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Abstract: Viruses are major pathogens of agricultural crops. Viral infections often start after the virus
enters the outer layer of a tissue, and many successful viruses, after local replication in the infected
tissue, are able to spread systemically. Quantitative details of virus dynamics in plants, however, are
poorly understood, in part, because of the lack of experimental methods which allow the accurate
measurement of the degree of infection in individual plant tissues. Recently, a group of researchers
followed the kinetics of infection of individual cells in leaves of Nicotiana tabacum plants using Tobacco
etch virus (TEV) expressing either Venus or blue fluorescent protein (BFP). Assuming that viral spread
occurs from lower to upper leaves, the authors fitted a simple mathematical model to the frequency
of cellular infection by the two viral variants found using flow cytometry. While the original model
could accurately describe the kinetics of viral spread locally and systemically, we found that many
alternative versions of the model, for example, if viral spread starts at upper leaves and progresses
to lower leaves or when virus dissemination is stopped due to an immune response, fit the data
with reasonable quality, and yet with different parameter estimates. These results strongly suggest
that experimental measurements of the virus infection in individual leaves may not be sufficient to
identify the pathways of viral dissemination between different leaves and reasons for viral control.
We propose experiments that may allow discrimination between the alternatives. By analyzing the
kinetics of coinfection of individual cells by Venus and BFP strains of TEV we found a strong deviation
from the random infection model, suggesting cooperation between the two strains when infecting
plant cells. Importantly, we showed that many mathematical models on the kinetics of coinfection
of cells with two strains could not adequately describe the data, and the best fit model needed to
assume (i) different susceptibility of uninfected cells to infection by two viruses locally in the leaf vs.
systemically from other leaves, and (ii) decrease in the infection rate depending on the fraction of
uninfected cells which could be due to a systemic immune response. Our results thus demonstrate
the difficulty in reaching definite conclusions from extensive and yet limited experimental data and
provide evidence of potential cooperation between different viral variants infecting individual cells
in plants.

Keywords: virus infection; plants; flow cytometry; mathematical model; coinfection

1. Introduction

With a burgeoning human population expected to reach between 7 and 13 billion
by 2100, humans’ lifeblood, food and water, will be evermore difficult to protect and
sustain over time [1–3]. Under these circumstances, dependence on agriculture will only
increase [4]. Food crops, however, are vulnerable to numerous biotic stresses, including
but not limited to animal pests, fungi, bacteria, and viruses. Viral infections especially can
devastate food-crops, with documentation of such infections being identified as early as
eighth-century Japan; however it was not until the nineteenth century that it was known
and accepted that microscopic agents like viruses could cause diseases in plants [5,6].
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Mathematical models have been widely used to understand virus-plant interactions.
For example, early studies investigated how the virus concentration in the inoculum
influences the number of lesions formed by the virus on plant leaves [7–10]. More recent
studies investigated virus dynamics in individual plant cells or in the whole plant [11–14].
Most studies, however, focused on understanding epidemiological spread of viral disease
in plant populations with the aim to control viral spread and to limit damage to agricultural
crops [15–25].

Mechanisms of viral spread within individual plants remain incompletely understood.
Usually infection of a single cell or a small group of cells occurs via mechanical means
or by an animal or insect vector. After replication in the inoculation site, virions move to
neighboring cells through plasmodesmata, pores between individual cells in the leaf [26].
The replication-movement process is repeated until the virus enters the vasculature. It
has been experimentally demonstrated that viral distribution via the vasculature follows
the path of sugar distribution, i.e., from source to sink tissues, with strong sinks like roots
receiving a larger portion of the viral cargo [27]. Once arriving at sink tissue, the virus
exits the vasculature via the plasmodesmata and enters neighboring cells. From there
viruses use plasmodesmata once again to invade the ground tissue [27,28]. In some cases,
however, viruses can be introduced directly into the vasculature resulting in rapid infection
of sink tissues.

Different methods have been used to measure the degree of infection of a given
leaf in the plant including ELISA for viral proteins and PCR for viral genomes [12,29].
However, these methods are semi-quantitative and typically do not allow measurement of
the degree of infection of individual cells in the leaf. Recently, a new method to measure
the frequency of infection of cells in plant leaves through the use of flow cytometry was
developed [14]. In their experiments, Tromas et al. [14] infected lower (3rd) leaves of
4 week old Nicotiana tabacum (henceforth referred to as “tobacco”) plants with two strains of
Tobacco etch virus (TEV), TEV-Venus and TEV-BFP, carrying different fluorescent proteins.
At different times after the infection cells (protoplasts) were isolated from individual leaves,
and the fraction of protoplasts infected with either or both viral variants was quantified
using flow cytometry [14]. Flow cytometry allowed the measurement of virus infection
in thousands of individual cells, thus providing unique quantitative information about
kinetics of TEV infection in tobacco plants.

Tromas et al. [14] performed several important analyses including calculation of basic
reproductive number and multiplicity of infection of cells (MOI) by different viruses.
In addition, the authors developed a detailed mathematical model of how the virus spreads
over time from the 3rd leaf to other leaves and fitted the model to experimental data.
Importantly, the model was able to accurately describe virus dissemination and predicted
that viral spread kinetics was similar within the leaves. One major difference between
infection levels in individual leaves was due to different import rates of the virus from the
lower to upper leaves [14].

Here we built upon this pioneering work and further analyzed the experimental data
of Tromas et al. [14] with use of mathematical models. The main objectives of our study
were to understand the details of dissemination of TEV in tobacco plants and to deter-
mine if coinfection of individual plant cells with two TEV variants occurs independently.
Specifically, because exact pathways of TEV dissemination in tobacco plants have not been
unequivocally identified and may depend on the age of plants and details of virus inocula-
tion, we investigated whether mathematical models of TEV dissemination, alternative to
the Tromas et al. [14] model, may be also consistent with the data. Surprisingly, we found
that indeed many different routes of TEV dissemination (e.g., when the initial infection first
spreads in top (7th) leaf and then disseminates to lower leaves) are quite consistent with
experimental data, even though some such models fitted the data with slightly reduced
quality (as evaluated by AIC, [30]). By analyzing kinetics of coinfection of individual cells
by two TEV variants we found that coinfection does not proceed randomly; rather, cells
are more likely to be coinfected with two viruses than infected with either of the variants
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suggesting cooperativity in infection (or that plant cells vary in susceptibility to infection).
Our results suggest that understanding pathways of virus dissemination in plants will
be difficult using only data on virus infection in individual leaves and may likely require
specific experiments that determine the systemic distribution of virions in host tissues over
the time course of infection.

2. Materials & Methods
2.1. Data

Specific details of how infection of plants had been performed are given in the previous
publication [14]. In short, 4-week-old Nicotiana tabacum L. cv. Xanthi plants, a widely
used model plant host [31], were inoculated into the 3rd leaf with an equal mixture of
TEV-BFP and TEV-Venus. These two viral strains express blue and yellow fluorescent
proteins, respectively. Preliminary work demonstrated that expression of these proteins
does not impair growth kinetics of the viral variants [14]. To measure the kinetics of viral
dissemination 3rd, 5th, 6th, and 7th true leaves of individual plants were removed at days
3, 5, 7 and 10 post inoculation; five plants per time point were analyzed. Leaf 4 was skipped
because it did not show any infection under the experimental conditions. From these leaves,
plant cells with their cell walls removed (protoplasts) were isolated and the number of
protoplasts expressing none, one, or both of the two fluorescent proteins was measured
with flow cytometry. The data have been formatted and are available as a supplement to
this paper.

2.2. Mathematical Models
2.2.1. Original Virus Dissemination Model of Tromas et al.

To predict kinetics of infection of the inoculated leaf and dissemination of infection
to other leaves in the plant Tromas et al. [14] developed a novel mathematical model.
The model tracks the fraction of infected cells in a kth leaf, Ik, over time with Sk being the
fraction of susceptible cells. In the model a cell infected with either of two viral variants or
both viral variants is considered to be infected. The model assumes that infection starts
at leaf 3 and then proceeds in the leaf k = 3 at a rate β and disseminates to upper leaves
(leaves 5, 6, 7) at a rate proportional to the total infection rate of the leaves below a given
leaf k at a rate χk (Figure 1A). When the virus reaches other leaves, infection also proceeds
locally at a rate β. Local virus dissemination at a kth leaf stops when the fraction of infected
cells reaches a critical level ψk:

dI3

dt
= βI3S3, (1)

dIk
dt

= βIkSk + χkSk

k−1

∑
j=3,j 6=4

Ij, k = 5, 6, 7, (2)

Sk =

{
1− Ik

ψk
, Ik < ψk,

0, Ik ≥ ψk,
k = 3, 5, 6, 7, (3)

where β is the rate of infection of uninfected cells in the leaf during to local viral spread in
the leaf, χk is the rate of virus infection of other (upper) leaves, and ψk is the level at which
infection of new cells in leaf k stops (see Equations (S1)–(S4) for full set of equations of the
model). Initial conditions for the model are Ik(0) = I0 if k = 3 and Ik(0) = 0, otherwise,
and Sk(0) = 1. In total, this model (as well as alternative models 1–7) has 9 parameters to
be estimated from the data.

2.2.2. Alternative Virus Dissemination Models for the Total Leaf Infection

While the original mathematical model of Tromas et al. [14] seems logical we sought to
investigate whether alternative mathematical models of virus dynamics within individual
leaves and virus dissemination to other leaves in the plant may be consistent with exper-
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imental data. In most of these alternative models we use the same nomenclature for the
model parameters (I0, β, χk, and ψk) as in Tromas et al. [14].

Figure 1. Examples of several alternative mathematical models of virus spread in plants analyzed
in this paper. In experiments of Tromas et al. [14], two different viruses (“Venus” and “BFP”) were
rubbed into leaf 3 and the fraction of infected leaf cells (protoplasts) was followed by flow cytometry
over time (see Section 2 for more detail). In schematics, Sk and Ik denote the fraction of uninfected and
infected cells in the kth leaf, respectively, and the syringe indicates the primary place where infection
started in the model. Arrows denote the process of leaf infection (at a rate β) and transmission of
infection between leaves (at a rate χ). In the original Tromas et al. [14] model ((A), Equations (1)–(3)),
infection starts at leaf 3 and is then transported to other leaves at a rate proportional to the total
fraction of infected cells in leaves below. In alternative model 1, infection starts with leaf 3 but
upper leaves are only infected by the leaves just below them ((B), Equation (4)). In alternative
model 4, infection starts in leaf 5 and then proceeds to leaves above or below leaf 5 similar to the
alternative model 1 ((C), Equation (11)). Finally, in the alternative model 7 infection starts at the
upper leaf 7 and proceeds to lower leaves in a manner similar to the original Tromas et al. [14] model
((D), Equation (15)). Other alternative models are described in the Section 2.

• Alternative model 1. In this model the dynamics of infection of the leaf 3 is given
in Equation (1), and instead of summing the infection from all the leaves below,
we suppose that only the leaf immediately below the one in question can infect it.
The dynamics of uninfected leaves is given by Equation (3). Dynamics of infection in
other leaves is described by the following equations (see Figure 1B):

dIk
dt

= βIkSk + χkSk Ik−1, k = 5, 6, 7. (4)

Initial conditions for the model are Ik(0) = I0 if k = 3 and Ik(0) = 0, otherwise,
and Sk(0) = 1. Note that in this model infection of leaf 5 occurs from leaf 3 and not
leaf 4.

• Alternative model 2. Leaf 3 infects only leaf 5 which then infects leaves 6 and 7. Leaf
6 also contributes to the infection of leaf 7. Infection for leaf 3 is given by Equation (1)
and dynamics of uninfected leaves is given by Equation (3). Dynamics of infection in
other leaves is described by the following equations:

dI5

dt
= βI5S5 + χ5S5 I3, (5)

dIk
dt

= βIkSk + χkSk I5, k = 6, 7. (6)
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Initial conditions for the model are Ik(0) = I0 if k = 3 and Ik(0) = 0, otherwise,
and Sk(0) = 1. Note that infection of leaf 5 occurs by leaf 3 and not leaf 4.

• Alternative model 3. Infection for leaf 3 is given by Equation (1) and dynamics of
uninfected leaves is given by Equation (3). Leaf 3 is the only leave that contributes to
infections of higher leaves. Dynamics of infection in other leaves is described by the
following equations:

dIk
dt

= βIkSk + χkSk I3, k = 5, 6, 7. (7)

Initial conditions for the model are Ik(0) = I0 if k = 3 and Ik(0) = 0, otherwise,
and Sk(0) = 1.

• Alternative model 4. The initial infection occurs on leaf 5 which contributes to infec-
tions of leaves 3, 6, and 7. All imported virions for these leaves come exclusively from
leaf 5. Dynamics of uninfected leaves is given by Equation (3). Dynamics of infection
in other leaves is described by the following equations (see Figure 1C):

dI5

dt
= βS5 I5, (8)

dIk
dt

= βIkSk + χkSk I5, k = 3, 6, 7. (9)

Initial conditions for the model are Ik(0) = I0 if k = 5 and Ik(0) = 0, otherwise,
and Sk(0) = 1.

• Alternative model 5. The initial infection occurs on leaf 6 which contributes ex-
clusively to the infections of leaves 3, 5, and 7. Dynamics of uninfected leaves is
given by Equation (3) and dynamics of infection in other leaves is described by the
following equations:

dI6

dt
= βS6 I6, (10)

dIk
dt

= βIkSk + χkSk I6, k = 3, 5, 7. (11)

Initial conditions for the model are Ik(0) = I0 if k = 6 and Ik(0) = 0, otherwise,
and Sk(0) = 1.

• Alternative model 6. The initial infection occurs on leaf 7 which contributes ex-
clusively to the infections of leaves 3, 5, and 6. Dynamics of uninfected leaves is
given by Equation (3) and dynamics of infection in other leaves is described by the
following equations:

dI7

dt
= βS7 I7, (12)

dIk
dt

= βIkSk + χkSk I7, k = 3, 5, 6. (13)

Initial conditions for the model are Ik(0) = I0 if k = 7 and Ik(0) = 0, otherwise,
and Sk(0) = 1.

• Alternative model 7. The initial infection occurs on leaf 7 and virus accrues down-
ward; it is essentially the model by Tromas et al. [14] being inverted. Dynamics of
uninfected leaves is given by Equation (3) and dynamics of infection in other leaves is
described by the following equations (see Figure 1D):

dI7

dt
= βS7 I7, (14)

dIk
dt

= βIkSk + χkSk

k

∑
j=7

Ij, k = 3, 5, 6. (15)
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Initial conditions for the model are Ik(0) = I0 if k = 7 and Ik(0) = 0, otherwise,
and Sk(0) = 1.

• Alternative model 8. The model assumes that infection starts in all leaves and pro-
ceeds independently (a.k.a. “logistic” model for individual leaves). Dynamics of
infection in all leaves is described by the following equations:

dIk
dt

= βk Ik

(
1− Ik

ψk

)
, k = 3, 5, 6, 7. (16)

Initial conditions are Ik(0) = I0k , k = 3, 5, 6, 7. This model has 12 parameters to be
estimated from the data.

• Alternative model 9. In all previous models virus dissemination within a given leaf
stops when the fraction of infected cells reaches ψk (e.g., Equation (3)). This stop
of infection is also observed in the data. However, specific mechanisms of why the
infection stops while not all cells in the leaf are infected were not fully investigated.
Therefore, in our alternative model we assume that the dynamics of virus infection in
a given leaf are not infection level-dependent but instead time-dependent. We define
Tk to be the time that the kth leaf accumulates the “immune response” to stop the
spread of the virus inside it, and nk represents how quickly this immune response
kicks in [32]. The dynamics of the infection is given by the same equations as in the
Tromas et al. [14] model (Equations (1) and (2)), and the dynamics of uninfected cells
available for infection due to generation of the immune response in the kth leaf is
given by

Sk =
1

1 +
(

t
Tk

)nk
, (17)

where the initial conditions for the model are Ik(0) = I0 if k = 3 and Ik(0) = 0,
otherwise. This model has 4 extra parameters as compared to other alternative models
but the model can be reduced in size by assuming that some of the parameters (e.g.,
Tk or nk) to be leaf number-independent (see Main text for results). In such cases,
the model has 10 parameters to be estimated from the data.

2.2.3. Virus Dissemination Models for the Infection/Coinfection with Two Viral Variants

In the experiments, the plants were infected with an equal mixture of two viral
variants, TEV-Venus and TEV-BFP [14]. However, the original model of Tromas et al. [14]
and our previous alternative models did not discriminate between infection of the cells
with two variants. The following alternative models now make this distinction. In these
models we denote Vk and Bk as the fraction of Venus-infected and BFP-infected cells,
respectively, and the fraction of coinfected cells is denoted as Mk. Because our analysis
illustrated that the specific pathway of TEV dissemination in 4-week-old tobacco plants
cannot be fully resolved using infection data alone, we assume the dissemination pathway
of Tromas et al. [14]. Then the dynamics of infection of plant leaves with the two viral
variants we use the following equations:

dVk
dt

= βVSkVk + χkSk

k−1

∑
i=3

Vi, k = 3, 5, 6, 7, (18)

dBk
dt

= βBSkBk + χkSk

k−1

∑
i=3

Bi, k = 3, 5, 6, 7, (19)

Sk =

{
1− Ik(t)

ψk
, Ik(t) < ψk,

0, Ik(t) ≥ ψk.
k = 3, 5, 6, 7, (20)

where βB and βV are the within-leaf infection rates for BFP and Venus viruses, respectively,
and Ik(t) = Vk + Bk + Mk. Note that we assume that virus dissemination to upper leaves
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is strain-independent. The initial conditions for all the following models are Vk(0) = V0,
Bk = B0, and Mk(0) = M0 if k = 3 and 0 otherwise. To describe the kinetics of viral
coinfection we consider several alternative mathematical models.

• 1-alpha coinfection model. In this model, we describe the coinfection growing as
dependent on the within-leaf spread dynamics of both viruses. Here, and in other
models VkBk is proportional to the rate at which coinfections are expected to arise
by chance. We sum these these rates assuming that cells are first infected by one
variant and then coinfected with another, and use a scaling factor α to indicate synergy
(α > 1) or inhibition (α < 1) of the coinfection process as compared to random, mass
action-like infection process:

dMk
dt

= α(βBVkBk + βVVkBk), k = 3, 5, 6, 7. (21)

This model has 12 parameters (Figure 2A).
• 2-alpha coinfection model. We assume that the rate of coinfection may proceed

differently by the two viral strains denoted by α1 and α2 which is a simple extension
of the 1-alpha coinfection model (Equation (21)):

dMk
dt

= α1βBVkBk + α2βVVkBk, k = 3, 5, 6, 7. (22)

This model has 13 parameters.
• Probabilistic model. Because Vk and Bk measure the fraction of cells infected by the

particular virus in the kth leaf, then for fraction of coinfected cells, Mk, we can think of
the probability of a cell being infected by both strains as being determined by BkVk.
We can then use parameter α to measure how much more or less often coinfection is
happening as compared with random chance: α = 1 means coinfection is behaving
like a random process; α < 1 means coinfection is occurring less often than it would
by random chance, and α > 1 means coinfection is occurring with greater frequency
than random chance [33]. Multiplying by α the product BkVk and differentiating it
with respect to t gives:

d
dt
(αBkVk) = α

(
Bk

dVk
dt

+ Vk
dBk
dt

)
, (23)

which then with the use of Equations (18) and (19) results in the following model for
the dynamics of coinfected cells:

dMk
dt

= α

[
SkVkBk(βB + βV) + χkSk

(
Bk

k−1

∑
i=3

Vi + Vk

k−1

∑
i=3

Bi

)]
, k = 3, 5, 6, 7. (24)

This model has 12 parameters. Note that in contrast with previous models (e.g.,
Equation (22)), in this model coinfection within the leaf depends on the fractions of
uninfected (Sk) and virus-infected cells in the leaf (Vk and Bk).

• 2-alpha probabilistic model. As in the original Tromas et al. [14] model, the equation
for coinfection in the probabilistic model is composed of two parts (Equation (24)): the
first term with parameters βB and βV represents the within-leaf spread, and the second
term with the parameter χk represents the leaf-to-leaf spread. It seemed reasonable
that coinfection may be driven more by one form of spread or the other, so we used α1
and α2 to measure their respective contributions:

dMk
dt

= α1SkVkBk(βB + βV) + α2χkSk

(
Bk

k−1

∑
i=3

Vi + Vk

k−1

∑
i=3

Bi

)
, k = 3, 5, 6, 7. (25)

This model has 13 parameters (Figure 2B).
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• Logistic model for coinfection growth. The details of how plant cells become coin-
fected by two different viruses during the local spread are not fully understood.
Because typically plant viruses spread to adjacent cells via plasmodesmata, a coin-
fected cell may be a source of both viral strains when infecting neighboring cells.
In this alternative model we therefore assume that the frequency of coinfected cells
increases randomly due to viral dissemination systemically from other leaves and
logistically due to local, within-leaf spread:

dMk
dt

= α

[
Sk Mk(βB + βV) + χkSk

(
Bk

k−1

∑
i=3

Vi + Vk

k−1

∑
i=3

Bi

)]
, k = 3, 5, 6, 7. (26)

This model has 12 parameters.
• 2-alpha logistic model for coinfection growth. Similarly to the 2-alpha probabilistic

model, the rate of coinfection may be different between local and systemic viral spread
(Equation (25)). Therefore, we use α1 and α2 to differentiate between coinfection
occurring as within-leaf and leaf-to-leaf/systemic spread, respectively:

dMk
dt

= α1Sk Mk(βB + βV) + α2χkSk

(
Bk

k−1

∑
i=3

Vi + Vk

k−1

∑
i=3

Bi

)
, k = 3, 5, 6, 7. (27)

This model has 13 parameters.

M5S5
αβV

V5B5

1-alpha
Coinfection
Model

2-alpha
Probabilistic
Model

A

B

αβB

βV

βB B5

V5

M5S5
α1βV

α1βB

βV

βB B5

V5 B3

V3

S5V5B3

α2χ5
S5B5V3

α2χ5

S5V5B5

Figure 2. Examples of schematics of two alternative mathematical models for coinfection with two
viruses. These diagrams show the infection pathways of infection by TEV-Venus (Vk) or TEV-BFP (Bk)
in the leaf 5 of the plants, and how these strains combine to form coinfected cells (Mk) in the 1-alpha
coinfection model ((A), Equation (21)) or 2-alpha probabilistic model ((B), Equation (25)). Major
model parameters such as β and χk have the same meaning as in the previous models (e.g., Figure 1).
We only show what happens in leaf 5 because in the 2-alpha probabilistic model ((B), Equation (22)),
the connections between higher leaves become very complicated and difficult to illustrate in a figure
such as this one. Like Figure 1, arrows represent the transmission of virions. In the 1-alpha coinfection
Model ((A), Equation (21)), coinfection comes from the combination of the Venus and BFP viruses
within leaf 5 only. In the 2-alpha probabilistic model ((B), Equation (22)), coinfection comes also from
the combination of Venus and BFP virions in leaf five, but is also fed by the combination of virions
imported from leaf 3 and combining with their opposite, e.g., Venus from leaf 3 combining with BFP
from leaf 5. Two separate alpha terms are used to distinguish dynamics between within-leaf growth
and infection from virions imported from lower leaves.
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2.3. Statistical Treatment

To fit models to data we used two alternative approaches. Tromas et al. [14] proposed
to use the following binomial distribution-based likelihood to fit the models to data

L(Ik,p,t|Ak,p,t, Vk,p,t) = ∏
k,t,p

I
Vk,p,t
k,p,t (1− Ik,p,t)

Ak,p,t−Vk,p,t , (28)

where L is the likelihood of the model given the data, Ik,t,p is the model prediction for the
frequency of infection (by either or both viral variants) of the particular leaf k and time
point t of a plant p, Vk,p,t is the number of infected cells observed in a sample, Ak,p,t is
the total number of cells observed in the sample (k is the leaf number, p = 1 . . . 5 is the
plant replicate number, and t is the day on which the observation was made). The model
parameters are estimated by minimizing the negative log likelihood nll

nll = − ∑
k,t,p

(
Vk,p,t log(Ik,p,t) + (Ak,p,t −Vk,t,p) log(1− Ik,t,p)

)
. (29)

In the “coinfection” models we track the dynamics of cells infected with individual vi-
ral strains as well as coinfected cells. In these models IVk,p,t , IBk,p,t , IMk,p,t represent the model
predictions for the frequency of Venus- or BFP-infected, or coinfected cells, respectively.
Therefore, to fit the coinfection models to data we extended the binomial distribution-
based likelihood in the following way. We let VVk,t,p , VBk,t,p , VMk,t,p be the number of cells
infected by Venus, BFP, or both, respectively, as was measured experimentally. Note that
Vk,t,p = VVk,t,p + VBk,t,p + VMk,t,p . Then we let

nllV = − ∑
k,t,p

(
VVk,p,t log(IVk,p,t) + (Ak,p,t −VVk,t,p) log(1− IVk,t,p)

)
, (30)

nllB = − ∑
k,t,p

(
VBk,p,t log(IBk,p,t) + (Ak,p,t −VBk,t,p) log(1− IBk,t,p)

)
, (31)

nllM = − ∑
k,t,p

(
VMk,p,t log(IMk,p,t) + (Ak,p,t −VMk,t,p) log(1− IMk,t,p)

)
, (32)

and nll is simply
nll = nllV + nllB + nllM, (33)

where the best fit parameters are found by minimizing the nll.
Binomial distribution-based likelihood takes into account the number of cells (proto-

plasts) extracted from each leaf. The total number of extracted cells varied dramatically
between leaves (by up to 8 fold). It was therefore possible that different numbers of cells
in the data may skew the likelihood-based estimates towards measurements with more
cells. We therefore aimed to investigate whether other methods, e.g., assuming normally
distributed data, i.e., normal distribution-based likelihood or least squares, can be used to
fit the models to data. We tried several different ways of how least squares could be used
to fit the models to data.

One approach is to use the frequency of infected cells Ik,t,p as predicted by the mathe-
matical model with the data Vk,t,p/Ak,t,p. For the models that only consider uninfected and
infected cells (i.e., cells infected with either viral variant or coinfected with both variants),
the sum of squared residuals (SSR) was then calculated as follows:

SSR = ∑
k,t,p

(
Vk,t,p

Ak,t,p
− Ik,t,p

)2

. (34)

In our analyses we found that such a method does not typically result in normally
distributed residuals (see Results section for details). Given large variability in the fre-
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quency of infected cells over time we applied log-transformation to the data and the model
predictions and calculated the SSR using the following formula:

SSRLog = ∑
k,t,p

(
log

(
Vk,t,p

Ak,t,p

)
− log

(
Ik,t,p

))2

, (35)

where the notations are the same as in Equation (34). Log-transformation of the data, how-
ever, is problematic because in 2 cases of leaf 5 infection, the measured frequency of infected
cells was 0. One approach was to remove such data points from the analysis but data re-
moval can generate biases in the model fits, and therefore, we opted for a more appropriate
approach whereby we replaced zeros in the data and the model predictions with the limit
of detection (LOD). LOD in the data for infected cells was defined as the lowest value of
the frequency of infected cells found in the data (for infected cells LOD = 5.12× 10−4).

Similarly to Equation (33) we used the following definition for SSR to fit the coinfection
models to the data on the frequency of cellular infection with Venus (VVk,t,p ), BFP (VBk,t,p ) or
both viruses (Mixed, VMk,t,p)

SSR = ∑
k,t,p

(
VVk,t,p

Ak,t,p
− IVk,t,p

)2

+ ∑
k,t,p

(
VBk,t,p

Ak,t,p
− IBk,t,p

)2

+ ∑
k,t,p

(
VMk,t,p

Ak,t,p
− IMk,t,p

)2

, (36)

and the following is the log-transformed variant

SSRLog = ∑
k,t,p

(
log

(
VVk,t,p

Ak,t,p

)
− log

(
IVk,t,p

))2

+ ∑
k,t,p

(
log

(
VBk,t,p

Ak,t,p

)
− log

(
IBk,t,p

))2

+

∑
k,t,p

(
log

(
VMk,t,p

Ak,t,p

)
− log

(
IMk,t,p

))2

, (37)

where data in which the frequency of infected cells was zero, we replaced these zero
values with the LOD for frequency of cells infected with different viral variants as
LODVenus = 8.43× 10−5, LODBFP = 3.26× 10−4, and LODMixed = 3.2× 10−5.

For binomial distribution-based likelihood, confidence intervals for best fit parameters
were estimated by bootstrapping the data with replacement (sampling a given plant)
1000 times [34]. For least squares, we used routine minimize from the python library lmfit
that provided 95% confidence intervals for the estimated parameters.

To compare alternative mathematical models we used Akaike Information Criterion,
AIC, that are calculated differently for binomial distribution- and normal distribution-
based (least squares) likelihoods [30]:

AICLik = 2Npar − 2 ln(L) = 2nll + 2Npar, (38)

AICLS = N log
(

SSR
N

)
+ 2Npar, (39)

AICLSlog = N log
(

SSRLog

N

)
+ 2Npar, (40)

where N is the number of data points in the sample (in this case N = 80), and Npar is the
number of model parameters estimated by fitting the model to the data. Note that AIC
differences ∆ of 0–4 are typically considered to be small while a difference of 10 indicates
inferiority of the model in describing the data [30].

If plant cells are infected randomly by two different strains of the virus we expect that
the frequency of coinfections with two viruses should be proportional to the product of
the frequency of infections with single viral strains. To estimate the deviation from the
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random coinfection we used Odds Ratio of infection (OR) proposed previously to estimate
deviation from random coinfection for HIV [33]:

OR =
(Ak,t,p −Vk,t,p)×Mk,t,p

VVk,t,p ×VBk,t,p

, (41)

where Ak,t,p −Vk,t,p is the number of uninfected cells and Vk,t,p = VVk,t,p + VBk,t,p + VMk,t,p is
the total number of infected cells in the data for the kth leaf, time point t, and plant p.

2.4. Programming Details

All major analyses were done in Python (ver. 3.7.2) and some analyses were repeated
in R (ver. 3.9.1). Python libraries used were matplotlib (ver. 3.3.2), Pandas (ver. 1.1.3),
NumPy (ver. 1.19.0), lmfit (ver. 1.0.1), and SciPy (ver. 1.5.2). To solve the ODE-based models
we used the odeint routine from scipy.integrate package. To fit models to data we used
a differential evolution algorithm when the goodness of fit metric was nll, and when
minimizing least squares residuals we used the Levenberg-Marquardt algorithm with a
trust region. Both methods are part of Python’s lmfit library. To ensure reproducibility of
our results as a part of this publication we share the data and the code to fit the original
virus dissemination model to data using either binomial distribution-based likelihood or
least squares, and the code to illustrate the impact of various parameters on the virus
dynamics according to the 2-alpha probabilistic model (Equation (25)).

3. Results
3.1. The Experimental Dataset of the Kinetics of TEV Spread

In their original study, Tromas et al. [14] manually introduced two different strains of
TEV to the third leaf of the 4 week old tobacco plants and counted the number of infected
and uninfected cells in different leaves (k = 3, 5, 6, 7) of the infected plants over time
(t = 3, 5, 7, 10 days). Given that plant cells are immotile and are surrounded by cellulosic
cell walls, viruses can infect other cells in the leaf via two ways: (1) by passing through pores
in the cells’ membranes and cell walls (called plasmodesmata) creating portals between
adjacent cells, or (2) by entering the vasculature and migrating with phloem to other (sink)
leaves of the plant [35]. Over time, the viral infection disseminates unequally between the
leaves (Figure 3 and Supplemental Figure S1). In particular, only about 10% of all cells in
the originally inoculated leaf 3 become infected by 10 days of infection (Figure 3A), while
on average 30% of cells become infected in leaves 6 and 7 (Figure 3C,D). Interestingly, leaf
5 becomes minimally infected (Figure 3B), and infection did not spread to leaf 4 [14]. There
was great variability between infection of leaves in individual plants; for example, in leaf 7
by day 10 less than 10% of cells were infected in one plant while over 40% were infected in
another plant (Figure 3D).

3.2. Model with Tromas et al. Parameter Values Does Not Match the Data

To estimate basic parameters determining kinetics of TEV spread in tobacco plants, Tro-
mas et al. [14] developed a mathematical model assuming that virus infection proceeds
locally in each leaf and spreads from lower to upper leaves (Figure 1A). Via several model
iterations, the model in which within-leaf virus spread was leaf number-independent but
the virus transport to upper leaves from the lower leaves was leaf number-dependent,
fitted the data with best quality [14].

To verify these results we simulated virus spread dynamics using Tromas et al. [14]
published model equations (Equations (1)–(3)) and parameter values (Table 1) and com-
pared model predictions with the data (provided by Tromas et al. [14]). Surprisingly,
the model predictions did not match the average infection levels observed in the data (solid
lines in Figure 3). While we did not fully know the exact reasons for this discrepancy, we
found that if we were to shift the infection trajectories predicted by the model by 3 days,
the model predictions matched the data relatively well (Supplemental Figure S2). We
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therefore hypothesize that when numerically solving the model, Tromas et al. [14] may
have initiated the solver starting at day 3 post infection given that it is the first time point at
which experimental measurements were taken. (It is typical to obtain model predictions for
times as given in the data, and solvers in R or python typically take the first time point as
the time at which initial conditions are provided and not at the time 0 as is often assumed
in models.)
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Figure 3. Previously published parameter estimates in Tromas et al. [14] do not provide a reasonable
description of the data. We simulated basic mathematical model for viral spread in plants developed
by Tromas et al. [14] (given in Equations (1)–(3) and Figure 1A) using parameter values provided in
the original publication (solid lines), or fitted the model to the data using binomial distribution-based
likelihood method (Equation (29), dashed lines). Data for the fraction of infected cells are shown by
markers for leaf 3 (A), leaf 5 (B), leaf 6 (C), and leaf 7 (D) with red horizontal lines denoting average
fraction of infected cells per time point. Parameters for the model fits are shown in Table 1.

Table 1. New parameter estimates for the basic mathematical model of virus spread in plants. We
list the parameter estimates and 95% confidence intervals (CIs) of the basic mathematical model of
viral spread in plants (Equations (1)–(3)) as provided by Tromas et al. [14] (“Original parameters
(nll)”) or by fitting the model to data in this work using using binomial distribution-based likelihood
(“New parameters (nll)”, Equation (29)) or using least squares with a logarithmic transform (“New
parameters (log LS)”, Equation (35)). Fits of the mathematical model for two sets of model parameters
are given in Figures 3 and 4. Confidence intervals for best fit parameters were generated using
bootstrap by resampling the data (for likelihood-based fits) or were provided by the routine minimize
in from python library lmfit for least square-based fits (see Section 2 for more detail).

Original Parameters (nll) New Parameters (nll) New Parameters (log LS)

Parameter Estimate 95% CIs Estimate 95% CIs Estimate 95% CIs
I0 0.00372 (0.001,0.017) 0.00022 (0.00011,0.00108) 0.0005 (0.0001,0.0008)

β, 1/day 0.871 (0.257,1.66) 0.950 (0.549,1.183) 0.902 (0.730,1.618)
χ5, 1/day 0.724 (0.033,0.813) 0.167 (0.042,17.291) 0.063 (0.023,0.162)
χ6, 1/day 1.38 (0.580,2.340) 1.046 (0.228,1.487) 0.691 (0.387,1.053)
χ7, 1/day 0.107 (0.050,0.263) 0.029 (0.009,0.160) 0.029 (0.015,0.051)

ψ3 0.083 (0.053,0.147) 0.080 (0.074,0.134) 0.074 (0.051,0.096)
ψ5 0.018 (0.002,0.050) 0.016 (0.005,0.024) 0.006 (0.004,0.010)
ψ6 0.233 (0.155,0.345) 0.224 (0.203,0.287) 0.204 (0.181,0.234)
ψ7 0.286 (0.234,0.346) 0.269 (0.130,0.418) 0.224 (0.092,0.557)
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Figure 4. Best fits of the basic mathematical model found using either binomial distribution-based
likelihood or least squares are nearly identical. We used either binomial distribution-based likelihood
method (Equation (29), [14]) or least squares for log-transformation of the data and model predictions
(Equation (35)) to fit the basic mathematical model (Equations (1)–(3)) to the virus spread data for
leaf 3 (A), leaf 5 (B), leaf 6 (C) and leaf 7 (D). Data on proportion of virus-infected cells are shown
by markers and lines are the predictions of best fit models. Parameters for the model fit using
likelihood and least squares with the log transform are given in Table 1 (“New parameters (nll)”
and “New parameters (Log LS)” columns, respectively). In fitting the models using least squares for
log-transformed data, the limit of detection (LOD) was LOD = 5.12× 10−4.

To check that the virus dissemination model of Tromas et al. [14] is consistent with
experimental data we fitted the model to the data using binomial distribution-based
likelihood (see Section 2 for more detail). Importantly, the model fitted the data visually
with good quality (dashed lines in Figure 3) indicating consistency of the model with the
data. Interestingly, while some model parameters, such as ψk, varied little between the
original and corrected values, others such as I0 or χk differed substantially (Table 1). While
confidence intervals for newly estimated parameters of the Tromas et al. [14] model are a
bit large, we found that there is large difference in AICLik for this model when used with
previously published Tromas et al. [14] parameters and our new estimates (∆Lik > 100).
Thus, our analysis provided updated and correct estimates of parameters characterizing
kinetics of TEV spread in tobacco plants in the Tromas et al. [14] model.

3.3. Fitting the Models Using Binomial Distribution-Based Likelihood or Normal
Distribution-Based Likelihood (Least Squares) Delivers Similar Parameter Estimates

In their study, Tromas et al. [14] proposed the use of binomial distribution-based
likelihood to fit the models to data. In this approach, the probability of a plant cell being
infected was treated as a Bernoulli trial in which A total cells are sampled, and the number
of infected cells V is determined. While it seemed reasonable, it was not fully justified
why such a likelihood is a good choice. There may be several potential issues with it. First,
because there was a large variability in the total number of cells recovered from different
leaves (from minimal 4314 to maximal 32,168 protoplasts/leaf), the data are unbalanced.
Sources of such variability, however, are not entirely clear and may be due to variation of
leaf or cell sizes but also may be related to difficulty of isolating protoplasts from leaves [36].
Parameter estimates may be biased if the fit favors better description of the data with
the larger number of isolated cells. Second, while the large number of cells isolated may
indicate certainty in estimation of the frequency of infected cells in a sample, there is a great
variability in frequency of infected cells in the same leaf number between individual plants
(e.g., Figure 3D), and binomial distribution-based likelihood may not adequately take such
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variability into account. Third and finally, given that a relatively large number of cells was
measured in each leaf (>103), the distribution of the fraction of infected cells per central
limit theorem may approach normal distribution, and therefore, one could use a normal
distribution-based likelihood (least squares) for fitting models to data.

Therefore, we fitted the Tromas et al. [14] model (Equations (1)–(3)) to the data using
several different versions of least squares (see Equations (34) and (35) and Section 2 for
more detail). Surprisingly, independent of the method used, the model predictions of the
binomial distribution-based fits or least squares fits were nearly identical (e.g., Figure 4) and
with a minimal, statistically non-significant difference in the parameter estimates for both
fits (Table 1). Therefore, this result suggests that it may be reasonable to use least squares (or
more generally, normal distribution-based likelihood) to fit virus dissemination models to
these data. We did, however, find that not all least squares-based methods were appropriate.
In particular, least squares with the frequency of infected cells resulted in skewed, non-
normally distributed residuals (Shapiro-Wilk test, W = 0.785, p = 1.887 × 10−9). Some of
the traditional approaches, for example the arcsin(

√
x) transformation for the frequency

of infected cells did not normalize the residuals (W = 0.803, p = 5.745× 10−9), however,
log-transformation in which zero values were replaced with the limit of detection (LOD,
see Section 2 for more detail) nearly did (W = 0.963, p = 0.021). Therefore, this analysis
suggests that log-transformation of the data and model predictions is a viable alternative
to the binomial distribution-based likelihood method of Tromas et al. [14] that may better
account for variability in the frequency of infected cells between individual plants.

3.4. An Alternative Model with Variable Within-Leaf Replication Kinetics Is Consistent with
Observed Viral Spread Kinetics

In their analysis Tromas et al. [14] investigated which parameters of the virus dis-
semination model may vary with the leaf number. By comparing alternative models they
found that ψ and χ must be leaf-dependent to explain the data accurately. However, in that
analysis they did not investigate if differences in virus dissemination may be due to vari-
able within-leaf replication kinetics, determined by the parameter β, and not due to virus
dissemination rate between leaves χ. Interestingly, we found that the alternative model
(based on Equations (1)–(3)) in which βk and ψk vary with the leaf number k (i.e., virus
dynamics in a given leaf is determined mainly by the local spread in the leaf) while systemic
dissemination of the virus to upper leaves is constant (χk = χ) fitted the data with similar
quality (as judged by SSR or AIC) as the original model. This alternative model has an
extra parameter because of four β for four leaves studied while in the original model χ was
defined for three leaves only. Yet, this result already suggested that the data on variable
virus accumulation in different leaves can be explained equally well by differences in how
much virus is delivered to upper leaves (χk) or by differences in how the virus replicates
and spreads in individual leaves (βk).

3.5. Alternative Models with Differing Patterns of Viral Dissemination Are Largely Consistent
with Observed Viral Spread Kinetics

We next questioned whether a specific pattern of virus dissemination from the inoc-
ulated leaf 3 to the upper leaves can be determined from these experimental data. While
there is a general understanding of how viruses in plants disseminate after a local infection
(e.g., [28]) details of the dissemination may vary by the plant species, age, conditions in
which the plant was grown, the virus species, inoculation method, and many other details.
For example, the time when individual leaves become sources or sinks for sugar transport–
which will influence virus dissemination pathways–depends on many environmental and
developmental factors [27]. Because many of these details are unknown for a specific
experimental set-up, we investigated if the information provided by the experimental data
on the fraction of infected cells in individual leaves over time is sufficient to establish a
pattern for systemic viral dissemination.

Therefore, we developed a series of alternative mathematical models in which the
pattern of virus dissemination differed in multiple ways from the original dissemination
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model of Tromas et al. [14] (Figure 1B–D and Equations (4)–(17)) and fitted these models to
data. For example, alternative model 1 assumed that virus dissemination to upper leaves
occurs only from the leaf below it, i.e., from leaf 3 to leaf 5, and then from leaf 5 to leaf 6
and so on (Figure 1B). Alternative model 7 assumed that even though virus inoculation
occurred at leaf 3, via access to vasculature, the virus immediately disseminated to leaf 7,
and then spread to lower leaves (Figure 1D and see Section 2 for details for other models).
Some of these alternative models should not be necessarily considered as inappropriate
because, for example, at day 3 after infection, leaf 6 on average had already nearly twice
the frequency of infected cells as leaf 3 (0.014 vs. 0.009).

Finding the best fit model depended strongly on the statistical method used for
fitting models to data. For example, using binomial distribution-based likelihood method
suggested that best fit is provided by the alternative model 2 with the Tromas et al. [14]
model fitting the data significantly worse (Supplemental Table S1, ∆AIC = 290). We
hypothesize that this result arose because of the high sensitivity of such a likelihood
function to the experimental measurements, especially at the low frequency of infected
cells. In contrast, fitting the models to data using least squares (Equation (34)) provided fits
of all models with identical quality. This result was driven by the need of the models to more
accurately fit the data with high frequency of infected cells in leaves 6 and 7 at later time
points, at the expense of poorer fits of other data. These fits, however, were not adequate
due to non-normally distributed residuals as was observed when fitting Tromas et al. [14]
model to data (see above). Finally, fitting the models to log-transformed data (and replacing
the zero values with the LOD) provided a more graded classification of alternative models
(Table 2). In particular, three models (original and alternative models 1&2) assuming that
virus dissemination starts from leaf 3 provided better fits (based on AIC) than the models
assuming that spread starts from upper leaves (e.g., alternative model 7). Interestingly,
the quality of the model fits deteriorated as the models assumed virus dissemination did
not originate from leaf 3—i.e., the models in which dissemination started at leaf 5 or 6 fitted
the data with better quality than the model in which dissemination started at leaf 7 (Table 2
and Supplemental Figure S3). This result suggests that the data on virus dissemination does
contain the signal indicating the virus most likely starts spreading from leaf 3 upwards;
however, the strength of such a statement from our mathematical modeling-based analysis
is relatively weak. Thus, these experimental data do not provide strong evidence for a
specific route of TEV dissemination in tobacco plants. There is some good news, however.
Some parameters appear to be robustly estimated in all the models such as β and ψk; that is
perhaps unsurprising given that these parameters determine within-leaf viral spread.

3.6. Alternative Models Incorporating Independent Replication or Immune Responses Are Also
Consistent with Observed Viral Spread Kinetics

We tested two additional alternative models for how well they may describe the data.
Alternative model 8 assumed that upon virus inoculation, virus disseminates to all leaves
and then replicates in individual leaves independently of other leaves, as described by the
logistic equation (Equation (16)). Alternative model 9 assumed that reduction in the fraction
of susceptible cells in a leaf is not determined by the fraction of infected cells but by the
time since infection (Equation (17)). The rationale for this modification is that it is possible
that infection induces generation of a local or systemic immune response after a delay Tk
which renders uninfected cells resistant to infection [32]. Both of these alternative models
fitted the data well based on SSR or AIC metrics (Supplemental Table S2). Interestingly,
the time-dependent cell susceptibility model suggested that differences in how quickly
cells become resistant is leaf-dependent (Supplemental Table S2); however, this could be
due to differences in the timing of initiation of immune responses and/or virus“arrival”
in a given leaf (determined by Tk) or the speed at which uninfected cells in the leaf are
rendered resistant (determined by nk). Taken together, our results strongly suggest that
multiple pathways of TEV dissemination and growth in individual leaves in the tobacco
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plants are consistent with the data and additional experiments and/or data need to be
involved to eliminate unreasonable models [37].

Table 2. Several alternative models provide similar fits of the virus spread data with different param-
eter sets. We fitted seven alternative models for virus spread kinetics (given in Equations (4)–(15)) to
the data on viral spread in plants using least squares with a logarithmic transform (see Equation (35)).
Along with parameter values for every model we provide the total error (SSRLog), AICLSLog , and ∆AIC

(difference in AIC between the model with the lowest AIC and all other models). We also show the
results of the Shapiro-Wilk normality test (W and p value) applied to the residuals of the fitted models.
N/A stands for “Not Available” for parameters that were not present in a given alternative model.
Coloring indicates the difference in the quality of a model fit as compared to the best fit models
(green—better fit, red—worse fit).

Fitted with Least Squares Method (Log Transformation & 0 ≡ LOD)
Parameter Original Alt. Alt. Alt. Alt. Alt. Alt. Alt.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
I0 0.0005 0.0008 0.0006 0.0001 0.00006 0.0008 0.0005 0.0005
β, 1/day 0.902 0.744 0.871 1.299 1.050 1.028 1.116 1.159
χ3, 1/day N/A N/A N/A N/A 1.672 0.133 1.541 0.286
χ5, 1/day 0.063 0.059 0.059 0.322 N/A 0.025 0.277 0.050
χ6, 1/day 0.691 8.201 8.025 3.987 3.663 N/A 3.079 3.263
χ7, 1/day 0.029 0.073 0.749 0.477 0.332 0.026 N/A N/A
ψ3 0.074 0.083 0.075 0.072 0.060 0.059 0.055 0.051
ψ5 0.006 0.006 0.006 0.005 0.006 0.006 0.005 0.005
ψ6 0.204 0.204 0.199 0.194 0.201 0.215 0.189 0.184
ψ7 0.224 0.228 0.238 13.000 0.215 0.211 0.218 0.209
SSRLog 52.713 51.991 52.255 55.612 54.468 55.148 55.486 56.309
AICSSRLog −15 −16 −16 −11 −13 −12 −11 −10
∆AIC 1 0 0 5 3 4 5 6
W 0.963 0.959 0.960 0.973 0.969 0.973 0.972 0.973
p 0.021 0.012 0.013 0.099 0.049 0.091 0.080 0.084

3.7. Odds Ratio Test Implies a Higher than Random Rate of Coinfection

Our modeling-based analysis so far and that of Tromas et al. [14] treated cells in our
data as infected or uninfected. However, in their experiments Tromas et al. [14] measured
the fraction of cells infected with either or both of two viral strains of TEV, Venus or BFP
(see Section 2 for more detail). Virus coinfection may impact many facets of viral dynamics
and growth. A paramount consequence of two or more virions infecting the same cell
simultaneously is that it may result in production of recombinant variants, which has been
well documented for human immunodeficiency virus (HIV) [38,39]. In particular, in acute
HIV infection, variants representing recombinants of infecting/founding strains, arose
rapidly within a few months; interestingly, a simple mathematical model predicted that
accumulation of the variants can be simply due to random coinfection of the susceptible
cells by two viral variants [40]. Dang et al. [33] investigated whether infection of CD4 T
cells in culture occurs randomly by two different HIV variants, HIV-eGFP and HIV-IHSA.
The authors proposed an odds ratio (OR) metric to estimate deviation of the rate of cell
coinfection with two viruses as compared to single infections (Equation (41)). Interestingly,
in all their experiments with 2 HIV strains and different types of target T cells OR > 1
(typically, OR = 2–8), suggesting that coinfections were observed more often than single
infections [33]. The authors explained this result by variability in CD4 T cell susceptibility to
infection with susceptible cells being more easily infected with the two variants. A similar
result was found later in another study [41]. Given our rich dataset on the dynamics of
coinfection of plant cells with two variants of TEV we calculated the OR (Equation (41)) for
every leaf and every time point in our data.

Interestingly, we found very high values for OR for most of the data, all exceeding one,
with many values being in the range 10–100 (Figure 5). Note that in some cases, mostly
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for leaf 5, we could not calculate OR due to absence of coinfected cells (Figure 5B). OR of
10 to 100 is much higher than that found previously for HIV [33]. There may be several
reasons for that. First, it is possible that there is a high degree of variability in susceptibility
of different plant cells to infection, and cells that are highly susceptible get infected with
both variants easily. We also found that there is a significant decline in OR with time of
infection for all but leaf 5; this decline is consistent with the hypothesis that initially highly
susceptible cells are infected resulting in high OR which declines as more resistant cells are
infected (Figure 5).
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Figure 5. There is a high degree of coinfection of individual leaf cells by two different viruses. For
each leaf we calculated the odds ratio (the relative probability of a cell being coinfected by two
different viruses as compared to infection rate of cells by individual viruses, Equation (41)) using a
previously published method [33]. Note that when infection proceeds randomly, the expected odds
ratio is 1. Resulting odds ratio for individual plants are shown for leaf 3 (A), leaf 5 (B), leaf 6 (C),
and leaf 7 (D); lines connect the average values per time point. Missing values (when odds ratio
could not be calculated) are denoted as crosses. Spearman-rank correlations ρ of the change in odds
ratio with time per leaf and p-values from the test (ρ = 0) are shown on individual panels (when
calculating ρ missing values were excluded).

Alternatively, the mode of virus transmission within the leaf may have played a major
role. Indeed, in plants viruses are transmitted from the infected cell to adjacent cells via
plasmodesmata, and if a cell is coinfected with two variants, it is possible that all new
infections occur by both variants simultaneously [35]. Finally, if infection of cells occurs
sequentially, infection with one variant may suppress any potential antiviral activity in the
cell, allowing that cell to be coinfected with another variant [42–44]. To further test these
hypotheses we used mathematical modeling.

3.8. A Probability-Based Coinfection Model Performs Best Compared to Other Coinfection Models

Given that many alternative mathematical models are consistent with the pathway of
systemic virus dissemination (Table 2) to investigate potential mechanisms of TEV coin-
fection dynamics in different leaves we decided to fix the details of virus dissemination
between leaves to those provided in the previous study [14], i.e., we let the virus infection
to be initiated in the leaf 3 and dissemination to upper leaves to depend on the infection
frequency of leaves below (Figure 1A and Equations (1)–(3)). To describe how coinfected
cells are generated we developed six alternative “coinfection” models (see Figure 2 for
2 examples, Equations (21)–(27), and Section 2 for more detail). In the first, 1-alpha coin-
fection model, dynamics of coinfected cells are driven only by the within-leaf frequency
of cells infected with either of two variants with the parameter α determining deviations
of the coinfection from random (Figure 2A and Equation (21)). A simple extension of this
model was to allow for different efficacies of coinfection depending of which virus in-
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fected the susceptible cell first (Equation (22)). Two other models assumed that coinfection
may happen via two different pathways: local, within-leaf infection dependent on the
frequency of single-infected cells and uninfected cells and via between leaf virus dissemina-
tion, with either identical (α) or different (α1 and α2) weights for this coinfection processes
(Figure 2B and Equations (24) and (25)). Finally, the third set of two models assume that
coinfection due to within-leaf dynamics occurs due to coinfected cells transmitting both
viral variants to susceptible cells, and due to between-leaf dynamics occurs similarly as
in the previous model. We similarly assume that these two processes may proceed with
different deviations from a random process which is captured by parameters α1 and α2
(Equations (26) and (27)).

We fitted these models to experimental data using two alternative approaches, log-
transformed least squares (with LOD replacements of zero values) and binomial distribution-
based likelihood, both extended to account for singly and co-infected cells in each leaf
(see Equations (33) and (37) in Section 2 for more detail). The 2-alpha Probabilistic model
(Equation (22)) was the best performing model when fitted by either method (Table 3).
Importantly, with both methods the basic models assuming that coinfections occur ran-
domly, due to within-leaf coinfection of cells poorly described the data (Table 3 and
Supplemental Figure S4).

Table 3. The 2-alpha probabilistic model fits the coinfection data with best quality. We fitted a series of
mathematical models (see Section 2 and Figure 2) that make different assumptions on how coinfection
of individual cells with two different viruses occur to the data on viral spread. The models were fitted
using the binomial distribution-based likelihood method (Equation (33)) or the least squares method
with a log transform of the data (Equation (37)). AICs were calculated using Equations (38) and (40),
for the likelihood and least squares methods respectively. Values for nll, AICLik, and AICLSLog were
rounded to the nearest whole number. ∆AIC for both methods are calculated by taking the AIC score
from the model and method in question and subtracting it from the lowest AIC in its corresponding
row. Coloring follows the same principle as in Table 2. In fitting models using least squares to
log-transformed data we used the following values for the limit of detection of the frequency of
infected cells: LODVenus = 8.43× 10−5, LODBFP = 3.26× 10−4, and LODMixed = 3.2× 10−5.

Parameters 1-α Probabilistic 2-α Probabilistic 1-α Coinfection 2-α Coinfection 1-α Logistic 2-α Logistic
Equation (24) Equation (25) Equation (21) Equation (22) Equation (26) Equation (27)

nll 512,112 511,728 519,132 525,576 515,892 517,656
AICLik 1,024,246 1,023,480 1,038,286 1,051,176 1,031,806 1,035,336
∆AIC 766 0 14,806 27,696 8326 11,856
SSRLog 339.459 269.521 335.169 514.719 421.662 477.806
AICSSRLog 109 56 106 211 161 193
∆AIC 53 0 50 155 105 137

We also fitted the models using the least squares method for raw, untransformed
frequencies of infected cells, but these fits poorly described the dynamics of coinfected
cells. We reasoned that this is because there are typically fewer coinfected cells than single-
infected cells, and this least squares method favored fitting the dynamics of single-infected
cells with better quality (due to their higher abundance). In this specific case, a statistical
model based on untransformed least squares does not appear to be adequate.

With both of the appropriate methods we found that the 2-alpha probabilistic model
fits the data with best quality, and the next best, 1 alpha probabilistic model performed
significantly worse (per AIC scores, Table 3). Indeed, the best fit model could very accu-
rately describe the dynamics of single- and co-infected cells and predicted a more rapid
increase in the coinfected cells for leaf 6 and 7 than that for single-infected cells (Figure 6).
Unfortunately, we found relatively wide confidence intervals for estimates of many of the
model parameters except ψk suggesting that the amount of data available was relatively
low, and increasing the number of time points and/or plant repeats may have allowed
for more precise estimates. We should note, however, that mean estimates for within-leaf



Viruses 2022, 14, 741 19 of 27

infection rates βV and βB and between-leaf spread rates χk were very similar to those found
when fitting Tromas et al. [14] model to the data on infected cell dynamics (Table 1) lending
some support that our model parameters are not unrealistic. Excitingly, we found that for
within-leaf virus spread, coinfection rate was much higher than cell infection by single
viruses (α1 = 10.1) supporting our analysis using odds ratio (Figure 5). The between-leaf
coinfection rate was not different from the random model (α ≈ 1) suggesting that most
coinfection events were driven by within-leaf dynamics and not due to transfer of viruses
systemically. This, perhaps, makes sense because locally it is easier for one cell to be coin-
fected by 2 viruses while when viruses enter the leaf at random locations due to systemic
dissemination, coinfection is expected to be rare.

Both probabilistic models assume that the dynamics of coinfection within the leaf
depends on the product of frequency of cells infected with either of two viral variants and
the frequency of uninfected cells in the leaf (Equation (25)). We found that removing Sk
term in these models resulted in significantly poorer fit of the data (see file AllModelsAnd-
Methods.xlsx in https://github.com/Plant-Virus-Spread/Models-And-Tools/, accessed
on 14 November 2021). Intuitively, the frequency of uninfected cells drives the dynamics
of infection and when Sk approaches 0, infection of the leaf mostly stops, thus over-
predicting the data. However, when such a term is absent in the equation for coinfected
cells Mk, co-infection would proceed even when single infections stop. With this mecha-
nistic/mathematical insight it was difficult to come up with a biological explanation for
why coinfections are dependent on the frequency of uninfected cells. One possibility that
infections stop not because the number of uninfected cells declines to zero, but because
of leaf-specific immune response makes uninfected cells in the leaf resistant to infection–
similar to the alternative model 9 for the dynamics of infected/uninfected cells that we
considered earlier (Equation (17)).

We found it interesting that the model in which the frequency of coinfected cells due
to within-leaf dynamics grows logistically (Equations (26) and (27)) could not well describe
the data (Table 3). The model underestimated the frequency of coinfected cells at early time
points. This result argues that the high odds ratio for the coinfection of cells observed in our
data is not likely to arise exclusively due to adjacent cells being coinfected with the two TEV
variants at once. This model prediction can be tested experimentally, for example, by using
microscopy and examining spatial distribution of foci of cells infected with individual viral
variants or with both variants [45].

3.9. Dynamics of Coinfected Cells Compared to Singly-Infected Cells

While our analysis provided solid evidence that coinfection of plant cells by two TEV
variants does not proceed randomly we sought to investigate how coinfection rate varies
with the frequency of single-infected cells. Previous mathematical modeling-based work
on HIV infection of target cells suggested that the frequency of doubly-infected cells should
scale as square of the frequency of single-infected cells [46]. As far as we are aware such
prediction has not been tested for plant-infecting viruses. For every leaf we therefore
plotted the relationship between the frequency of coinfected cells versus the frequency of
cells infected with Venus (Figure 7A–D) or BFP (Figure 7E–H) strains of TEV and compared
these data with predictions of the two alternative probabilistic models. We also fitted a line
to log-log transformed frequencies and estimated the slope n of the relationship (Figure 7).
Several interesting results emerged.

https://github.com/Plant-Virus-Spread/Models-And-Tools/
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Figure 6. The 2-alpha probabilistic model fits the coinfection data with best quality. The 2-alpha
probabilistic model (Equations (18), (19) and (25)) assumes that coinfection of individual cells by two
different strains depends on the level of uninfected cells in the leaf (Sk) and that local coinfections
in the leaf occur at different kinetics that coinfection between leaves (Figure 2B). We fitted this
model to the data on infection of cells by either individual viruses or coinfection of the same cell
by different viruses. The model was fitted using the binomial distribution-based likelihood method
(Equation (29)). Markers show frequency of cells infected with Venus or BFP viruses or coinfected
with both viruses (“Mixed”), and lines are predictions of the mathematical model for leaf 3 (A), leaf 5
(B), leaf 6 (C), and leaf 7 (D). The short horizontal bars show the average infection rate for a given
virus variant for a particular day and infected cell type. The parameters providing the best fit and
their 95% confidence intervals (estimated using by boostrapping the data) are as follows: V0 = 0.0002
(2 · 10−5, 0.001), B0 = 0.0002 (2 · 10−8, 0.001), M0 = 0.0008 (0.0, 0.001), βV = 0.975 (0.606, 10)/day,
βB = 0.835 (0.426, 10)/day, χ5 = 0.116 (0.004, 9.522)/day, χ6 = 0.858 (0.0001, 10)/day, χ7 =

0.031 (0.0001, 10)/day, ψ3 = 0.073 (0.040, 0.118), ψ5 = 0.016 (0.003, 0.260), ψ6 = 0.223 (0.124, 0.260),
ψ7 = 0.247 (0.067, 0.400), α1 = 10.120 (3.686, 16.275), α2 = 0.814 (0, 20).

First, we found that the relationship between frequency of coinfected cells and cells
infected with a single virus is either sub-linear or linear for lower leaves (leaves 3 and
5, respectively, Figure 7A,B,E,F). This is not fully consistent with the results found using
odds ratio (Figure 5A,B) suggesting that different ways of data analysis may result in
different conclusions. However, for upper leaves we found strong deviation from the linear
relationship whereby coinfection frequency increased more rapidly than linearly with
increasing frequency of single-infected cells (n > 1, Figure 7C,D,G,H). This is consistent
with what we found using odds ratio (Figure 5C,D). Predictions of our best fit 2-alpha
probability model were mostly consistent with the data except for the leaves 6–7 and cells,
singly infected with BFP variant (Figure 7G,H). Finally, we noticed that at later time points
(∼ 7–10 days post infections), all of the curves in Figure 7 approximate lines. To understand
why this occurs, and what the slopes of these lines are, we performed additional analyses
(shown in Supplemental Information).
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Figure 7. The two-alpha probabilistic model accurately describes the relationship between frequency
of coinfected cells and those infected with a single virus for most data. We plot the relationship
between frequency of cells coinfected with Venus and BFP strains of TEV and the frequency of cells
infected with a single strain ((A–D) for Venus and (E–H) for BFP) for various leaves of the plant
(different panels) and different days since infection (shown by markers). Some of the data are not
shown on a log-log plot due to zeros of the number of infected or coinfected cells. Solid lines are the
predictions of 2-alpha probabilistic model (Equation (25)) and dash-dotted lines are the predictions of
1-alpha probabilistic model (Equation (24)). The red dotted lines are power functions fitted to the
data. The exponents n of these functions are shown in the top right corners below the leaf number.
Asymptotic relationship between the frequency of coinfected and single infected cells appears to
become a straight line for all three models, a feature which we examine in Equations (S41)–(S48) in
Supplemental information. We also provide a python-based script in which these data and model
predictions can be explored further (Supplemental Figure S5).

4. Discussion

In this paper we performed extensive analyses of the published data on the kinetics of
infection of tobacco plants with two variants of TEV [14]. We found that the pathway of
virus dissemination in the plant could not be robustly determined directly from the data on
the change in frequency of infected cells in different leaves over time—several alternative
models that assumed slightly different pathways of dissemination fitted the data with very
similar quality. The model assuming that viral dissemination starts from the upper leaf 7,
however, fitted the data poorer than the models assuming that dissemination starts with
lower (3rd) leaf suggesting that these data do contain some information on the direction of
virus dissemination.

The best performing model in our analysis was dependent on the method of how
the models were fitted to data; fitting the models using binomial distribution-based like-
lihood (Equation (29)) suggested that alternative model 2 (Equation (6)) was the best
(Supplemental Table S1). On the other hand, when total infection models were fitted
using the least squares method based on log-transformed data and model predictions
(Equation (35)), Tromas et al. [14] model and alternative models 1&2 (Equations (4) and (6))
fitted the data with the best quality (Table 2). The way experimental measurement errors
influence the data remains poorly understood, and therefore, which statistical model–log-
transformed least squares or binomial distribution-based likelihood–are more appropriate
in fitting the models to such data remains undefined. The way forward is to understand
better sources of errors in experiments measuring the fraction of infected protoplasts by
flow cytometry.

It is generally unknown why not all cells in the leaves were infected 10 days post
infection; for example, leaf 3 had less than 10% of its cells infected by the end of exper-
iment (Figure 3). One possibility is that not enough time has passed for all cells to be
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infected. Tracking virus infection at longer than 5.5 week periods may be complicated
because at this time plant physiology changes dramatically due to development of flowers.
Tromas et al. [14] assumed that infection stops after the fraction of infected cells in a leaf
exceeds some critical value ψk, but how the physiological aspects of the plant, or the virus
infecting it, determine the value of ψk remain a mystery. We showed that an alternative
model in which infection of a given leaf slows down due to a time-dependent factor and
not directly due to increase in the fraction of infected cells, can describe the data with
similar quality (Supplemental Table S2). Such time-dependent factors may be an immune
response such as RNAi generation and dissemination via plasmodesmata that may render
cells in the leaf resistant to infection. Another factor could be changes to plasmodesmata
themselves, like the accumulation of callose at the pores, that prevent the local cell-to-cell
movement of the virus [47]. Physiological changes in the leaves in a growing plant may
also contribute to the increased resistance of some plant cells to infection.

Our main findings, however, are about coinfection of cells with two different variants
of TEV. Interestingly, by using odd ratio metrics [33] we found significantly a higher
frequency of coinfections of leaf cells by two viruses, in some cases with OR = 100 or more
that is much higher than that observed in other systems [33] and is in contrast with another
study finding suppression of coinfections [45]. Importantly, we developed a series of novel
mathematical models that track the coinfection dynamics; the best fit model also predicted
higher rates of coinfections of plant cells with two viruses for the within-leaf virus spread
but not for virus dissemination to other leaves (Figure 6). Additional analysis showed
that at least for the upper leaves (leaf 6&7) the frequency of coinfected cells increases
more rapidly than linear with frequency of single-infected cells (Figure 7), and we show
analytically that this is not expected in the random infection model. It has been proposed
that deviation of coinfection frequency from random is likely to result from heterogeneity
in target cell susceptibility to infection [33]. However, given the mechanics of virus spread
in plants via plasmodesmata, ability of multiple viruses to enter the same cell, and thus
increase chances of coinfection, remains a possibility (this mechanism did not fit the data
with best quality, see Table 3) [48,49]. Given that virus coinfection of leaf cells in other
systems can be high and that virus coinfections may result in higher virus production by
infected cells [50,51], impact of coinfections on virus evolution has received considerable
attention [52–54].

As far as we are aware, Tromas et al. [14] performed the first comprehensive analyses
of virus dissemination in plants, and so far, no similar works (experiments and modeling)
on virus dissemination within and between multiple tissues have not been performed in
animals. However, several studies have investigated how, for example, hepatitis C virus
(HCV) spreads locally in the liver [55–57]. There is also evidence for local spread of influence
A virus in humans and animals (reviewed in [58]), and mathematical models that take into
account physiology of the lung tissue to study virus spread have been proposed [59]. Our
observation of potential cooperativity between viruses infecting individual cells extends the
results found with animal viruses such as HIV or vaccinia virus [33,46,60,61]. Our analyses
thus illustrate that additional insights can be generated by experiments in which infection
accumulation (and loss) are tracked over time systematically in the whole organism; using
barcoded viruses may be particularly useful in this regard [62].

Our study has several limitations. In our analysis we ignored the complexity of the
growing, 4 week old tobacco plants, and changes that occur with leaves in the growing
plant. Plants do not have pumping systems like animals, and therefore systemic movement
of viruses must follow the already established pathways provided by the phloem, typically,
from source to sink tissues such as developing leaves. However, it is not always obvious
based on visual appearance when a given leaf changes from being a sink to being a source
(or vice versa). Viruses can manipulate source-sink relationships in their hosts; e.g., some
viruses can convert source tissues into sinks [27,63]. While we had information on the
fraction of infected cells in different leaves, spatial aspects of the infection process were lost
during protoplast extraction. Better understanding of virus dissemination kinetics is likely
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to benefit when such spatial details are also recorded, along with the high throughput flow
cytometry-based measurements.

While we provided evidence that coinfection occurs at higher frequency than predicted
by the random infection hypothesis, we were unable to provide a solid explanation for this
effect. Variability in susceptibility of cells to viral infection, local, cell-to-cell virus transmis-
sion via plasmodesmata, or cooperation between viral variants may be contributing.

We showed that inference of the best fit model depends on the method used to fit
models to data. Given limited understanding of the sources of errors in these data, the most
appropriate statistical models that take into account measurement errors will need to
be developed. In particular, by fitting the models to data using binomial distribution-
based likelihood we found large differences in quality of how alternative models fitted the
data (based on AIC values). We hypothesize that binomial distribution-based likelihood
amplifies small differences in the infection frequency of individual leaves at early time
points, leading to significant favoring of one model over the other. However, this method
does not truly account for experimental noise in extraction efficiency of protoplasts from
the leaves and false positives when detecting fluorescence signals from individual cells
by flow cytometry. Therefore, we believe that the finding that there is one best fit model
among the alternative models when models are fitted using binomial distribution-based
likelihood is insufficient to choose a specific model. Additional experiments that better
address experimental errors in measuring the fraction of infected cells in different leaves
will be needed to derive a better statistical model to fit our dynamical models to such data.

Similarly to Tromas et al. [14] we ignored the fact that infection occurs in a plant,
and pooled all infection-per-leaf data together without tracking infection per plant. It is
clear, however, that some plants may have more infection in all leaves than others (e.g.,
Supplemental Figure S1) and fitting the models to such “paired” data may provide addi-
tional insights into details of viral spread locally and systemically. Finally, we showed that
the pathway of virus dissemination in plants cannot be easily determined from experiments
that measured virus accumulation in different leaves over time, although this result was
dependent on the way the models were fitted to data.

Biases introduced by extraction of protoplasts for use with flow cytometry, remain un-
clear. For example, infected cells may preferentially die during the extraction process which
would reduce the fraction of infected cells measured. In immunology, one potential way to
understand such biases has been by comparing the flow cytometry-based measurements
with microscopy-based measurements [64,65].

5. Conclusions and Future Directions

Our study opens avenues for future research. In particular, similar analyses may
need to be performed for other plant viruses. TEV is a potyvirus, one of the largest
classes of viruses in plants, [66], and together with the geminiviruses, they are responsible
for the majority of disease in commercial agriculture. Understanding how these viruses
disseminate in their hosts may bring practical benefits through improved interventions
(e.g., [67]). To understand better details of local virus dissemination it will be necessary to
combine measurements of spatial virus spread in individual leaves with flow cytometry-
based measurements of the fraction of infected cells. Local virus spread can be measured by
confocal microscopy and larger spread by light microscopy [26,45,68,69]; previous studies
have developed frameworks of how such local viral spread may be modeled [57]. Future
studies should better understand why infection of a given leaf stops when not all cells
are infected. Whether this is related to changes in leaf physiology (moving from sink to
source) or immune responses in the leaf or systemically needs to be tested in experiments
and modeled appropriately. Whether measurement of infection in leaves is sufficient to
accurately predict virus dissemination kinetics is unclear. For example, roots are typical
sink tissues in plants [27]. Thus, it is likely that virus accumulation in the roots precedes
or coincides with systemic virus dissemination to upper above-ground structures. Future
experiments and modeling studies may benefit to include the dynamics of virus-infected
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cells in the plant roots. Finally, more precise understanding of the pathway of virus
dissemination will benefit from additional data in which infection is initiated in different
leaves and experiments in which some leaves are removed after a specific time period
(e.g., [28]). Such experiments are not without caveats because removing a leaf may induce
systemic changes in the plant that in turn may influence virus dissemination kinetics.
Therefore, such experiments would be helped by mathematical models that can make
quantitative predictions on the impact of different leaf removal on the virus dissemination
kinetics, and these models can be tested and some falsified [37]. Ultimately, a combination
of well designed experiments to test specific hypotheses and quantitative mathematical
models is likely to bring novel insights into how viruses disseminate in their plant hosts.
Such knowledge will be critical for development of novel strategies for limiting agricultural
losses to viruses.
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