between the two sessions for the FA participants. Having
ignored the robot during the secondary task in the first
session (Fixed) where it did not adapt to them, they seem to
overcompensate in the secondary task in the second session
(Adaptive). As a result, there is a huge jump in interactivity.
This may be a combined effect of both overcompensation
combined with the added adaptivity of the robot;

• The interactive behavior during the dual task stays nearly
identical for the AF participants between the two sessions.
As the robot was adaptive in the first session (Adaptive), it
adjusted to them; however, due to them not perceiving the
robot as particularly annoying or demanding for attention
in their first session, there is no compensation in the
second session.

A Lilliefors test for normality indicated that the data were
distributed non-normally (p < 0.01). To evaluate the difference
between the interaction patterns in the different phases
and between the different groups, we performed several
nonparametric tests. We first ranMann–WhitneyU-tests, testing
for significant differences in the percentage of interaction time
between corresponding phases in the AF and FA groups. Then,
for each session, we performed a Friedman ANOVA test,
followed with aWilcoxon signed-rank as post-hoc, to evaluate the
differences among the different phases in a given session.

The Mann–Whitney tests found no significant difference
between the AF and FA groups in any of the phases, signifying
that in general the two groups of people did not have significantly
different interaction patterns in the different phases. The
Friedman ANOVA tests found significant differences for both

groups in the Fixed session of interaction [χ2
(13, 2) = 14.6, p <

0.01 for AF group; χ2
(13, 2) = 14.17, p < 0.01 for FA group],

and for the AF group in the Adaptive session as well [χ2
(13, 2)

= 6, p = 0.049]. The Wilcoxon signed rank for the two Fixed
sessions showed significant differences between the 1st and 2nd
and 2nd and 3rd phase of interaction [p < 0.01], whereas for the
Adaptive session for the AF group the difference was significant
only between the 2nd and 3rd phase [p < 0.01]. All differences
are significant after a Bonferroni correction.

Furthermore, we compared the percentage of interaction time
during the Secondary phase between the first and the second
sessions for both groups. The Wilcoxon signed rank showed no
significance for the AF group (p = 0.534), whereas for the FA
group a significant increase was registered in the Adaptive session
(p= 0.027), which did not resist Bonferroni correction.

Since there was a noticeable difference in how people behaved
with the robot while they were tasked with the pollinator
puzzle, the next analysis focused on the scores obtained by
participants in the pollinator puzzle. From Figure 11, showing
the averaged pollinator scores for both groups (AF and FA)
over the three times they filled the puzzle—baseline, first session,
second session) it can be noticed that there is no difference over
the average score. This signifies that even in the phases when the
robot was non adaptive, on average participants could complete
the task to some extent.

With this analysis it was established that the participants’
behavior during the secondary task (interacting with the robot or
ignoring it in order to focus on the task) did not strongly impact
their pollinator score. In other words, how good people were at
the task was subjective for each person, and did not depend on
whether they interacted a lot with the robot or ignored it.

The last step of the analysis looked into the modalities
participants used when interacting with iCub. The modalities
graphs shown in Figure 12 show that during the secondary task
there is, somewhat understandably, the biggest drop in face as
input, but there is compensation with touch, which stays similar
and does not have such a significant drop. The patterns in the
last phase of session 1 tend to be nearly identical to the first
phase of session 2, the reason for this could be that the mode
of interaction tends to carry over between the two sessions.
A similar pattern can be also observed in the analysis of the
interactivity distribution in Figure 10.

We next wanted to evaluate the difference between the
interaction patterns in the different phases and between the
different groups. Since a Lilliefors test indicated that the
modalities data were distributed non-normally (p < 0.01), we
repeated again the same kind of analysis as for the interaction
behavior. For each of the three modalities we first ran a
Mann–Whitney U-test testing for significant differences in the
interaction patterns between the AF and FA groups in each
phase. We followed that with four Friedman ANOVA tests
(one per session) with a Wilcoxon signed-rank test as post-
hoc to evaluate the differences between each of the phases in a
given session.

• Touch: The Mann–Whitney test found a significant difference
between the AF and FA groups in the first session of
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FIGURE 11 | Average pollinator scores for the three times participants did the puzzle. Error bars represent standard error.

interaction, during the 2nd phase (p < 0.01). The Friedman
ANOVA tests found no differences between the phases for any
group and any session;

• Toys: The Mann–Whitney test found no significance between
the AF and FA groups in any of the phases. The Friedman
ANOVA tests showed significant differences for the AF group
in the Fixed session [χ2

(13, 2) = 8, p = 0.018], and for the FA
group in both sessions of interaction [χ2

(13, 2) = 6.71, p =

0.035 for Fixed; χ2
(13, 2) = 10.17, p < 0.01 for Adaptive]. The

Wilcoxon signed rank showed significant differences only for
the Fixed session of interaction, for the AF group between the
2nd and 3rd phase (p < 0.01) and for the FA group between
the 1st and 2nd phase (p< 0.01). All differences are significant
after a Bonferroni correction.

• Face: The Mann–Whitney test found no significance between
the AF and FA groups in any of the phases. The Friedman
ANOVA tests showed significant differences for both the AF
group [χ2

(13, 2) = 15.8, p < 0.01 for Fixed; χ2
(13, 2) = 14, p <

0.01 for Adaptive] and the FA group [χ2
(13, 2)) = 17.76, p <

0.01 for Fixed; χ2
(13, 2) = 7.38, p = 0.025 for Adaptive]. The

Wilcoxon signed rank showed significant differences between
the 1st and 2nd phase, and 2nd and 3rd phase (p = 0.01
for AF group, Session 1, between 1st and 2nd phase; p <

0.01 for all other tests). All differences are significant after a
Bonferroni correction.

Even though the subjective evaluation of the participants did
not reveal a correlation between the adaptiveness of the robot
with its likability, or an awareness among the participants of the
existence of a difference in the profiles at all, there were implicit
results pointing to the opposite. The manner of interacting with
the robot, both in terms of frequency and use of modalities,
changed noticeably, particularly when participants were given
the secondary task. More precisely, when the robot was in its
adaptive profile, even if the people were given another task
to complete, they still managed to interact with the robot
in parallel.

6. DISCUSSION

Different individuals have different inclinations in how they
interact with others, which can also be seen in their approach
to interaction with robots. At the same time, different tasks
require different levels of human intervention (or the robot
requiring help). Creating a unique robot behavior or personality
that is able to fit with task constraints and at the same time
with individual desires is extremely challenging. Endowing the
robot with a possibility to adapt to its partners’ preferences is
therefore important to grant a certain degree of compliance with
individual inclinations.

Our study aimed to tackle this issue by developing a
personalized adaptive robot architecture. This architecture
enabled the robot to adjust its behavior to suit different
interaction profiles, using its internal motivation which guided
the robot to engage and disengage from interaction accordingly,
while also taking into account the behavior of the person
interacting with it.

The caretaker study brought to light two opposing but
valuable findings. Participants were not consciously, or at least
on an affective level, aware of experiencing two different robotic
profiles. When asked explicitly to report a difference between
the two sessions of interactions, the majority of participants did
not report one, or they reported their feeling that the second
session had the more interactive robot profile. This, however,
was strongly influenced by the fact that nearly all participants
reported that they preferred the second session of interaction,
signifying that it was not the profile of the robot that influenced
their feeling, but rather the personally gained knowledge on how
to better interact with it due to the prolonged time spent in
interaction. However, their manner of interacting with the robot
showed noticeable changes depending on the phase and session
they were in, as well as depending on the robot behavior during
the secondary task.

This has several implications, especially for designing different
HRI scenarios. This study has addressed free-form interaction
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FIGURE 12 | Averages of the perceived stimuli in different modalities during the interaction, shown across phases and sessions. Error bars represent standard error.

Asterisks indicate significant difference.

and investigated how an adaptive robot could personalize to its
caretaker; if we are imagining to port this architecture to an
HRI study where the robot would need to learn by processing
informations from visual or tactile stimuli, the implications from
this study’s findings show that the robot would be still capable to
receive and process the necessary information from the person,
even if the person was not be highly responsive or present at
all times.

Additionally, the element of adaptability and personalization
in the cognitive framework was not shown to bring any
uncertainty and unpredictability. While on a conscious level they
remained unaware, the adaptability of the robot still impacted the
efficacy of the participants’ interaction. Moreover, the presence of
the critical and saturation thresholds promises an another layer of
complexity that could be added to the interaction.

A robot that has a critical boundary can actively try to initiate
interaction with a person, which could be useful not only in
scenarios where a person might lose track of the robot or get
distracted, but also in scenarios where a person might be very
interested to interact with the robot but their shyness might
prevent them from attempting to engage the robot first.

Similarly, a saturation boundary is not only useful for
evaluating how much a person is interested in restarting an
interrupted interaction, but can be also a crucial element inmulti-
person HRI scenarios, or if the robot needs to also accomplish
some other task in addition to interacting with the people. The
saturation threshold in particular was something that did not get
used in its full potential in our study, which was probably due
to the above-mentioned effects not carrying over to an 1-on-1
HRI scenario.
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A limitation of our study can be found in the fact that
even though the interaction was designed to be as free-form
as possible, it was still a very simplified scenario of interaction.
This was also due to the limitations of current state-of-the-art:
artificial cognitive agents (such as robots) are not yet at the level
of replicating the human cognitive abilities, and the aspect in
which this was felt most keenly was in the absence of a verbal
interaction between the participants and iCub.

Adaptivity is a very important building block of cognitive
interaction. In this way, endowing a humanoid robot like
iCub with adaptability, even in a scenario with behavior
modalities of lower cognitive intelligence, is already a first step
towards approaching personalized and cognitive human-robot
interaction. Indeed, this effect can be seen even in children; we
readily observe their limited capabilities in the fact that before
2 years of age they are, for the most part, not speech-proficient.
However, they are still cognitive agents that are very efficient at
establishing adaptive interaction as a function of their partner, be
it a peer or a caregiver.

The hope and future direction of this research is that by
investigating other cognitive functionalities to implement and
testing other scenarios of interaction, the adaptive framework
will reach the point of a more individualized, long-term, and
generalized interaction between humans and robots.
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