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Abstract

Recurrent hypoglycemia can occur as a major complication of insulin replacement therapy,

limiting the long-term health benefits of intense glycemic control in type 1 and advanced

type 2 diabetic patients. It impairs the normal counter-regulatory hormonal and behavioral

responses to glucose deprivation, a phenomenon known as hypoglycemia associated auto-

nomic failure (HAAF). The molecular mechanisms leading to defective counter-regulation

are not completely understood. We hypothesized that both neuronal (excessive cholinergic

signaling between the splanchnic nerve fibers and the adrenal medulla) and humoral factors

contribute to the impaired epinephrine production and release in HAAF. To gain further

insight into the molecular mechanism(s) mediating the blunted epinephrine responses fol-

lowing recurrent hypoglycemia, we utilized a global gene expression profiling approach. We

characterized the transcriptomes during recurrent (defective counter-regulation model) and

acute hypoglycemia (normal counter-regulation group) in the adrenal medulla of normal

Sprague-Dawley rats. Based on comparison analysis of differentially expressed genes, a

set of unique genes that are activated only at specific time points after recurrent hypoglyce-

mia were revealed. A complementary bioinformatics analysis of the functional category,

pathway, and integrated network indicated activation of the unfolded protein response. Fur-

thermore, at least three additional pathways/interaction networks altered in the adrenal

medulla following recurrent hypoglycemia were identified, which may contribute to the

impaired epinephrine secretion in HAAF: greatly increased neuropeptide signaling (proen-

kephalin, neuropeptide Y, galanin); altered ion homeostasis (Na+, K+, Ca2+) and downregu-

lation of genes involved in Ca2+-dependent exocytosis of secretory vesicles. Given the

pleiotropic effects of the unfolded protein response in different organs, involved in maintain-

ing glucose homeostasis, these findings uncover broader general mechanisms that arise

PLOS ONE | DOI:10.1371/journal.pone.0172789 February 24, 2017 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Kim JL, La Gamma EF, Estabrook T,

Kudrick N, Nankova BB (2017) Whole genome

expression profiling associates activation of

unfolded protein response with impaired

production and release of epinephrine after

recurrent hypoglycemia. PLoS ONE 12(2):

e0172789. doi:10.1371/journal.pone.0172789

Editor: Salvatore V Pizzo, Duke University School

of Medicine, UNITED STATES

Received: August 16, 2016

Accepted: February 9, 2017

Published: February 24, 2017

Copyright: © 2017 Kim et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All raw and quantile-

normalized microarray data and an associated

project metadata file are available from the NCBI-

GEO repository (accession number GSE82145).

Funding: This work was supported by Empire

Clinical Research Investigator Program (ECRIP) of

New York State (to EFL), Children’s and Women’s

Physicians of Westchester, LLP (CWPW) grant

program. The funders had no role in study design,

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172789&domain=pdf&date_stamp=2017-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172789&domain=pdf&date_stamp=2017-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172789&domain=pdf&date_stamp=2017-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172789&domain=pdf&date_stamp=2017-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172789&domain=pdf&date_stamp=2017-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172789&domain=pdf&date_stamp=2017-02-24
http://creativecommons.org/licenses/by/4.0/


following recurrent hypoglycemia which may afford clinicians an opportunity to modulate the

magnitude of HAAF syndrome.

Introduction

Profound or recurrent hypoglycemia (RH) leads to increased morbidity and mortality with

acute and chronic symptomatology and is a major public health problem in diabetic patients

([1], [2], [3]). Normally, counter-regulatory hormones (i.e. glucagon, epinephrine, cortisol,

and growth hormone) oppose the actions of excessive insulin to reverse falling or dangerously

low plasma glucose levels. Recurrent insulin-induced hypoglycemia blunts the counter-regula-

tory response (CRR) and the patient becomes unaware of the danger, a condition known as

Hypoglycemia Associated Autonomic Failure or HAAF ([4], [5]). Interestingly, HAAF can be

induced in healthy subjects, is observed in newborn infants with congenital hyperinsulinism,

and can be demonstrated in animal models indicating that it represents a maladaptive physio-

logic response rather than a disease consequence of diabetes ([6], [7], [8], [9], [10], [11]).

The central nervous system mechanisms that contribute to HAAF have been extensively

studied in humans and in animal models. Increasing evidence indicates their dominant role in

the detection of hypoglycemia and initiation of CRR ([12], [13], [14], [15], [5], [16], [17], [18],

[19], [20]). However, peripheral components of the sympathoadrenal system are also directly

affected by RH ([21,22,23,24,25]). The molecular fundamentals underlying the defective

counter-regulation remain elusive ([13]).

We have recently shown that the initial rise in tyrosine hydroxylase (TH; the rate limiting

enzyme in the catecholamine biosynthesis) gene transcription, phosphorylation of the TH

enzyme and induction of protein kinase A (PKA) activity in the adrenal medulla (AM) of nor-

mal Sprague-Dawley (SD) rats are similar whether measured during an acute single episode of

hypoglycemia or during RH (an animal model of HAAF, [10]). This is consistent with nor-

mally functioning signaling between the CNS and the peripheral components of the sym-

pathoadrenal system ([25]). However, the adrenal medulla’s cellular capacity to synthesize

catecholamines was impaired in animals experiencing RH. This was evident by lower levels of

adrenal TH mRNA attributed to enhanced degradation ([26], [27]) as well as accelerated inac-

tivation of TH enzyme and lack of accumulation of TH protein at later time points following

RH; all of which alone or collectively could affect the accumulation of epinephrine for release

and indeed, correlated with attenuated epinephrine blood levels ([11], [25]). Given that the

release and production of catecholamines in response to trans-synaptic stimulation is sus-

tained for prolonged periods of time in situ ([28,29], [24]), but not during HAAF in vivo, addi-

tional regulatory factors or processes must exist in the intact animal to account for this ([30],

[27], [26], [31]). To ascertain the widest possibilities of gene networks that may be involved in

these mechanisms, we performed a whole genome expression analysis of adrenal medullary

responses.

Materials and methods

Animals

Adult, male Sprague—Dawley rats weighing 285-320g with jugular vein (JV) and carotid artery

(CA) catheter implants were purchased from Harlan Laboratories, Inc. Indianapolis, IN. Ani-

mals were individually housed in temperature (22˚C) and humidity-controlled rooms and

allowed access to food (regular rat chow, Agway Prolab 3,000; Syracuse, NY) and water ad
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libitum unless otherwise specified. The animals were acclimated to the animal facility and to

handling for 3–4 days before experiments. Animal care and experimentation conformed to the

Public Health Service Guide for Care and Use of Laboratory Animals and American Veteri-

nary Medical Association Panel on Euthanasia Guidelines, and were approved by the Institu-

tional Animal Care and Use Committee at New York Medical College.

Antecedent treatments. The animals were randomly assigned to one of two experimental

groups: sham-treated (recurrent saline injections twice daily at 9 am and 1 pm, 2RS) and insu-

lin-treated (subjected to recurrent insulin-induced hypoglycemia twice daily, 2RH, see Fig 1).

All treatments were for three consecutive days followed by a hyperinsulinemic-hypoglycemic

glucose clamp on day 4. Antecedent hypoglycemic episodes were induced by intraperitoneal

(i.p.) injection of regular human insulin (Humulin R, Eli Lilly, Indianapolis, IN) at a dose of 2

IU/kg body weight ([10], [11], [25]). Food was removed in all groups for 3 h after each insulin

or saline injection. Blood glucose was monitored from tail nick samples using a handheld gluc-

ometer (AlphaTrak, Abbott Laboratories, Chicago, IL) every 30 minutes throughout each epi-

sode of hypoglycemia in 2RH group in order to achieve nadir glucose levels between 40 and 50

mg/dL (2.22–2.77 mmol/L).

Animals from the 2RS group were also subjected to the same treatments, except for the

saline injections instead of insulin to avoid differences in any additional stress exposure (Fig

2). Hypoglycemia was terminated by providing the animals with solid food. Only one injection

was given in the morning on the third day and the animals were fasted overnight before the

glucose clamp studies began on the fourth day. The weight of each animal was monitored on a

daily basis to ensure wellbeing and achievement of comparable nutrition.

Hyperinsulinemic-hypoglycemic clamp. On the day of the experiment, the vascular cath-

eters were connected to extension sets to minimize the stress from blood sampling via CA and

dextrose/insulin infusion via JV ([25]). Animals were rested at least 2 hours before baseline

sampling in order to let them recover from handling stress. A constant infusion of regular

human insulin (50 mIU/kg/min; Eli Lilly) and a variable 20% dextrose infusion were started at

0’ and plasma glucose levels were monitored every 5 min (GM9 Analyzer, Analox Instruments

Ltd, London, UK) to guide dextrose infusion. Plasma glucose levels were lowered to 45 mg/dL

Fig 1. Experimental design. The schematic represents the basic protocol and the time line of the experiments. Before the

antecedent treatments, a period of habituation was planned to minimize any external influences from travel and new housing. Body

weight was monitored on a daily basis for each animal during the experiments.

doi:10.1371/journal.pone.0172789.g001
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(2.5mmol/L) and maintained at this target until the end of the clamp study (Fig 3, [25], [11]).

Blood samples were collected at 30 min intervals throughout the study, plasma was separated

immediately and stored for subsequent hormonal analyses. Following each sample collection,

the erythrocytes were resuspended in an equivalent volume of artificial plasma and infused

back into the animal through the carotid artery to prevent volume depletion and anemia ([32],

[11]). The animals (n = 6 per time point per group) were sacrificed either before (at 0 time

point—baseline) or during (30’ and 60’ after achieving the target glucose levels) the clamp pro-

cedure with an overdose of sodium pentobarbital, followed by decapitation (Fig 1). The adre-

nal medullae were dissected and immediately frozen on dry ice. The tissues were stored at

-80˚C until further analyses.

Hormone analyses

Plasma hormone concentrations (glucagon and insulin) were determined using commercially

available radioimmunoassay kits from Linco Research, St. Charles, MO and Diagnostic Prod-

ucts, Los Angeles, CA ([33]). For measurement of catecholamine concentration, serum sam-

ples were analyzed using a competitive enzyme immunoassay (Rocky Mountain Diagnostics,

Colorado Springs, CO) as described ([34], [11], [25]).

Western blot analyses

Total protein extracts were prepared from each right adrenal medulla sample as described

([35]). Protein lysates were separated on 10% SDS- PAGE, electroblotted onto a nitrocellulose

membrane (BioRad; Hercules, CA) and incubated with validated primary antibodies overnight

(anti-Grp78 rabbit polyclonal antibody, dilution 1:1000 from GeneTex, cat. # GTX113340,

Irvine CA; rabbit polyclonal anti-Derlin1- dilution 1:5000, ThermoFisher Scientific cat. #

PA1-16598, Rockford, IL; rabbit polyclonal anti-TH—dilution 1:4000, from Novus Biologicals

Fig 2. Blood glucose levels during the antecedent treatments on days 1–3. The values (mg/dL) are expressed as mean ± SE,

n = 6.

doi:10.1371/journal.pone.0172789.g002
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cat. # NB300-109, Littleton, CO). After incubation with secondary antibody (Goat Anti-Rabbit

IgG, from Pierce, Rockford IL; diluted 1:30000) the immune reaction was visualized by

enhanced chemiluminescent substrate from Pierce, utilizing a horseradish peroxidase label

and Kodak XAR- 5 film, as described by the manufacturer. Blots were re-probed with primary

antibody for housekeeping protein GAPDH (a rabbit polyclonal antibody from Sigma,

St. Louis, MO, product number G9545) to confirm equal loading. The blots were exposed to

autoradiography and the X-ray films were scanned and quantified with BioRad Quantity One

software. For quantification, we always used a signal in the linear range. The ratios of immuno-

reactivity were calculated for each sample and the results are presented as fold induction com-

pared to the corresponding control group on the same Western blot ([25]).

Whole genome expression profiling

Total RNA was isolated from each left adrenal medulla sample by using RNA STAT-60 (Tel-

Test, Inc, Friendswood, TX) and further purified as per Affymetrix1 guidelines. Pooled sam-

ples from each experimental group and each time point (n = 6 each) were subjected to micro-

array analyses using Rat Genome 230 2.0 array, Affymetrix (analyses performed at Yale Center

for Genome Analysis, New Haven, CT). Microarray data was imported to Partek1 software

for normalization by GCRMA methods, quantification of gene expression, and statistics.

Genes showing altered expression with fold change >2 or<-2 were exported for functional

annotation, pathway and comparison analysis by MetaCore1 (Thomson Reuter). Genes that

are unique to each experiment group at different time point, and genes that overlap between

any comparing groups were identified. The expression levels of selected genes were confirmed

by real time RT-PCR analyses as described before ([25]). Raw and quantile-normalized

Fig 3. Plasma glucose concentrations during the hyperinsulinemic-hypoglycemic glucose clamp. The values (mg/dL) for

twice-daily saline control (2RS) and twice daily RH groups (2RH) are shown as mean ± SE, n = 6 for each experimental group.

doi:10.1371/journal.pone.0172789.g003
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microarray data and an associated project metadata file are available through the NCBI-GEO

repository, access number GSE82145.

Statistics

One-way analysis of variance (ANOVA) or repeated measures ANOVA, followed by a Neu-

man-Keuls post hoc analysis were used as appropriate. Statistics were performed using Sigma

STAT/Plot software version 12 (Sigma, San Jose, CA). All data were expressed as means ± SE,

P� 0.05.

Results

Plasma glucose and hormone levels

The experimental design of the current study is illustrated on Fig 1. RH was produced by twice

daily i.p. injections of insulin (2IU/kg) for 3 days as we described before ([11], [25]). The target

blood glucose levels during the antecedent insulin treatments were 45–50 mg/dL in the 2RH

experimental group (see time course of blood glucose decline on Fig 2). There were no signifi-

cant differences in blood glucose levels between individual animals (n = 6) in the 2RH group

at any time point tested. Control animals received saline (2RS group). After overnight fast all

animals (from both, 2RH and 2RS groups) were subjected to hyperinsulinemic-hypoglycemic

clamp on day 4. A set of animals from both experimental groups were sacrificed at baseline

(before insulin infusion, 0 time point). Once target plasma glucose levels between 40–45 mg/

dL for each individual animal were achieved (0’ time point), a set of animals from each study

group were sacrificed 30 (time point 30’) and 60 minutes later (time point 60’ on Fig 1) and tis-

sues were dissected for analyses as described in the methods section of the manuscript. There

were no significant differences in the plasma glucose levels between individual animals from

each group and between the groups at each time point studied during the clamp (Fig 3). Also,

plasma insulin concentrations were measured and found not significantly different between

2RH and 2RS groups at baseline and at the end of the clamp (data not shown), ensuring that

the rats were exposed to the same glucose and insulin stimuli and only differed in the anteced-

ent history between the comparison groups. Baseline serum concentrations of epinephrine

and glucagon were also measured prior to the initiation of the clamp on day 4 (Fig 4A and 4B)

and no significant difference was found between both experimental groups. Both epinephrine

and glucagon levels rose significantly as insulin infusion began in both groups. However, the

magnitude of the rise was significantly attenuated in 2RH group as expected, thus confirming

proper implementation of the HAAF model. Corticosterone responses were also evaluated,

which increased significantly from the baseline values during the clamp in both groups and

did not display significant differences between the groups (results not shown).

Differential gene expression profiles triggered by acute hypoglycemia

and RH

To identify potential cellular targets during acute hypoglycemia and RH, we used microarray

technology allowing genome-wide simultaneous measuring of changes in gene expression.

Total RNA was isolated from individual AM samples, pooled from 6 animals for each specific

time point/experimental group and subjected to microarray analysis as described in methods.

Differentially expressed genes (DEGs) were identified and ranked according to significant up-

regulation or down-regulation of two fold or more (�P� 0.05). Fold-change criteria combined

with a minimum P-value cut off derived from an appropriate t-test is considered a straightfor-

ward method for identifying DEGs ([36]).
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At baseline (0 time point—before insulin infusion on day 4, see Fig 1) a total of 167 genes

were significantly altered in the 2RH group (vs. 2RS group): from them, 72 were up-regulated

and 95 were down-regulated (top 10 genes for each category listed on Table 1, for complete list

of DEGs see S1 Table). During the hyperinsulinemic-hypoglycemic clamp, the number of

genes affected by RH increased. 30 min after achieving the target plasma glucose levels total of

Fig 4. Plasma hormonal responses during the hypoglycemic clamp. A) Epinephrine (ng/ml) and B) glucagon (pg/ml) responses

in twice daily recurrently hypoglycemic (2RH) rats and in the corresponding saline group (2RS). Data are summarized from three

independent experiments, n = 6 animals per group. Values are shown as mean ± SE, *p <0.05 or **p<0.002 vs. corresponding

control at given time point.

doi:10.1371/journal.pone.0172789.g004

Table 1. DEGs with highest fold change by RH at baseline (2RH0 vs. 2RS0).

Gene Title Gene Symbol RefSeqTranscript ID Fold change

Neurotensin Nts NM_001102381 "106.364

Proenkephalin Penk NM_017139 "29.329

Galanin/GMAP prepropeptide Gal NM_033237 "15.726

Neuromedin U Nmu NM_022239 "11.486

Lipocalin 2 Lcn2 NM_130741 "9.038

TIMP metallopeptidase inhibitor1 Timp1 NM_053819 "8.067

VGF nerve growth factor inducible Vgf NM_030997 "7.745

Prolactin releasing hormone Prlh NM_022222 "6.515

Pro-neuropeptide Y-like NPY NM_012614 "5.201

Myosin heavy chain B MyhB NM_001100485 "5.089

Neurotrophic tyrosine kinase receptor type 1 Ntrk1 NM_021589 #4.15

Cleavage and polyadenylation specific factor 4 Cpsf4 NM_001012351 #3.528

Bradykinin receptor B2 Bdkrb2 NM_001270713 #3.465

Kelch-like family member 8 Klhl8 NM_001105995 #3.378

Centrosomal protein 95kDa Cep95 NM_001013862 #3.378

Sodium channel, voltage gated type III beta Scn3 NM_139097 #3.359

Diphthamide biosynthesis 1 Dph1 NM_001105809 #3.088

Ubiquitin specific peptidase Usp3 NM_001025424 #3.077

cAMP response element modulator Crem NM_001110860 #3.017

Hyaluronan and proteoglycan link protein 4 Hapln4 NM_001108398 #2.977

doi:10.1371/journal.pone.0172789.t001
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728 transcripts were significantly altered, 402 up-regulated and 326 down-regulated (2RH30

vs. 2RH0). At 60 min these numbers were 933, 515 and 418 respectively; Table 2, S2 Table. In

animals exposed to acute hypoglycemia (2RS group) a total of 1,122 transcripts were found sig-

nificantly altered at the 60’ min time point, 620 up-regulated and 502 down-regulated (2RS60

vs 2RS0).

We also performed a comparative analysis between the differentially expressed genes in

adrenal medulla during acute hypoglycemia and RH. While a variety of comparisons can be

drawn from the data set, our aim was to detect changes unique to RH at different time points.

The results from two of the comparisons are illustrated on Fig 5. A relatively small number of

DEGs was identified to be overlapping (common) between the animals exposed to acute hypo-

glycemia (2RS) and RH (2RH) (25, listed on Table 3, S1 Table). Several genes were up-regu-

lated at both baseline (before insulin infusion on day 4) and 60 min after achieving the target

glucose levels during the hyperinsulinemic-hypoglycemic clamp. A total of 16 were down-reg-

ulated and the expression of one gene (Get4, Goldgi to ER traffic protein 4) was induced at the

0 time point and inhibited at the 60 min time point (shown in bold on the Table 3). A total of

167 genes were identified as unique for the 2RH0 group (animals with previous history of RH)

at baseline, both induced (72) and suppressed (95) compared to the 2RS0 experimental group.

At the 60 min time point the number of unique genes in the 2RH60 group (vs. maximal

response group 2RS60) increased to a total of 213 (51 up-regulated and 162 down-regulated,

respectively), see S1 Table.

The comparison between RH samples taken at different time points before and during the

clamp revealed a total of a 404 genes affected at 30 min (241 induced and 163 down-regulated)

and these numbers further increased to 520 at 60 min (Fig 5B). From them, 273 genes were

common (overlapping) for all conditions, and 130 genes were unique for 2RH30 experimental

Table 2. DEGs with highest fold change by RH at 60 min (2RH60 vs. 2RS60).

Gene Title Gene Symbol RefSeqTranscript ID Fold change

Gamma-2a immunoglobulin heavy chain IgG-2a XM_002727307 "11.336

Protein phosphatase 2, regulatory subunit B, alpha Ppp2r2a NM_053999 "6.732

Chemokine (C-X-C motif) ligand 10 Cxcl10 NM_139089 "5.259

RT1 class Ia, locus A2 RT1-A2 NM_001008829 "3.779

Interferon regulatory factor 7 Irf7 NM_001033691 "3.717

Lipocalin 2 Lcn2 NM_130741 "3.431

Anillin, actin binding protein-like 1 Anln1 XM_006222448 "3.197

Cytochrome P450 family 2C popypeptide 7 Cyp2c7 NM_017158 "2.897

Suppressor of cytokine signaling 3 Socs3 NM_053565 "2.874

Transcription elongation factor B (SIII), polypeptide 1 Tceb1 NM_001270561 "2.696

Suppression of tumorgenicity 18 St18 NM_153310 #6.019

AT rich interactive domain 1B Arid1b NM_172157 #5.436

Paternally expressed 10 Peg10 XM_006224893 #4.761

Yippee-like 4 (Drosophila) Ypel4 NM_001024369 #3.930

Regulator of G-protein signaling 4 Rgs4 NM_017214 #3.722

Neuregulin 1 Nrg1 NM_001271118 #3.592

K+voltage-gated channel subfamily G Kcng3 NM_001033957 #3.367

G protein-coupled receptor 19 Gpr19 NM_080579 #3.330

Calcyon neuro-specific vesicular protein Caly NM_001190399 #3.239

Protein phosphatase 2, regulatory subunit B’ epsilon isoform Ppp2r5e NM_001106740 #3.212

doi:10.1371/journal.pone.0172789.t002
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Fig 5. Venn diagrams of differentially expressed genes. A) Comparative analysis of DEGs in the 2RH0 and 2RH60 groups vs

their respective saline controls (2RS0 and 2RS60); B) Comparative analysis of DEGs in 2RH groups—2RH30 and 2RH60 vs 2RHO

respectively.

doi:10.1371/journal.pone.0172789.g005

Table 3. List of common DEGs during acute hypoglycemia and RH.

Gene Title Gene Symbol 2RH0/2RS0 2RH60/ 2RS60

anillin Anln "4.36 "3.19

Chemokine (CXC) ligand 10 Cxcl10 "3.02 "5.25

gamma-2a immunoglobulin heavy chain IgG-2a "4.69 "11.33

lipocalin 2 Lcn2 "9.038 "3.43

RT1 class 1a, locus A2 RT1-A2 "2.62 "3.78

transcription elongation factor B, polypeptide 1 Tceb1 "2.31 "2.69

bradykinin receptor B2 Bdkrb2 #3.46 #2.29

Calcyon neuron-specific vesicular protein Caly #2.66 #3.24

caspase 6 Casp6 #2.36 #2.25

diphthamide biosynthesis 1 Dph1 #3.09 #2.83

ELAV like RNA binding protein 1 ElavL1 #2.03 #2.13

glutamyl-prolyl-tRNA synthase Eprs #2.37 #2.11

Goldgi to ER traffic protein 4 Get4 "2.1 #2.46

Guanine nucleotide binding protein α activating polypeptide 0 Gnao1 #2.48 #2.53

hyaluronan and proteoglycan link protein 4 Hapln4 #2.98 #2.17

neurotrophic tyrosine kinase receptor type 1 Ntrk1 #4.15 #2.17

parkinson protein 2, E3 ubiquitin ligase Park2 #2.42 #2.84

regulator of G-protein signaling 4 Rgs4 #2.29 #3.72

SAP domain containing ribonucleoprotein Sarnp #2.44 #2.3

solute carrier family (Na/K/Ca exchanger), 2 Slc24 #2.02 #2.13

solute carrier family 6 (neurotransmitter transporter), 4 Slc6a4 #2.03 #2.17

tetraspanin Tspan18 #2.04 #2.02

doi:10.1371/journal.pone.0172789.t003
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group and 247 for the 2RH60 group, suggesting dynamic changes in the adrenal transcriptome

during the hyperinsulinemic clamp.

Enrichment analysis of differentially expressed genes

To define which biological processes are switched on or off during RH, we performed gene

enrichment analysis in four different functional ontologies: canonical pathway maps, process

networks, disease categories and gene ontologies (GO) using MetaCore™. This allowed us to

analyze functionally related genes (for example, genes belonging to a specific biochemical pro-

cess) as a whole. The results for unique DEGs in the RH group are shown on Fig 6. Among the

top 10 process networks (2RH0 vs.2RS0) were neuropeptide signaling and endoplasmic reticu-

lum (ER) stress pathways (Fig 6A). RH predominantly affected genes involved in cell adhesion,

synaptic contact, calcium transport, transmission of nerve impulse and synaptic vesicle exocy-

tosis. Most of them were significantly down-regulated compared to the maximal response

group 2RS60 (animals exposed acute hypoglycemia, see distribution by process networks for

unique genes shown on Fig 6B).

We also followed the dynamic changes in adrenal gene expression during the hyperinsuli-

nemic-hypoglycemic clamp. The results for 2RH group are illustrated on Fig 7 (distribution by

process networks for overlapping genes in the 2RH group, comparison on Fig 5B). Several key

process categories were affected by RH including protein folding in normal condition, apopto-

sis/ apoptotic nucleus and signaling/leptin signaling. Interestingly, number of genes associated

with the unfolded protein response (UPR) were induced at different time points of RH.

Among these were mRNAs encoding Derlin-1, Cebpb, (member of the CHOP family of pro-

teins) as well as several chaperons (such as members of the heat shock protein family- Hsp22,

Hsp70, Hsp40; as well as Tor1A and Tcp1). Fig 8 summarizes UPR pathways with the genes

detected with altered expression in our analysis (shown in bold).

RH induces the expression of Grp78—Master initiator of UPR

A significantly increased amounts of glucose regulated protein (GRP) 78 protein over baseline

expression has become an established indicator and marker for the presence of cellular ER

stress (rev. in [38]). To confirm the induction of UPR in RH we performed western blot analy-

sis as described in methods section (Fig 9). Grp78 was not detectable at any time point during

acute hypoglycemia (2RS group). However, in the 2RH group, the presence of GRP78 was evi-

dent at baseline and increased >2–3 fold during the clamp (at 30 and 60 min), consistent with

the induction of the UPR. In addition, Derlin-1 protein, functional component of the ER-asso-

ciated degradation (ERAD) pathway for misfolded luminal proteins [39], was detectable in all

protein lysates on the same blots. Notably, the relative Derlin-1 immunoreactivity was signifi-

cantly increased in 2RH0 group, followed by decline to baseline levels (in 2RH60), consistent

with the microarray data.

Discussion

In the current study we discovered a novel association between activation of UPR signaling fol-

lowing recurrent glucoprivation and the defective counter-regulatory response that was evi-

dent even in otherwise normal rats. For the first time our whole genome expression profiling

approach illustrated DEGs in the adrenal medulla of rats that were unique to the exposure to

RH. We showed that among the RH-activated networks are ER stress and UPR, including up-

regulation of UPR-related chaperones (Grp78 master initiator of UPR and other members of

the Hsp70 family; Dnajb2, Hsp22, Tcp and Tor1). We also identified up-regulation of tran-

scription factors (ATF4, Cebpb, Cebpd, CREB3L1, CREB3L3, and HSF1) and proteins
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involved in ERAD (Derlin-1, ERP5, SIAH, E3 ligases; Figs 7 and 8). This is the first report of

the potential role of UPR in TH biology or during HAAF. We speculate that the induction of

UPR-related general inhibition of translation and potentiated decay of ER-localized mRNAs

together with the disturbed Ca2+ homeostasis and suppression of the regulated secretory

Fig 6. Enrichment analysis of DEGs in 2RH and 2RS experimental groups. A) Shown is the distribution by process networks at 0

time point (2RH0 vs. 2RS0) and B) at 60 min time point (2RH60 vs. 2RS60). Sorting is done for unique genes and both signals

(induced genes—shown in red and repressed genes—in blue) included. Top 10 process networks are listed based on their—log (p-

value). For list of abbreviations see supplemental file S1 Text.

doi:10.1371/journal.pone.0172789.g006
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pathway appear to contribute significantly to the altered regulation and diminution of adrenal

catecholamine production and release in HAAF.

A prior exposure to RH results in prolonged changes in adrenal gene

expression profiles

Through gene expression profiling, a total of 1,122 differentially-expressed genes were identi-

fied in response to acute hypoglycemia in the current study (genes altered two-fold or more at

60 min time point vs 0 time point on day 4 –Fig 1, 2RS60 vs 2RS0). This number was similar

(1,100 DEGs) for the animals exposed to RH (2RH60 vs 2RS0) confirming that in both cases

there was a significant transcriptional re-programming of adrenal chromaffin cells. Notably,

several genes remained affected even 20 hrs after the last antecedent episode of RH (2RH0 vs

2RS0, Figs 5A and 6A, for complete list of unique genes see S1 Table). Among the top score

process networks identified for unique genes in the 2RH group at baseline were apoptosis,

neuropeptide signaling and interestingly, ER stress (Fig 6A).

The mRNAs encoding both, Derlin-1 and ERP5 (also named Protein disulfide isomerase

(EC 5.3.4.1), PDIA6) were significantly upregulated in the 2RH0 group, compared to the 2RS0

(Fig 6A and S1 Table). The ER not only provides mechanisms to facilitate folding of newly

synthesized secretory and membrane proteins, but also harbors molecular machineries that

eliminate proteins that fail to fold or assemble correctly ([40]). We confirmed the significant

upregulation of Derlin-1 protein during RH by Western blot (Fig 9). While altered expression

of Derlin-1 was not associated with HAAF so far, physiological or pathological changes in Der-

lin-1 expression levels have been shown to affect glucose-stimulated insulin secretion by alter-

ing the surface expression of ATP-sensitive potassium channels ([39]).

Fig 7. Functional analysis of DEGs at different time points following RH. The distribution by process networks is shown, with

top 10 significantly enriched GO items for differentially-expressed common genes in 2RH30 vs 2RH0 and 2RH60 vs 2RH0. For list of

abbreviation see S3.

doi:10.1371/journal.pone.0172789.g007
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ERP5 is known to catalyze formation, reduction, and isomerization of disulfide bonds in

proteins, and to play a role in folding of disulfide-bonded proteins ([41]). It reacts with sub-

strates that are known to associate with Grp78, including those targeted for ER-associated deg-

radation ([42]). In this regard, we also identified an increase in Grp78 immunoreactivity in the

2RH group, evident at baseline and gradually enhanced during the clamp portion of the exper-

iment (Fig 9), thus confirming the induction of ER stress in the AM of animals exposed to RH.

In many cell types glucose uptake occurs by facilitated diffusion and is affected by blood

glucose concentration ([43]). Our results support the notion that in addition to the well

described CNS-mediated trans-synaptic effects of hypoglycemia, deranged glucose fluxes in

central and peripheral tissues, including AM caused by antecedent glucoprivation, may disturb

cell homeostasis inducing ER stress and UPR.

Another set of genes, encoding several neuropeptides (including PENK, NPY and galanin)

which are co-released with catecholamines in neuronal activity-dependent manner ([44]),

were also significantly increased in the 2RH0 group (Table 1, Fig 6A, S1 Table). Our data are

consistent with previously reported long lasting overexpression of several neuropeptides in

response to stress (including acute hypoglycemia, [45], [46], [47]). These elevated neuropep-

tides can be logically assigned relevant to the defective CRR in HAAF: opioids exert an

almost universal suppressive paracrine effect on the secretion of classical neurotransmitters,

Fig 8. RH induces the unfolded protein response in rat adrenal medulla. A schematic of the unfolded protein response in

mammals is presented. In resting cells all three ER stress sensors are inactive due to association with Grp78. Accumulation of

unfolded proteins leads to dissociation of Grp78 and activation of IRE1, ATF6 and PERK which reprogram transcription and

translation in a concerted manner to restore homeostasis: increase the transcription of genes involved in protein folding (ATF6 and

IRE1 signaling), attenuate global protein synthesis (PERK) by phosphorylating translation initiation factor 2 (eIF2a) while promoting

the translation of ATF4. ATF4 controls the expression of CHOP, which in turn induces GADD34 –a negative feedback loop effector

that terminates UPR signaling by recruiting protein phosphatase1 catalytic subunit resulting in dephosphorylation of eIF2a and

recovery of protein synthesis ([37]). Selected genes affected only by RH in our experiments are indicated in bold.

doi:10.1371/journal.pone.0172789.g008
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neuropeptides, and hormones in neurons, adrenal chromaffin and other cells ([48]). Further-

more, opioid receptor blockage has been shown to prevent HAAF ([49,50]). NPY is also

known to exert a negative feedback loop on TH expression and both, NPY ([51], [52], [53])

and galanin [54], [55] can control adrenal secretory capacity. Recently NPY expression was

found required for fasting-induced autonomic synaptic plasticity at the preganglionic-chro-

maffin cell synapse ([56]).

Unique genes and process networks/pathways induced during the

hyperinsulinemic—hypoglycemic clamp in animals, previously exposed

to RH

In the current study a total of 213 adrenal genes were identified as unique for the 2RH60

group (vs. 2RS60 –maximal response to hypoglycemia group). From them, 51 were signifi-

cantly induced and 162 were suppressed (Fig 5A). The majority of the down regulated genes

belonged to process networks involved in synaptic contact/cell adhesion (Scd2, Syt, NRNX,

SNAP25), calcium transport (PKD2, CALM, NOL3, Ca2+–ATPase 2), transmission of nerve

impulse, and exocytosis (NET, Rab3, Syt, SNAP25) (Fig 6B). These include genes encoding

synaptotagmins—synaptic vesicle membrane proteins abundant in nerve and some endocrine

cells proposed to function as calcium sensors in the regulation of neurotransmitter release and

hormone secretion ([57, 58]). More specifically, Syt1 is recognized as a Ca2+ sensor for fast

synchronous neurotransmitter release in forebrain neurons and chromaffin cells ([59, 60])

and Syt7 as a major Ca2+ sensor for exocytosis in chromaffin cells [61,62]. Recently it was

found that Syt1 and Syt7 play an essential overlapping role in maintaining the readily- releas-

able pool of vesicles, in addition to their gene-specific function as Ca2+ sensors and fusion

clamps [61].

Fig 9. Western blot analysis confirms activation of UPR following RH. Total protein lysates from the right adrenal

medulla of saline (2RS) and RH groups (2RH) were subjected to Western blot analyses as described in methods.

Proteins were separated by SDS-PAGE, electroblotted and the membranes were sequentially probed with antibodies

specific to Grp78, Derlin1, TH and GAPDH. Similar results were obtained in two separate replicate experiments.

doi:10.1371/journal.pone.0172789.g009
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Ca-binding synaptotagmins are involved in both, early synaptic vesicle docking to the pre-

synaptic membrane (via interaction with neurexin beta or SNAP25) and the late steps of syn-

aptic vesicle fusion with the presynaptic membrane ([63]). Those genes were also found down

regulated in our study. Our results suggest that the observed down regulation of multiple

genes involved in Ca2+ transport, synaptic contact and exocytosis and the developing of ER

stress/activation of the UPR response in adrenal medulla of repeatedly hypoglycemic animals

may be related to the reduced epinephrine secretion during HAAF.

It is worth mentioning that the gene encoding protein phosphatase 2 regulatory subunit B

(PP2A) is among the few unique genes significantly induced in the 2RH60 group in our study

(Fig 6B, S1 Table). PP2A is one of the four major Ser/Thr phosphatases with diverse function

in the cell (rev. in [64]) and its B subunit might modulate substrate selectivity and catalytic

activity. Interestingly the increased expression of PP2A (known to dephosphorylate TH

enzyme in vitro—[65], [66]) correlated with the decline in phosphorylated TH enzyme at later

time points in the 2RH group ([25]). Thus we speculate that ER stress and activation of UPR

may account for the posttranscriptional regulation of TH previously reported by us during

HAAF where both, TH mRNA longevity and TH translation are reduced (due to IRE1-depen-

dent decay of ER membrane-associated mRNAs [67] and global inhibition of translation

induced by UPR activation [68]). They would also promote faster inactivation of TH enzyme

(either via PP2A mediated dephosphorylation at Ser40 or proteasomal degradation by the

ERAD [69]). In this regard, one earlier study has demonstrated that a fraction of TH enzyme is

an integral component of bovine chromaffin granule membranes ([70]) and could thus serve a

purpose in coordinating TH activity and catecholamine release.

A potential contribution of adrenal ubiquitin proteasome system and ER stress in blunting

the sympathoadrenal responses in HAAF has not been reported before. Accumulating evi-

dence indicates that ER stress-mediated cell dysfunction and death is involved in the pathogen-

esis of human chronic disorders including metabolic diseases (obesity and Type 2-diabetes)

and neurodegeneration ([38]), and UPR has been a growing subject of extensive investigations

as a potential therapeutic target ([71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81]).

Although the possible impact of chronic adrenal ER stress in the development of HAAF has

not been tested previously, it has been shown that acute hypoglycemia in rodents increases sev-

eral biochemical markers of the UPR and glucose production in the liver (not in the kidneys or

the pancreas [82]).

Evidence for activation of adrenal UPR during subsequent episode of

hypoglycemia in RH animals

Pathway analysis indicated that “Protein folding” was the most significantly enriched item in

the distribution by process network for common genes (2RH30 vs.2RH0 and 2RH60 vs.

2RH0, Fig 7, comparison shown on Fig 5B) and “Response to unfolded proteins” was in the

top 5 scored networks. A gene set for “Protein folding and response to unfolded proteins”

includes molecular chaperons, members of the 70 kDa heat shock protein family (HSP70,

HSPA1A, HSPA1B), 40kDa heat shock protein family (DNAJB2), small heat shock proteins

(HSP22), heat shock factor 1 (HSF1) and BCL2-associated athanogene 3 (BAG3 –co-chaper-

one shown to regulate formation of SNARE complex and insulin secretion in beta cells [83]),

indicating that activation of UPR may be a significant aspect of the altered responses to hypo-

glycemia and defective CRR in HAAF.

Diverse physiological or pathological challenges can provoke ER stress and activate the set

of intracellular signaling pathways termed the UPR ([75]). Beneficial outputs of UPR restore

homeostasis and normal ER functions, while destructive outputs trigger programmed cell
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death ([84], [85], [38]). Prior to this report, activation of UPR in the adrenal medulla has not

been described in HAAF, yet it has been implicated in the proper functioning and survival of

pancreatic islet beta cells in Type 1 and Type 2 diabetes ([77], [86]). Accumulation of unfolded

or misfolded proteins in the ER causes the dissociation of Grp78 chaperone from the three

widely expressed ER transmembrane sensors: protein kinase RNA (PKR)-like ER kinase

(PERK), activating transcription factor-6 (ATF6), and inositol-requiring enzyme-1 (IRE1a),

eliciting the UPR. Combinatorial signals from IRE1a, PERK, and ATF6 initially trigger tran-

scriptional programs that up-regulate genes encoding many ER chaperones, oxidoreductases,

and ERAD components ([38]). The UPR also imposes a transient translational block during

ER stress and promotes decay of ER-localized mRNAs ([87]) in a stress-dependent manner,

thereby concentrating available resources to allow preexisting proteins to fold before new ones

are made (rev. in [88], see Fig 8). Stress levels in the ER are reflected in the degree of activation

of IRE1a, PERK, and ATF6; therefore, these upstream sensors are centrally poised to receive

and transmit the information needed by the cells to commit in a dichotomous manner either

toward adaptation or self-destruction.

Limitations of design. Our study was not designed to address causality in our integrative

view of the altered stress responses following RH. The cause and effect relationships between

ER stress, UPR and the attenuated epinephrine responses in HAAF will be tested in validation

experiments in the future. In addition, in our microarray analysis data we selected relatively

high p-value cut off (two-fold and more) and the actual number of genes with biologically sig-

nificant changes in gene expression could be higher. It should be also mentioned that our

observation and the interpretation of the results are based on few time points studied—before

and during the exposure to acute hypoglycemia and RH. Given the highly dynamic changes in

variety of homeostatic processes we may have missed some events. Moreover, we measured

the mRNA levels, not the protein or its function.

Conclusions

We used microarray experiments to uncover genes regulated by acute hypoglycemia and RH

in the adrenal medulla of normal SD rats. Overall, the reported observation underscores a

physiologically important role for ER stress and the UPR to alter the peripheral sympathoa-

drenal components of the stress response to hypoglycemia. To date, no mechanisms linking

the attenuated adrenal epinephrine response in HAAF to ER stress and UPR have been

described. Although we do not provide direct evidence to support this hypothesis, we pro-

pose that the epinephrine responses to hypoglycemia result from a complex and dynamic

interplay between centrally mediated trans-synaptic stimulation of catecholamine synthesis

and release, as well as the opposing effects of cellular ER stress and the activation of UPR

caused by glucoprivation. Further functional studies are necessary to confirm these correla-

tions and validate the biological significance potentially leading to the useful therapeutic tar-

gets for many metabolic disorders.
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