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Abstract: Symptomatic slow-acting drugs (SYSADOA) are increasingly used as effective therapies for
osteoarthritis, representing an attractive alternative to analgesics or non-steroidal anti-inflammatory
drugs to relieve disease symptoms. Pharmaceutical preparations of chondroitin sulfate, derived from
animal sources, alone or in combination with glucosamine sulfate, are widely recognized for their
beneficial effect on osteoarthritis treatment. A growing interest has also been devoted to understanding
the molecular mechanisms modulated by SYSADOA using -omic strategies, most of which rely on
chondrocytes as a model system. In this work, by using an integrated strategy based on unbiased
proteomics and targeted cytokine profiling by a multiplexed protein array, we identified differences
in the secretomes of human osteoarthritic synoviocytes in response to biotechnological unsulfated,
and marine sulfated chondroitins treatments. The combined strategy allowed the identification of
candidate proteins showing both common and distinct regulation responses to the two treatments of
chondroitins. These molecules, mainly belonging to ECM proteins, enzymes, enzymatic inhibitors
and cytokines, are potentially correlated to treatment outcomes. Overall, the present results provide
an integrated overview of protein changes in human osteoarthritic synoviocytes secretome associated
to different chondroitin treatments, thus improving current knowledge of the biochemical effects
driven by these drugs potentially involved in pathways associated to osteoarthritis pathogenesis.

Keywords: marine chondroitin; biotechnological unsulfated chondroitin; secretome; osteoarthritis;
mass spectrometry

1. Introduction

Osteoarthritis (OA), a leading cause of disability in adult individuals, is a degenerative joint
disease characterized by a multi-factorial etiology including obesity, aging and heredity. The major
OA consequences include the progressive destruction of articular cartilage and the formation of
osteophytes associated with variable degrees of synovial membrane inflammation [1]. In particular,
synovitis represents a key factor in OA pathophysiology by reflecting the structural progression
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of the disease through the production of several pro-inflammatory mediators such as IL-1β and
TNF-α [2]. Current pharmacological treatments for OA are mainly symptom-focused and include
combination therapies based on the analgesics or non-steroidal anti-inflammatory drugs (NSAIDs)
administration and non-pharmacological methods (i.e., physical exercises and physiotherapy).
However, due to the numerous side effects deriving from the prolonged use of NSAIDs, chondroitin
sulfate (CS) and glucosamine (GlcN) have been proposed as anti-osteoarthritis agents since 1990s.
CS is a glycosaminoglycan made of 4)-β-GlcA-(1→3)-β-GalNAc-(1 disaccharide repeating units
(GlcA = glucuronic acid, GalNAc = N-acetyl-galactosamine) with molecular weights (Mw), types and
grades of sulfation related to animal tissues or age [3]. With respect to the high Mw (30–80 kDa) CS
from marine organisms (e.g., shark, skate, etc.), CS from terrestrial animal cartilages (e.g., pig, bovine,
chicken) has a lower Mw (14–26 kDa) and a different sulfation pattern [4]. Specifically, highly purified
pharmaceutical grade preparations of CS are included within the “symptomatic slow-acting drugs for
osteoarthritis” (SySADOA) class [5,6]. Accordingly, SySADOA treatments have been recommended
in the guidelines published by the Osteoarthritis Research Society International (OARSI) for the
management of knee OA [7–9] and by the European League Against Rheumatism (EULAR) for the
management of hip and knee OA [5,10,11].

Furthermore, based on the similarity of the microbial capsular polysaccharides to
glycosaminoglycan, bacteria proved to be potential alternative non-animal sources of
glycosaminoglycan-derived products [12,13]. Indeed, high purity and endotoxin-free microbial-derived
unsulfated biotechnological chondroitin (BC) has been previously obtained through a patented
biotechnological production process [14]. Therefore, the use of BC for medical applications could be
an important alternative to extractive CS in order to overcome on one side potential contaminations
issues and, on the other increasing ethical and religious concerns [15]. Recently, BC proved to be
more effective in chondrogenic phenotype preservation and in the reduction of the inflammatory
response in IL-1β-treated chondrocytes with respect to CS-treated cells [16]. Several efforts have been
also directed to a deep understanding of cellular response to different CS treatments at molecular
level. Recently, the advent of novel high throughput technologies has opened new perspectives
in osteoarthritis research by mass spectrometry-based proteomic approaches [17]. In addition, cell
secretome profiling has become an active area of research for the high potential in biomarker discovery
with diagnostic and/or prognostic significance [18]. In particular, due to the pivotal importance of
the microenvironment in OA, several studies have addressed the characterization of secretomes from
human articular chondrocytes [19,20]. In addition, proteome and secretome studies investigate the
effects driven by bovine/pig CS [21,22] or by combined formulations of chondroitin/glucosamine [23,24].

In the present work, an in-depth secretome analysis of primary cultures of OA synoviocytes
treated with a pharmaceutical-grade marine CS has been performed by label-free quantitative
high-resolution mass spectrometry (MS). Moreover, to compare the modulation effects of treatments
with biotechnological and extractive agents on OA synoviocytes protein secretion, the same approach
has been applied to determine the OA synoviocytes secretome profiles following treatment with
pharma-grade unsulfated biotechnological chondroitin. Collectively, our results provide a detailed
characterization of the human osteoarthritic synoviocytes response to biotechnological unsulfated
and marine sulfated chondroitins, identifying candidate proteins potentially associated to treatment
outcome. These mainly belong to ECM proteins, enzymes, enzymatic inhibitors, cytokines, and growth
factors. Although an overall similar trend in protein changes was driven at the extracellular level
by CS and BC, a distinct regulation response was observed for a subset of proteins, paving the way
to the development of formulations using unsulfated biotechnological chondroitin for counteracting
OA-related pathological processes.
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2. Results

2.1. Secretome Profiling of the Synoviocytes Response to BC and CS Treatment

To investigate the activation of extracellular signaling pathways following different chondroitin
treatments, we performed a global label-free quantitative high-resolution mass spectrometry-based
secretome analysis of OA synoviocytes treated with a marine CS and an unsulfated biotechnological
(BC) chondroitin.

Supernatants of CS-/BC-treated synoviocytes and untreated control (pCTR) were collected and
concentrated by ultrafiltration and subjected to TCA precipitation. Following reduction and alkylation
steps, samples were treated with trypsin and analyzed by LC-MS/MS [25] (Figure 1a).
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Figure 1. Flowchart of the workflow applied for secretome analysis of human OA synoviocytes treated
with a marine CS and an unsulfated biotechnological (BC) chondroitin: (a) Workflow used for the
high-resolution LC-MS/MS analyses of CS-/BC-treated synoviocytes secretomes. (b) Schematic analysis
pipeline showing main sequential steps for LC-MS/MS data processing and bioinformatic analyses
performed on filtered proteomic data.

Using high-resolution MS and the Proteome Discoverer proteomics software package for
computational analysis and label-free quantitation, we compared relative protein abundances in
conditioned media of CS-/BC-treated OA synoviocytes with respect to untreated cells. In particular, for
each treatment replicate, we required a minimum of two replicates and a at least two peptides per
protein in at least one out of three conditions for the identification to be considered reliable. According
to these criteria, a total of 126 proteins were identified across the three conditions (Supplementary
Table S1). From this list, we then extracted a subset of 81 proteins whose relative expression levels
changed 1.5-fold or more (in any direction) in both (Table 1) or one (Table 2) of the treatment conditions
with respect to untreated OA synoviocytes. We also identified several other known cartilage elements,
such as cartilage oligomeric matrix protein (COMP) and aggrecan, that were not considered because
they did not fulfil the filtering criteria used in this study.
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Table 1. Proteins differentially expressed (0.6 ≥ FC ≥ 1.5) in both CS- and BC-treated with respect to
pCTR synoviocytes secretomes identified by high-resolution LC-MS/MS.

Accession Gene Description CS vs. pCTR BC vs. pCTR

P63104 1433Z 14-3-3 protein zeta/delta 1.5 1.5
P35555 FBN1 Fibrillin-1 1.7 1.5
Q12841 FSTL1 Follistatin-related protein 1 4.3 3.8
P16035 TIMP2 Metalloproteinase inhibitor 2 4.0 2.0
Q15063 POSTN Periostin 3.3 1.7
Q92743 HTRA1 Serine protease HTRA1 2.3 2.0
Q01995 TAGL transgelin 1.7 2.0
P06733 ENOA alpha-enolase 0.2 0.2

Q9NZT1 CALL5 Calmodulin-like protein 5 0.3 0.6
P01040 CYTA Cystatin-A 0.2 0.2
Q08554 DSC1 Desmocollin-1 0.1 0.2
Q02413 DSG1 Desmoglein-1 0.1 0.3
P15924 DESP Desmoplakin 0.0 0.2
P68104 EF1A1 Elongation factor 1-alpha 1 0.3 0.3
P04406 G3P glyceraldehyde-3-phosphate dehydrogenase 0.3 0.3
P11142 HSP7C Heat shock cognate 71 kDa protein 0.4 0.6
P04792 HSPB1 Heat shock protein beta-1 0.4 0.4
P07355 ANXA2 Isoform 2 of Annexin A2 0.4 0.5
P14923 PLAK Junction plakoglobin 0.0 0.2
P32119 PRDX2 Peroxiredoxin-2 0.5 0.5
P05109 S10A8 Protein S100-A8 0.6 0.6
P14618 KPYM Pyruvate kinase PKM 0.3 0.3
P60174 TPIS Triosephosphate isomerase 0.2 0.5
P21810 PGS1 biglycan 1.9 0.4
P12109 CO6A1 Collagen alpha-1(VI) chain 1.6 0.6
P12111 CO6A3 Collagen alpha-3(VI) chain 4.4 0.4
P07093 GDN Isoform 3 of Glia-derived nexin 1.5 0.6
P07996 TSP1 thrombospondin-1 2.9 0.3
Q15582 BGH3 Transforming growth factor-beta-induced protein ig-h3 2.3 0.5
P98160 PGBM Basement membrane-specific heparan sulfate proteoglycan core protein 5.6 0.6

Table 2. Proteins differentially regulated (0.6 ≥ FC ≥ 1.5) in CS- or BC-treated with respect to pCTR
synoviocytes secretomes identified by high-resolution LC-MS/MS. N/D, not detected.

Accession Gene Name Description CS vs. pCTR BC vs. pCTR

P16070 CD44 CD44 antigen 2.0 1.0
P36222 CH3L1 Chitinase-3-like protein 1 1.5 1.3
P12110 CO6A2 Collagen alpha-2(VI) chain 1.6 0.9
P07585 PGS2 decorin 2.3 1.3
P21333 FLNA Filamin-A 3.0 N/D
P22692 IBP4 insulin-like growth factor-binding protein 4 2.8 1.3
Q06033 ITIH3 Inter-alpha-trypsin inhibitor heavy chain H3 1.6 0.7
O43852 CALU Isoform 3 of Calumenin 1.5 1.3
P12814 ACTN1 Isoform 4 of Alpha-actinin-1 1.8 0.7
P48061 SDF1 Isoform Delta of Stromal cell-derived factor 1 1.7 1.0
Q14767 LTBP2 Latent-transforming growth factor beta-binding protein 2 1.9 0.9
P05121 PAI1 Plasminogen activator inhibitor 1 2.0 0.8
Q15113 PCOC1 Procollagen C-endopeptidase enhancer 1 1.7 1.1
P31151 S10A7 Protein S100-A7 1.5 1.0
P50454 SERPH Serpin H1 2.8 0.9

Q7Z7G0 TARSH Target of Nesh-SH3 1.6 1.1
P24821 TENA Tenascin 2.0 N/D
P05452 TETN Tetranectin 1.7 1.2
P68363 TBA1B Tubulin alpha-1B chain 2.0 N/D
O76076 WISP2 WNT1-inducible-signaling pathway protein 2 3.3 1.0
P11021 BIP 78 kDa glucose-regulated protein 0.2 N/D
P02461 CO3A1 Collagen alpha-1(III) chain 0.4 0.9
P09871 C1S Complement C1s subcomponent 0.6 0.7
P01034 CYTC Cystatin-C 0.5 1.3
P17936 IBP3 Isoform 2 of Insulin-like growth factor-binding protein 3 0.3 0.8
P05155 IC1 Isoform 3 of Plasma protease C1 inhibitor 0.6 0.8
P00558 PGK1 phosphoglycerate kinase 1 0.3 N/D
P02545 LMNA Prelamin-A/C 0.5 0.8
P12273 PIP Prolactin-inducible protein 0.6 1.1
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Table 2. Cont.

Accession Gene Name Description CS vs. pCTR BC vs. pCTR

P06702 S10A9 Protein S100-A9 0.5 1.3
Q6UWP8 SBSN Suprabasin 0.4 1.0

P07226 TPM4 Tropomyosin alpha-4 chain 0.4 1.3
P25311 ZA2G Zinc-alpha-2-glycoprotein 0.2 0.8
O43707 ACTN4 Alpha-actinin-4 1.1 0.4
P05089 ARGI1 Arginase-1 N/D 0.2
P31944 CASPE Caspase-14 N/D 0.4
Q99715 COCA1 Collagen alpha-1(XII) chain 1.1 0.3
Q15517 CDSN corneodesmosin N/D 0.4
Q14574 DSC3 Desmocollin-3 N/D 0.2
Q01469 FABP5 Fatty acid-binding protein, epidermal N/D 0.1
Q08380 LG3BP Galectin-3-binding protein 0.9 0.6
P01876 IGHA1 Ig alpha-1 chain C region 1.4 0.6
P04075 ALDOA Isoform 2 of Fructose-bisphosphate aldolase A 1.0 0.5
Q96P63 SPB12 Isoform 2 of Serpin B12 N/D 0.4
P00338 LDHA Isoform 3 of L-lactate dehydrogenase A chain 0.7 0.5
Q08431 MFGM Lactadherin 1.3 0.5
P30086 PEBP1 phosphatidylethanolamine-binding protein 1 N/D 0.5
P29508 SPB3 Serpin B3 N/D 0.1
P07858 CATB Cathepsin B 0.9 2.1
P20962 PTMS Parathymosin N/D 1.5
P09486 SPRC Sparc 1.5 2.3

2.2. Cellular Localization of the Differentially Expressed Proteins in the OA Synoviocytes Secretome

Proteomic analysis does not differentiate between different cellular mechanisms for protein release
into the extracellular environment. We therefore defined a bioinformatic workflow for categorizing the
differentially expressed proteins in the OA synoviocytes secretome following BC and CS treatments as
proteins secreted via classical (through signal peptide) and non-classical (leaderless protein secretion)
pathways using the SignalP and SecretomeP prediction algorithms, respectively (Figure 1b). Moreover,
unconventional secretion of transmembrane proteins was also considered (Figure 1b). Of the proteins
detected in the conditioned media of the OA synoviocytes and differentially expressed following BC
and CS treatments, a high percentage (47%) are predicted to contain a signal peptide, whereas 10% of
proteins are predicted to be secreted via the non-classical secretory pathway (Figure 2a).

Together, these predictions account for 57% of the proteins for which changes in the expression
levels were detected in at least one treatment. In addition to classical and non-classical secretion, we
also evaluated the percentage of transmembrane proteins (10%) that are known to be released from cell
surface into the extracellular milieu via ectodomain shedding.

Interestingly, an enrichment analysis performed for the cellular component GO category (Figure 2b)
revealed that a significant number of differentially expressed proteins belongs to exosomes (53%)
and lysosomes (48%). Since there is growing evidence that proteins released via vesicles including
exosomes are used by cells for intercellular communication, we investigated if exosome-related
proteins identified by enrichment analysis were predicted to be secreted using the SecretomeP/Signal P
prediction algorithms. Although 19 proteins were predicted to contain a signal peptide and seven were
predicted to be secreted via non-classical secretion pathways, we found that for additional 16 proteins
these algorithms did not predicted a potential release from cells (Figure 2c,d). This observation reflects
the evolution of the term “secretome” that should also include proteins from various subcellular
locations that may be released outside the cell through different mechanisms such as exosomes.

2.3. Comparative Analysis of the OA Synoviocytes Secretome Response to BC and CS Treatments

In addition to the cellular component enrichment analysis, we also investigated if there was a
correlation of responses to different chondroitin treatments by evaluating the GO biological processes
of differentially expressed proteins. We found that both treatments affected almost the same cellular
processes, including the extracellular matrix (ECM) organization/ECM structure organization, cell
adhesion, cartilage development, and morphogenesis (Figure 3).
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Figure 2. Overview of secretory pathway prediction results for differentially expressed proteins in the
OA synoviocytes secretome following BC and CS treatments: (a) Pie chart representing the secretory
pathway prediction for differentially expressed proteins by SignalP (classical secretion), SecretomeP
(non-classical secretion) and TMHMM (transmembrane) servers. (b) Bar chart of the significantly
enriched cellular components GO terms obtained for differentially expressed proteins in CS-/BC-treated
synoviocytes secretomes. The number of proteins belonging to the enriched gene ontology term and
the p-values are reported on the graph. (c) Venn diagram showing the overlapping of proteins secreted
via classical/non-classical secretion pathways and by exosomes. (d) Details of genes within each subset
of the Venn diagram reported in (c).
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Figure 3. Dot plot of the top 10 over-represented biological processes of differentially expressed proteins
in secretomes of CS-/BC-treated vs. pCTR synoviocytes. The dot size is proportional to the number of
differentially expressed proteins associated with the process and the dot colour gradients indicated the
significance of the enrichment (-log10(FDR corrected p-values)).
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Given the overlap in the biological processes and potential related signaling components affected
by CS and BC treatments, at first, we evaluated the response of the common proteins identified in the
two treatments. Indeed, we found a subset of proteins whose levels changed in the same directions
under different treatments (i.e., up- or down-regulated). Among these, extracellular matrix proteins
(e.g., Fibrillin-1, FBN1; Periostin, POSTN), enzymes (i.e., Serine protease HTRA1), as well as the
Metalloproteinase inhibitor 2 (TIMP2) were commonly up-regulated upon BC and CS treatments. By
contrast, other enzyme inhibitors such as Cystatin-A (CYTA) and several proteins involved in cell-cell
adhesion (Desmocollin-1, DSC1; Desmoglein-1, DSG1; Desmoplakin, DESP; Junction plakoglobin,
PLAK; Annexin A2, ANXA2) were down-regulated upon both CS and BC treatments.

Despite this overall similar response to the different treatments, the comparative analysis of protein
fold changes also revealed, for some differentially expressed proteins, a distinctive response of OA
synoviocytes to BC and CS. These proteins, clearly clustered in the heatmap shown in Figure 4, include
ECM proteins such as Collagen type VI chains (CO6A1 and CO6A3) and Biglycan (PGS1/BGN), cell
adhesion proteins such as the Transforming growth factor-beta-induced protein ig-h3 (BGH3/TGFBI) and
the adhesive glycoprotein Thrombospondin-1 (TSP1/THBS1) that mediates cell-to-cell and cell-to-matrix
interactions and the serine protease inhibitor Glia-derived nexin (SERPINE2/GDN). These protein
changes were observed to be dependent on the different types of chondroitins. In particular, they
were all up-regulated following CS treatment and, by contrast, down-regulated upon BC addition,
suggesting the occurrence of both common and distinct regulation responses to chondroitin treatments.
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These findings were further supported by the enrichment network analysis performed on
differentially expressed proteins following CS (Figure 5a) and BC (Figure 5b) stimulations. Indeed, a
distinct response to treatments is observed by mapping identified proteins, along with their fold change
levels, in association with corresponding significant GO molecular functions terms. The enrichment
analysis also revealed that the most represented terms within the network were those of proteins
involved in collagen and glycosaminoglycan binding, calcium ion binding, and growth factor binding,
confirming that treatments affected similar biological processes by modulating both common and
peculiar signaling events.

An enrichment analysis was also performed to identify significant GO biological processes
associated to differentially expressed proteins in both CS- and BC-treated secretomes (Figure 6a). The
enrichment analysis revealed that several differentially expressed proteins were involved in cell-cell
adhesion (FDR: 1.56 × 10−7), regulation of endopeptidase activity (FDR: 5.78 × 10−5) and response to
stress/glycolysis (FDR: 7.43 × 10-6). In addition, several proteins are implicated in extracellular matrix
organization (FDR: 6.27 × 10−10), including Fibrillin-1 the up-regulated protein identified with the
highest number of peptides within this cluster (Figure 6a). In line with MS data, Western blot analysis
of FBN1 performed on BC- and CS-treated OA synoviocytes lysates showed a similar increase in
protein expression following both BC and CS treatments (Figure 6b). The list of differentially expressed
proteins in both CS- and BC-treated secretomes was then subjected to STRING (v. 11.0) analysis to
reveal enriched reactome pathways related to treatments. This analysis further confirmed that ECM
organization and degradation were the top enriched pathway terms within the String functional
interaction network (Supplementary Figure S1).

2.4. Comparative Analysis of Differentially Regulated Proteins in OA Synoviocytes and Chondrocytes
Secretomes in Response to Different Chodroitin Treatments

To investigate differences between OA chondrocytes (hOAC) and OA synoviocytes (hOAS)
responses to chondroitin sulphate treatments, we compared our results with those previously reported
in secretome studies using quantitative MS approaches [21,24]. In these studies, the effects on
secretomes were evaluated on human OA chondrocyte following treatments with bovine and porcine
chondroitins. Overlap of differentially expressed proteins were combined and visualized using an
UpsetR plot (Supplementary Figure S2a) and a chord diagram graph (Supplementary Figure S2b).
As expected, each treatment mostly affects unique responses in hOAC or hOAS (Supplementary
Figures S2 and S3a). Nevertheless, 17 proteins were found to be commonly differentially expressed in
hOAC and hOAS under specific chondroitin treatments (Supplementary Figures S2 and S3b). Of these,
the three proteins encoded by SERPINE2, THBS1, and TGFBI genes were identified in all datasets,
strongly suggesting for some differentially expressed proteins a modulation by chondroitin treatments
independent of the specific cell type.

2.5. Targeted Cytokines Profiling by Multiplex Immunoassay

Based on the pivotal role of inflammation in OA development and/or progression, there is a
growing interest in determining biological mediators responsible of catabolic and anabolic effects
occurring in response to the inflammatory process. Despite the fact that roles played by the plethora
of these mediators have not been fully clarified yet, a crucial connection with several cytokines is
widely recognized.
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Figure 6. (a) Cytoscape network of enriched “biological processes” GO categories for proteins differentially expressed in both CS- and BC-treated with respect to pCTR
synoviocytes secretomes identified by high-resolution LC-MS/MS. Up- and down-regulated proteins are reported as red and green nodes, respectively. Node size and
edge thickness are related to number of peptides identified by MS and interaction confidence scores, respectively. Network clustering was performed according to the
top enriched terms from the Cytoscape stringApp functional enrichment analysis (FDR-corrected p-value < 0.05) after redundancy filtering; (b) Validation of FBN1
up-regulation by Western blot analysis in CS- and BC-treated OA synoviocytes. β-Actin was used as the loading control. Relative changes of treated samples versus
pCTR are given as mean + SD of three independent analyses, * p < 0.05.
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High-throughput -omics strategies provide an integrated view of biological regulatory networks
and pathways. However, the high dynamic range of biological systems makes the study of complex
matrices especially challenging for the detection of low-abundance proteins. In order to integrate our
secretome survey by the MS approach, we performed a multiplex immunoassay for the simultaneous
measurement of 27 low-abundance analytes (e.g., cytokines, chemokines, growth factors) within the
OA synoviocytes secretome following BC and CS treatments. A small subset of analytes was found to
be significantly modulated in treated compared to untreated synoviocytes (Figure 7).
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Figure 7. Expression levels of significantly differentially modulated cytokines in CS-/BC-treated with
respect to pCTR synoviocytes secretomes. Measured concentrations are referred to CM collected from
10 × 104 cells for all conditions. CM were simultaneously screened for determining the cytokines
concentration by interpolation on standard curves. All measurements were performed in triplicate.
Data are reported as means ± SD. (* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001).

In particular, we found that the BC treatment decreased the levels of nine biological mediators
out of the 27 assayed, namely IL-6, IL-8, IL-9, IL-12, FGF-bb, GM-CSF, IP-10, MCAF, and VEGF. The
most significant differences were observed for IL-6, IL-8, FGF-bb, VEGF and MCAF (p ≤ 0.0001). For
IL-6, IL-8, FGF-bb, and MCAF, significant lower levels were also observed upon CS treatment. This
last treatment also induced a decrease of GM-CSF, while did not affect the expression levels of IL-9,
IL-12, IP-10 and VEGF. In addition, no significant differences were detected for both treatments in the
expression levels of (IL)-1β, IL-1ra, IL-2, IL-4, IL-5, IL-10, IL-13, IL-15, IL-17A, Eotaxin, G-CSF, IFNγ,
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MIP-1α, MIP-1β, RANTES, TNFα, PDGF-BB (Supplementary Table S2), while no detectable levels
were revealed for IL-7 in the analyzed samples.

3. Discussion

In recent years, global proteomic studies based on mass spectrometry approaches have been
widely applied to investigate the pathophysiology of articular cartilage (extensively reviewed
in [26]). To date, most studies have been focused on proteins directly identified in the secretome
of chondrocyte cultures [20,22,24,27–35]. In addition, proteomic analyses were also performed on
cartilage tissues and cartilage explants [26]. Nevertheless, most of proteome and secretome research
targets chondrocytes, also to study the effects of different chondroitin treatments (e.g., bovine CS,
porcine CS) and formulations in OA models [21–24,36]. Secretome studies by high-resolution mass
spectrometry on primary human synoviocytes, the main cellular components of the synovium, are
lacking. Indeed, to date, a phosphoproteomic analysis of synoviocytes has only been reported by
Tang and co-workers [37]. In addition, extensive proteomic characterizations have been performed so
far on OA synovial fluids [38–44]. Several studies also focused on the characterization of proteomic
changes occurring in synovial fluids at different OA stages (i.e., traumatic arthritis, early-stage and
late-stage) [41,43,45,46]. This is probably due to difficulties in setting up pathological synoviocytes
primary cultures. Synoviocytes, within the joint, produce glycoproteins that are secreted in the synovial
fluid, essential for joint lubrication. Upon the onset of inflammatory diseases, including OA, a high
prevalence of synovial inflammation occurs, leading to significant changes, such as the synovial
lining layer and production of inflammatory cytokines [41,47]. It is increasingly recognized that the
acquisition of these abnormal molecular and morphological features may contribute to OA onset and
structural progression [41,47].

In the current study, a label-free quantitative high-resolution mass spectrometry-based proteomic
approach has been complemented with a multiplex protein array approach to investigate the
extracellular responses of OA synoviocytes to treatments with a marine CS or with unsulfated
biotechnological chondroitin, for which literature data are still missing. This strategy allowed the
identification of candidate proteins that potentially correlate with treatment outcome, several of which
have been previously correlated to healthy and OA chondrocyte secretome [26]. These proteins
can be mainly classified as ECM proteins, enzymes and enzymatic inhibitors, cytokines and growth
factors. As expected, we found that many of the differentially expressed proteins upon both CS
and BC treatments comprises proteins released through various mechanisms including classical and
non-classical secretory pathways as well as exosome-mediated secretion and membrane shedding.
These findings support the hypothesis that these proteins released from synoviocytes in response to
chondroitin stimulation may play a role in communication with neighboring cells by acting in an
autocrine or paracrine manner. One of the major focus of our study was to investigate similarities and
differences between CS and BC chondroitin treatments. An overall agreement in the trend of responses
was observed for several up- and down-regulated proteins involved in ECM structure organization,
cell adhesion and cartilage biological processes.

It is challenging to compare our data with previously published data sets, mainly performed
on chondrocytes secretomes, because of the differences in cell types (e.g., chondrocytes, cartilage
tissues, synovial fluids) and in quantitative mass spectrometry approaches [26]. In addition, previous
literature also highlights a huge variability of the effects on chondrocytes upon different treatments
(e.g., different types of chondroitin sulfate compounds), formulations (CS alone or combined with
glucosamine sulfate/hydrochloride) and stimulations (e.g., IL-1 β) [26]. However, consistent with
our findings are previous studies reporting the modulation of several secreted proteins, mainly ECM
proteins and growth factors, following chondrocyte treatment with CS isolated from different animal
sources, both alone or combined with other agents [21–24].

A comparison with an updated catalogue of proteins identified by quantitative
mass-spectrometry-based studies [26] revealed a significant overlap of our subset of differentially
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expressed proteins with previously identified proteins secreted by human chondrocytes and cartilage
(Supplementary Figure S4). Interestingly, we found that some proteins (i.e., SERPINE2, THBS1,
and TGFBI) were differentially regulated in both OA synoviocytes and chondrocytes secretomes in
response to different chondroitin treatments (i.e., bovin, porcine, marine and BC) suggesting, for some
differentially expressed proteins, a modulation by chondroitin treatments independent from the specific
cell type. In addition, several proteins reported earlier in OA synovial fluid were also identified in our
study supporting the advantages of complementing synovial fluids characterization with secretome
profiles of synoviocytes [40]. Several differentially expressed proteins show a similar regulation
response following CS and BC treatments with respect to pCTR. Among proteins up-regulated in both
conditions, we identified some extracellular matrix proteins that have been previously implicated
in osteoarthritis pathogenesis. Among these, elevated expression levels Follistatin-related protein 1
(FSTL1) [48] and Periostin (POSTN) [49] were previously correlated to OA progression and severity.
In addition, increased expression levels of Fibrillin-1 (FBN1), the major constituent of tissue elastic
microfibers and previously identified also in human osteoarthritis synovial fluids [40], were identified
by MS secretome analysis and confirmed by Western blot. Similarly, increased expression levels of
the Serine protease HTRA1 have been found in OA cartilage [50,51]. This protease was found to be
up-regulated by up to eight-fold in OA cartilage as compared to normal cartilage [51,52]. Accordingly,
also a sevenfold increase of HTRA1 mRNA levels has been reported by Hu et al. [53]. Although for
this and other ECM proteins an up-regulation is still observed following our treatments, we found
fold change levels much lower than those previously correlated with OA, likely in response to CS
and BC treatments. Notably, in our study, the Metalloproteinase inhibitor 2 (TIMP2) is up-regulated
upon both CS and BC treatments. In fact, metalloproteases (MMPs) are well-known to be involved
in cartilage matrix degradation in OA [50]. By inhibiting the ECM metalloproteinases, TIMPs exert
a cartilage protective role in OA. A protective role on cartilage induced by both treatments can be
also hypothesized based on the down-regulation in CS- and BC-treated synoviocyte secretomes of
other proteins involved in tissue breakdown such as Annexin A2 (ANXA2). Indeed, high levels of
ANXA2 have been measured in several immune-mediated diseases and in synovial tissues of patients
with rheumatoid arthritis and osteoarthritis, causing cartilage destruction by promoting migration
and invasion of fibroblast-like synoviocytes into cartilage [54,55]. In addition, among commonly
down-regulated proteins we identified the Protein S100-A8 (S10A8), previously reported to be secreted
by chondrocytes and to play a role in cartilage degradation in inflammatory arthritis by acting as an
unconventional pro-inflammatory cytokine [56].

Despite similarities among CS and BC treatments, for several up- and down-regulated proteins
in OA, an opposite or different regulation trend was observed, suggesting their involvement in
the response to drugs. Among these proteins, we identified the small proteoglycans Biglycan
(PGS1/BGN) and Decorin (PGS2/DCN). High levels of soluble forms of BGN and DCN were found
in synovial fluid of OA or rheumatoid arthritis patients. In particular, a role of BGN as a mediator
of OA cartilage degradation through TLR4 signalling has been hypothesized, thus indicating the
involvement of this protein in the loss of cartilage [57]. In our study, BNG was up-regulated upon
CS treatment (fold change = 1.9) while a decrease was observed in BC-treated synoviocytes (fold
change = 0.4). A similar response was observed for the large heparan sulfate proteoglycan Perlecan
(Basement membrane-specific heparan sulfate proteoglycan core protein, PGBM), that was found
strongly up-regulated in CS-treated synoviocytes CM (fold change = 5.6) and slightly down-regulated
in BC-treated sample (fold change = 0.6). Synovial Perlecan has been shown to play a key role in
osteophyte formation in OA. Up-regulated levels of Perlecan in response to TGF-β have been also
detected in the synovium from OA patients [58]. Interestingly, Kaneko and co-workers demonstrated
that synovial Perlecan deficiency inhibited osteophyte formation suggesting that dysregulation of
proteoglycan metabolism plays an important role in the pathology of OA [59]. Two additional proteins
(i.e., transforming growth factor-beta-induced protein ig-h3 and thrombospondin-1), previously
reported to be highly secreted by OA chondrocytes, were identified among proteins showing a different
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response to our chondroitin treatments, thus suggesting the occurrence of both similar and different
effects on molecular mechanisms activated by drugs.

This observation is further supported by our targeted cytokines profiling performed by multiplexed
immunoassay demonstrating that both treatments significantly decreased the levels of pro-inflammatory
cytokines (IL-6), chemokines (IL-8 and MCAF), and growth factors (FGF-basic and GM-CSF).
Furthermore, BC treatment alone selectively modulated other secreted mediators (i.e., VEGF, IL-9,
IL-12, and IP-10). Most of these factors have a well-known implication in OA pathophysiology. Indeed,
IL-6 and IL-12 are closely related to the OA inflammatory process and their increase is also associated
to the progressive loss of joint function [60,61]. Similarly, IL-9 enhances the production of several
pathogenic mediators amplifying the OA-related inflammatory response [62] and MCAF is also known
to be related to the pro-inflammatory cascade [63]. Moreover, recent studies have reported a correlation
between VEGF production and OA severity [61]. GM-CSF is responsible of inflammation progress
and it has been recently correlated to OA pain [64]. Since synoviocytes are fibroblast-like cells and
their massive growth is correlated to invasiveness of the synovial tissue, the observed decrease of
fibroblast growth factor (FGF-bb), a widely known pro-proliferative factor for fibroblasts, could be
considered a positive outcome of both treatments [65]. Many pharmacoproteomic studies on the
effects of treatments with chondroitin sulfate from diverse animal sources focus on chondrocytes as
model system. Our findings improve the current knowledge of the biochemical effects driven by novel
extractive sulfated and biotechnological unsulfated chondroitin-based drugs on primary synoviocytes
and further demonstrate the usefulness of analyzing secretomes of human osteoarthritic synoviocytes
to investigate the molecular effects of SYSADOA therapies. Future perspectives of this study will
include the evaluation of the effects of chondroitins under different treatment conditions as well as at
intracellular level to gain insight into molecular pathways involved in different responses to treatments.

In vitro investigations, even with limited direct clinical impacts, are necessary and preliminary to
plan in vivo studies on a large cohort of patients for validating the relevance of identified molecules
in pathways associated to osteoarthritis pathogenesis. Only these latter studies will then be able to
provide clear and direct information on the effects of chondroitin treatments in OA pathogenesis.

4. Materials and Methods

4.1. Preparation of CS and BC Based Gels

Chondroitin sulfate (95 ± 5% purity) extracted from shark cartilage was provided by IBSA
(condrosulf®400 lot.: 151001) with a very low endotoxin content (0.1 EU/mg). Biotechnological
chondroitin (95 ± 5% purity) was produced in our laboratories and purified to pharma grade
as previously reported [66,67] and its endotoxin content was evaluated through Limulus test
(EU/mg < 0.05). CS and BC were dissolved in 20 mL Phosphate-Buffered Saline (PBS, pH 7.2, Lonza,
Milan, Italy) at a concentration of 16 mg/mL. pH and osmolality were measured in order to perform
experiments under physiological conditions (i.e., pH 7.0 ± 0.1 and osmolality 300 mOsm). The solutions
were sterilized by autoclave (1 bar, 121 ◦C, 20 min). Finally, glycosaminoglycan-based formulations
were diluted in the culture medium (with or without fetal bovine serum Gibco FBS, Fisher Scientific
Italia, Milan, Italy) at a 3.2 mg/mL final concentration.

4.2. In Vitro Cell Cultures and Glycosaminoglycan Treatments

Synoviocytes cells were isolated as previously reported [16,68] from three women OA patients
(58, 60, and 63 years old) undergoing the surgical procedure of knee joint replacement at Orthopedics
and Traumatology Department of University Federico II of Naples. The patients gave informed consent
and the procedures were approved by Internal Ethical Committee. Specifically, synoviocytes were
obtained by isolating primary cells from the synovial fluids obtained during surgical procedures. Cell
phenotype was assessed by FACS characterization of specific biomarkers as previously described [16,68],
revealing that the population of cells isolated (at first passage of culture) was mainly composed of type



Int. J. Mol. Sci. 2020, 21, 3746 15 of 22

B synoviocytes. For the synoviocytes treatments, we followed a slightly modified cellular starvation
protocol described by Calamia and collaborators [15]. In particular, 10 × 104 cells/cm2 into a 75 cm2

flask were seeded and grown to 80% confluence. Then, following the extensive washing of cells
with PBS, medium containing 0.5% FBS was added. After 24 h, cells were further washed five times
(10 mL each) with PBS and cultured in serum-free medium with or without CS (3.2 mg/mL) and BC
(3.2 mg/mL) for 48 h. CS and BC concentrations used in this study were optimized in accordance with
previous investigation [69]. At the end of incubation, media were centrifuged (1500 rpm, 7 min) and
supernatants stored at −80 ◦C.

4.3. Targeted Quantitative Analysis of Secreted Cytokines by Bio-Plex Assay

The targeted quantitative analysis of secreted cytokines and chemokines in culture media (CM)
was performed by using the Bio-Plex multiplex system (Bio-Rad, Milan, Italy) based on xMAP
technology [70,71]. Media collection was performed following a 48-h treatment with CS and BC as
described in Section 4.2. The 48-h treatment time was selected according to previously optimized
protocols [16,68]. All steps were performed according to manufacturer’s instructions. The concentration
of the following analytes were simultaneously determined within CM of untreated (pCTR) and CS- or
BC-treated synoviocytes: interleukin (IL)-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12
(p70), IL-13, IL-15, IL-17A, IP10, Eotaxin, Granulocyte-colony stimulating factor (G-CSF), Granulocyte
macrophage colony stimulating factor (GM-CSF), Interferon (IFN)γ, Monocyte chemoattractant protein
1 (MCAF/MCP-1), Macrophage inflammatory protein 1-alpha and beta (MIP-1α and MIP-1β), RANTES,
Tumor necrosis factor alpha (TNFα), Platelet-derived growth factor-BB (PDGF-BB), Vascular endothelial
growth factor (VEGF), Basic fibroblast growth factor (FGF-basic). Data were acquired using a Bio-Plex
MAGPIX Multiplex Reader system (Bio-Rad).

Data were expressed as mean ± SD. A two-tailed t-test was used to assess the significance between
the CS- and BC-treated synoviocytes CM samples with respect to pCTR by using the GraphPad Prism
software v 5.0 (La Jolla, CA, USA). Expression data were also imported into the excel software for
further analyses.

4.4. Sample Preparation for High Resolution nanoLC-Tandem Mass Spectrometry Analyses

CM collected from untreated (pCTR) and CS- and BC-treated osteoarthritic human synoviocytes
were concentrated to a final volume of 500 µL with Amicon ultrafiltration units (MWCO 3kDa,
Millipore, Billerca, MA, USA) and subjected to trichloroacetic acid (TCA) precipitation [72]. Protein
pellets were air dried and then resuspended in 50 µL of triethylammonium bicarbonate (TEAB).
Protein concentration was determined by Quantum Micro Protein Assay Kit- BCA Total Protein
Assay Kit for dilute samples (Euroclone S.p.A., Milan, Italy). Equal amounts of proteins (10 µg) were
reduced, alkylated and digested as reported elsewhere [73]. Following tryptic digestions, samples were
centrifuged at 10,000× g for 15 min and supernatants were dried under vacuum in a SpeedVac Vacuum
(Savant Instruments, Holbrook, NY, USA). Samples were then resuspended in 25 µL of H2O/TFA 2%
and centrifuged at 10,000× g for 15 min. Aliquots of the samples (5 µL) were analysed in triplicate
on a Q-Exactive Orbitrap mass spectrometer equipped with an EASY-Spray nano-electrospray ion
source (Thermo Fisher Scientific, Bremen, Germany) and coupled to a Dionex UltiMate 3000RSLC
nano system (Thermo Fisher Scientific) [74,75].

4.5. Database Searching and Label Free Quantitation

The acquired raw files were analysed with the Proteome Discoverer 2.1 software (Thermo Fisher
Scientific). For label-free quantification by spectral counts, each raw file was run separately in batch
mode using a standard Sequest HT-Target Decoy PSM validator workflow. Briefly, the HCD MS/MS
spectra were searched against the Homo sapiens Uniprot_sprot database (release 2019_11, 20,380
entries). The parameter settings were as follows: mass tolerance of 10 ppm for precursors and 0.02 Da
for ion fragments; two missed cleavages allowed; trypsin as enzyme specificity. Carbamidomethylation
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of cysteine (+57.021 Da) was set as static modification while oxidation of methionine (+15.995 Da),
N-terminal acetylation (+42.011 Da) and phosphorylation of serine, threonine and tyrosine (+79.966
Da) were considered as dynamic modifications. A minimum number of six amino acids were required
for peptide identification. Processing results are then used for protein identification by using a single
Consensus workflow with the “Merge Mode” parameter in the MSF files node set to “Do Not Merge”.
With this setting, the number of unique peptides and PSMs are obtained for each condition. False
discovery rates (FDRs) for peptide spectral matches (PSMs) were calculated and filtered using the Target
Decoy PSM Validator node in Proteome Discoverer on the basis of dynamic score-based thresholds.
Target Decoy PSM Validator settings were: Maximum Delta Cn 0.05, a strict target FDR of 0.01, a
relaxed target FDR of 0.05 and validation based on q-value. Proteins with a q-value of <0.01 were
classified as high confidence identifications and proteins with a q-value of 0.01–0.05 were classified as
medium confidence identifications. PSM values obtained for each protein are then exported to Excel
for manual calculation of spectral counts-based ratios. Only proteins identified with high/medium
confidence in two out of three replicates and with more than one peptide in at least one out of three
conditions were retained. Proteins with fold change ratios ≥1.5 and ≤0.66 in CS-treated and BC-treated
synoviocytes with respect to untreated control cells were considered as differentially expressed.

4.6. Bioinformatic Analyses

Functional enrichment based on cellular component gene ontology (GO) category was performed
by the FunRich open access software (http://funrich.org/index.html). The “molecular function”
enrichment network of differentially expressed proteins was constructed by using the Network Analyst
platform (https://www.networkanalyst.ca) [71]. The “biological process” enrichment network of
differentially expressed proteins was constructed using the STRING database implemented in the
StringApp plug-in for Cytoscape software 3.7.2 [76]. Briefly, StringApp builds a network of the input
proteins and compares its connectivity (number of interactions) to the connectivity of other networks
of similar size generated with random sets of proteins. To test whether GO terms were enriched
in the input protein list, enrichment analyses were conducted with the StringApp using the human
GO dataset as a reference and a cutoff value of FDR < 0.05. The enrichment analysis of pathways
for differentially expressed proteins in both CS- and BC-treated secretomes was performed by using
the STRING (v. 11.0) resource available online at https://string-db.org/ against the Reactome curated
pathways database.

Analyses of secretion pathways for differentially expressed proteins were performed according to
SecretomeP 2.0 Server (http://www.cbs.dtu.dk/services/SecretomeP/). If the neural network exceeded or
was equal to a value of 0.5 (NN-score≥ 0.50) and no signal peptide is predicted, proteins were considered
to be potentially secreted via non-classical pathways. Those proteins with a predicted N-terminal signal
sequence were confirmed using SignalP 5.0, available at http://www.cbs.dtu.dk/services/SignalP/and
were considered to be secreted via a classical pathway (endoplasmic reticulum/Golgi-dependent
pathway). Finally, TMHMM 2.0 server (http://www.cbs.dtu.dk/services/TMHMM/) was used to predict
the existence of α-helical transmembrane domains. Plots of selected over-represented biological
processes GO terms for differentially expressed proteins in response to CS and BC treatments were
generated from a homemade R script and the ggplot2 R package of the RStudio v 1.2.1335 environment
for R (http://www.R-project.org). The list of representative enriched GO terms was obtained using
Panther [77] and REVIGO [78] tools. The Enhanced Heat Map (heatmap.2) function from the gplots R
package was used to generate the heat maps of differentially expressed proteins. The UpSetR plot
for comparative analysis of differentially regulated proteins in OA synoviocytes and chondrocytes
secretomes in response to different chondroitin treatments was generated by using the UpSetR Shiny
App available on-line at https://gehlenborglab.shinyapps.io/upsetr/ [79]. Datasets of differentially
expressed proteins from [21,24] were combined to visualize set intersections in a matrix layout. The
chord diagram associated to the UpSetR plot was constructed by using the Network Analyst platform
(https://www.networkanalyst.ca) [71].

http://funrich.org/index.html
https://www.networkanalyst.ca
https://string-db.org/
http://www.cbs.dtu.dk/services/SecretomeP/
http://www.cbs.dtu.dk/services/SignalP/and
http://www.cbs.dtu.dk/services/TMHMM/
http://www.R-project.org
https://gehlenborglab.shinyapps.io/upsetr/
https://www.networkanalyst.ca
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4.7. Western Blot Analysis

In order to evaluate the expression levels of Fibrillin-1, a Western blotting analysis was performed
on untreated and BC- or CS-treated cell extracts harvested with trypsin/EDTA 0.2 mg/mL and lysed
by a Radio-Immunoprecipitation Assay (RIPA buffer 1×; Cell Signaling Technology). The protein
concentration for each sample was assayed through Bradford method. We used 8% (stacking gel)
and 12% (separating gel) SDS-PAGE to electrophoretically separate intracellular proteins (10 µg/lane)
before transfer onto nitrocellulose membrane (GE, Amersham, UK). After the transfer, the membrane
was blocked by 5% non-fat milk in Tris-buffered saline and 0.05% Tween-20 (TTBS) for 15 min. Then,
primary antibody against Fibrillin-1 (Fibrillin-1 Monoclonal Antibody 11C1.3; Thermo Fisher Scientific)
was diluted 1:100 and incubated overnight at 4 ◦C. Afterwards, the membrane was washed using TTBS
and an anti-mouse horseradish peroxidase-conjugated secondary antibody (Santa Cruz Biotechnology,
Dallas, TX, USA), diluted 1:5000 was incubated for 2 h at room temperature. Anti-β-Actin antibody
used at 1:1000 dilution was used as the loading control. Finally, chemoluminescent signals were
acquired by ECL system (Millipore) and the semi-quantitative analyses of protein expression was
carried out by ImageJ program. Relative changes of treated samples versus pCTR are given as mean +

SD of three independent analyses.

5. Conclusions

It is well accepted that OA is a chronic and multifactorial disease affecting human joints. Secretome
investigations using proteomic approaches proved to be promising to unravel molecular mechanisms
underlying the disease and pharmacological effects of SYSADOA. In this study, the integration of a
targeted multiplexed protein array analysis and of an untargeted mass spectrometry-based approach
enables an unbiased profiling of the protein expression changes in response to unsulfated and marine
sulfated chondroitins. Despite the absence of sulphate groups in the biotechnological chondroitin, often
reported of key importance in molecular recognition and bioactivity, we found similar protein changes
at extracellular level driven by CS and BC. In addition, results of this study improve knowledge on
CS effects by gaining insights on molecular determinants affected by a more sulphated and larger
biopolymer (Mw of marine CS > Mw of terrestrial CS). Our study also paves the way for future research
aimed to unravel potential efficacy of unsulfated microbially derived chondroitin in counteracting
OA-related pathological processes.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/11/3746/
s1. Figure S1. (a) STRING network of enriched “Reactome pathways” terms (b) for differentially expressed proteins
in CS- and BC-treated with respect to pCTR synoviocytes secretomes identified by high-resolution LC-MS/MS.
Node colors are related to enriched Reactome pathway terms. Nodes not included in the top enriched pathways
are reported in grey. Edges represent protein-protein associations according to string color code. Figure S2. (a)
UpsetR chart showing the overlap of differentially expressed proteins identified by high-resolution LC-MS/M
following treatment of human OA synoviocytes (hOAS) with marine (mCS, green bar) and biotechnological (BC,
light blue bar) chondroitins with differentially expressed proteins following treatment of human OA chondrocytes
(hOAC) with bovine (bCS, yellow bar) and porcine (pCS, orange bar) chondroitins [21,24]. Details of proteins
within each subset are reported in Figure S3 (a-b). Numbers of proteins shared between different data sets are
indicated in the top bar chart and the specific treatments are indicated with solid dots below the bar chart. Total
identifications for each dataset are indicated on the left as set size bars. (b) Chord diagram showing an overview
of the overlap of differentially expressed proteins within different treatments. Segments of the arcs represent
different treatments while the chords connecting them represent proteins. Figure S3. (a) Uniquely differentially
expressed proteins in hOAC or hOAS following specific chondroitin treatments. (b) Commonly differentially
expressed proteins in hOAC and hOAS under specific chondroitin treatments. Figure S4. Venn diagram showing
the overlapping between dataset of differentially modulated proteins in CS-/BC-treated synoviocytes secretomes
with the updated catalogue of proteins identified on human chondrocytes and cartilage secretomes by quantitative
mass-spectrometry-based studies reviewed by Sanchez et. al. [26]. A comparison of fold changes ratios in
CS-/BC-treated with respect to pCTR synoviocytes with the OA vs. normal response as reviewed in [26] is also
shown for different classes of overlapping proteins. Table S1: List of proteins identified by high-resolution MS/MS
of BC-/CS-treated and pCTR human OA synoviocytes secretomes. Table S2: Mean and standard deviation of
the 26 detectable cytokines and chemokines quantified by the Bio-Plex multiplex array system in pCTR, BC- and
CS-treated OA synoviocytes secretomes.
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