
RESEARCH ARTICLE

Unlearning implicit social biases during sleep:

A failure to replicate

Graelyn B. HumistonID, Erin J. Wamsley*

Department of Psychology and Program in Neuroscience, Furman University, Greenville, South Carolina,

United States of America

* erin.wamsley@furman.edu

Abstract

A 2015 article in Science (Hu et al.) proposed a new way to reduce implicit racial and gender

biases during sleep. The method built on an existing counter-stereotype training procedure,

using targeted memory reactivation to strengthen counter-stereotype memory by playing

cues associated with the training during a 90min nap. If effective, this procedure would have

potential real-world usefulness in reducing implicit biases and their myriad effects. We repli-

cated this procedure on a sample of n = 31 college students. Contrary to the results reported

by Hu et al., we found no effect of cueing on implicit bias, either immediately following the

nap or one week later. In fact, bias was non-significantly greater for cued than for uncued sti-

muli. Our failure to detect an effect of cueing on implicit bias could indicate either that the

original report was a false positive, or that the current study is a false negative. However,

several factors argue against Type II error in the current study. Critically, this replication was

powered at 0.9 for detecting the originally reported cueing effect. Additionally, the 95% confi-

dence interval for the cueing effect in the present study did not overlap with that of the origi-

nally reported effect; therefore, our observations are not easily explained as a noisy

estimate of the same underlying effect. Ultimately, the outcome of this replication study

reduces our confidence that cueing during sleep can reduce implicit bias.

Introduction

Non-conscious biases are ubiquitous in social interactions, perpetuating discrimination even

among people who do not explicitly endorse prejudiced beliefs [1–3]. For example, laboratory

studies of hiring decisions demonstrate that participants who report no explicit racial bias

nonetheless favour light-skinned candidates [4]. These implicit biases are insidious particularly

because of their non-conscious, unintentional nature, as even persons with a strong implicit

bias may not perceive any discrimination in their thoughts and actions, and may thus be

unaware of their consequences [5]. Therefore, it is imperative to develop and disseminate pro-

cedures that effectively reduce these implicit biases and mitigate their impact on society.

A novel method of reducing implicit social biases was proposed in a 2015 Science paper [6],

combining a computerized counter-bias training task [7] with “targeted memory reactivation”

(TMR), a technique established to improve memory retention by boosting sleep-related
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consolidation. Sleep after learning is beneficial for memory [8–13], an effect which has been

attributed to the iterative reactivation of recently formed memory traces in the sleeping brain

[14–18]. An emerging literature has reported strong evidence that this reactivation of memory,

which typically occurs spontaneously, can also be triggered externally by presenting sensory

cues previously associated with the learning experience [18–21]. This TMR effect has been

demonstrated using both olfactory [18] and auditory cues [19,20], and has been linked to the

cellular-level replay of hippocampus-dependent memory in rodent models [21]. Thus, this

technique shows promise as a practical method of enhancing memory and protecting it from

subsequent forgetting [22].

Hu et al. [6] reported a novel attempt to use TMR to enhance memory for counter-bias

training, with the prediction that TMR would strengthen the effect of the training and reduce

implicit social biases. Participants were run in two groups, one of n = 21 and one of n = 19 sev-

eral months later; their paper reported that results were similar across groups [6]. The training

procedure involved first measuring implicit social biases toward Black people and women,

using race and gender versions of the Implicit Association Test (IAT) [23]. Participants then

completed a task that encouraged counter-bias thinking through responding to face-word

pairings that contradict racial and gender stereotypes [7]. During this counter-bias training,

two distinct sounds–one for the gender and one for the racial training–were played each time

participants correctly affirmed a racial or gender counter-stereotype pairing. One of these two

sounds (either the race-associated or gender-associated sound) was later played while partici-

pants were in slow-wave sleep (SWS) during a 90min nap, with the goal of reactivating their

memory of the counter-bias training, and thus strengthening its effect [6].

Indeed, Hu et al. [6] reported that playing these sound cues during sleep strengthened the

effects of counter-bias training. When implicit bias was tested again after the nap, the bias

cued during the nap (race or gender) significantly decreased from prenap levels, while uncued

bias remained unchanged. A long-lasting effect of this procedure would be particularly impor-

tant evidence of the potential for practical application. Although the benefit of TMR was less

apparent after a one-week delay, bias cued during the nap was still reduced in comparison to

prenap levels. However, this bias reduction no longer differed significantly from that of the

uncued bias type [6]. Still, overall, the study provided promising evidence for the efficacy of

this novel method of reducing implicit social biases.

Yet rigorous science demands replication, especially for surprising findings that have

potential real-world impact. In recent years, renewed attention has come to the value of repli-

cation in psychology, as large-scale efforts have demonstrated surprisingly low rates of repro-

ducibility in the field [24,25]. For example, in a recent collaborative replication of 100 studies,

of which 97 had statistically significant results (p< .05), only 36% of replications reached sta-

tistical significance, and 83% of replication effect sizes were weaker than in the original studies

[24]. While a failed replication is never proof that an effect does not exist, as non-significant

findings may be well within the range of possible outcomes when testing a real effect, the pro-

portion of studies that failed to replicate in [24] is higher than what would be expected from

sampling error alone. These and similar observations in recent years have highlighted the need

to devote time and money to replication of important new findings before drawing strong con-

clusions [26,27].

Thus, because of our interest in the implications of effective implicit bias reduction during

sleep, our lab conducted an exact replication of Hu et al. [6], repeating their procedure on a

similar sample of college students, using materials provided by Hu et al. [6], and analyzing the

data in the same manner. We expected to see a robust effect of cueing immediately after the

nap, but were doubtful about our ability to detect an effect after a 1-week delay, given that the
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Cueing x Time interaction was non-significant at the 1-week delayed test in the original paper

[6].

Methods

Participants and sample size

A target sample size of n = 30 useable participants was set by determining the number of obser-

vations needed to achieve power = 0.9 for detecting Hu et al.’s [6] originally reported effect of

cueing (cued vs. uncued stimuli) on change in IAT score from before to after the nap (effect

size dz = 0.62, calculated from Hu et al.’s [6] original data). Enrollment continued until we

reached the target number of qualifying participants.

Using the same criteria as Hu et al. [6], we excluded participants from analysis if they did

not self-identify as white (n = 8 excluded) or male or female (n = 1 excluded). These non-quali-

fying participants were recruited early in the study with the goal of creating an exploratory

comparison sample, but we later decided to stop enrolling non-white participants in order to

complete data collection for the replication study in a timely manner. The sample of non-

white participants was thus too small (n = 8) for meaningful statistical comparison. Descriptive

statistics for this group are included in Table A in S1 Appendix. Participants were also

excluded if they did not enter slow-wave sleep (SWS) during the nap (n = 6 excluded), or if

they reported hearing the sound cue during the nap (n = 7 excluded). Following exclusions,

there were n = 31 participants included in analysis (15 males, mean age of 19.55±1.23 SD,

range 18–22; see Table 1). Participants signed written informed consent, and were compen-

sated by receiving either $10/hr or credit for an introductory psychology course. The study

was approved by the Furman University Institutional Review Board.

Procedure

The procedure followed that of Hu et al. [6] exactly (see Fig 1), with the exception of minor dif-

ferences discussed below, including in the paperwork completed upon arrival at the laboratory,

the timing of the post-nap inquiry about hearing the cue, an additional exit questionnaire at

the conclusion of the study, and IAT order randomization. The procedure began between

10:00am and 1:00pm, and lasted for 3.5hrs. To facilitate the nap, participants were instructed

to wake up at least two hours in advance of the study time. Upon arriving at the laboratory at

the start of the procedure, participants completed demographics questionnaires, which gath-

ered information about sex, race, sleep habits, and medications; the Epworth Sleepiness Scale

Table 1. Participant characteristics.

mean ±SD
Age (yrs) 19.55 1.23

ESS 15.29 2.83

SSS 2.81 .75

Baseline implicit bias .56 .41

Prenap implicit bias .26 .48

Postnap implicit bias .28 .46

One-week delay implicit bias .40 .43

Sex (% male) 48%

Cue played during nap (% racial cue) 54.8%

Implicit bias values are the average D600 score for each timepoint.

https://doi.org/10.1371/journal.pone.0211416.t001
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(ESS; a measure of trait sleepiness) [28]; the Stanford Sleepiness Scale (SSS; a measure of state

sleepiness; n = 6 of the n = 31 included in analyses had incomplete SSS data; see Table 1) [29];

and two visual analogue scales rating alertness and concentration. Participants also completed

an exit questionnaire at the conclusion of the study in which they described what they believed

to be the purpose of the experiment, and were asked explicitly whether they had heard the

sound cue during the nap (S1 File).

Following the initial forms, participants completed the baseline IATs, one testing implicit

racial bias and the other implicit gender bias (see below). Participants then completed the

counter-bias training (see below) [7], in which they pressed a button to affirm female faces

paired with science-related words, and Black faces paired with positive words, and were

instructed not to respond to other pairings. One sound cue was used as positive feedback for

correct responses during the gender counter-stereotype training, and another distinct sound

cue during the racial counter-stereotype training, with the assignment of the cues to bias type

counterbalanced. The IAT tasks, the counter-bias training tasks, and the sound cues were pro-

vided to us by Hu et al. [6].

After the training was completed, six EEG electrodes were attached to the scalp (F3/4, C3/4,

O1/2), referenced to the contralateral mastoid. Eye and chin electrodes were also applied, in

order to facilitate sleep staging. Impedance was kept to<10kΩ and signals were digitally

acquired at 400Hz.

Fig 1. Experimental timeline. Participants completed implicit bias assessments both before and after a computerized

counter-bias training procedure. TMR was then conducted during a 90min nap, and implicit bias was assessed again

immediately following the nap. A final IAT and exit questionnaire were administered one week later. Times on right

represent minutes elapsed. Green and blue sound icons represent the two distinct auditory cues associated with racial

and gender counter-bias training, only one of which was presented during the nap TMR procedure.

https://doi.org/10.1371/journal.pone.0211416.g001
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Participants then completed the prenap IATs, followed by a sound-cue retrieval task (see

below) in which they actively matched female faces to science-related words, and Black faces

to positive words. Each trial displayed both a science-related word and a positive word, along

with a picture of either a female face or a Black face, which was presented along with the corre-

sponding sound cue. The participant then clicked and dragged the face over to the matching

counter-stereotype word. The purpose of the sound-cue retrieval task was to cement the asso-

ciation between the counter-bias associations and the corresponding sound cues, thus facilitat-

ing the TMR procedure later [6]. This task was also provided to us by Hu et al. [6].

After this task, participants began the 90min nap, approximately 95min after the start of the

procedure. They were directed to lie on the bed in the testing room, after which the experi-

menter turned the lights off and left the room. White noise was played from a speaker directly

above the pillow at 38–40 dB SPL. At the onset of SWS, the experimenter began playing one of

the two sound cues from the same speaker, also at 38–40 dB SPL. Each sound cue lasted 1sec

and was played at 4sec intervals, and was discontinued if participants showed signs of awaken-

ing or entering another sleep stage. The cue played was randomly chosen to be either the one

previously associated with race (n = 17) or gender (n = 14), and was counterbalanced across

participants, so that one cue was assigned to gender and the other to race for half of the partici-

pants, and vice versa. An average of 323±29 SEM individual cues were presented to each

participant.

Following the nap, participants were awakened and the electrodes removed. The experi-

menter asked in a casual manner whether participants had heard anything during the nap, in

order to gauge whether participants heard the sound cue. Their response was recorded by the

experimenter (S2 File). There was a 10min break before participants took the postnap IATs,

after which they left the laboratory. This differed slightly from Hu et al. [6], in which the verbal

inquiry about noise during the nap occurred after the postnap IATs.

Participants returned one week later for a second session in which they completed the IATs

again, followed by the added exit questionnaire (S1 File). We included this questionnaire,

which was not a part of Hu et al.’s [6] procedure, because we believed that some participants

who heard the sound cue might not indicate so without being asked more explicitly. The ques-

tionnaire began with several open-ended questions about the purpose of the study, after which

participants were asked if they heard the sound cue during the nap, and if they had predicted

that the sound cue(s) would be played during the nap (S1 File). These responses were scored

by two judges, blind to experimental condition and whether the sound cue had been played

during the nap (n = 6 participants who did not enter SWS never had a sound cue played, and

responses from these participants were also scored by the judges). Judges determined whether

the response to each open-ended question referenced the sound cue. They also determined

whether the response referenced the sound as something that could affect the participants’

thoughts, memory, performance, or biases. Interrater reliability was 100%.

Implicit Association Test (IAT). The IAT [23] is designed to measure implicit bias by

comparing the speed with which one responds to group-attribute pairings that align with vs.

contradict a common stereotype. For example, implicit racial bias is demonstrated when par-

ticipants are slower to respond to Black faces paired with positive words, relative to Black faces

paired with negative words. The IAT version in this study [23] was comprised of seven blocks;

the 4th and 7th were the critical test blocks, each comprised of 40 trials, while the other blocks

trained and familiarized the participants with the stimuli and test layout, and contained 20 tri-

als each.

Each test block trial required participants to sort a word or picture stimulus into one of two

categories (see Fig 2). In the race IAT, the stimuli were positive or negative words (e.g. “sun-

shine” or “vomit”) and pictures of Black and White faces, with 10 of each type of stimulus. In
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the gender IAT, the stimuli were words related to arts or science (e.g. “Shakespeare” or “chem-

istry”) and pictures of male or female faces, also with 10 of each type of stimulus. The pictures

used were chosen by Hu et al. [6] from the Eberhardt Lab Face Database, the NimStim Face

Stimulus Set, and the Karolinska Directed Emotional Faces [30–33].

Participants sorted each stimulus into the appropriate category in the top left or right of the

screen (Fig 2). Each category was comprised of a group and an attribute pairing: Black and

White paired with “good” or “bad” in the race IAT, and male and female paired with “science”

or “art” in the gender IAT. In the 4th block, the group and attribute in each category were

arranged to align with common biases (Black/bad and White/good, or male/science and

female/art; Fig 2); in the 7th block, category pairings contradicted common biases (Black/good

and White/bad, or male/art and female/science).

Implicit bias was measured by comparing the speed of sorting stimuli into bias-incongruent

categories (those in the 7th block) with the speed of sorting into bias-congruent categories

(those in the 4th block). A participant who more quickly associates a female face with the word

“art” than the word “science,” for example, demonstrates an implicit social bias. The mean

response times from each IAT were converted into a D600 score, using the same algorithm

reported by Hu et al. [6,34]. The order in which participants took the gender and race IATs at

baseline was counterbalanced, and participants took the prenap, postnap, and delayed IATs in

Fig 2. Implicit association test. Participants sorted a stimulus (word or picture) in the center of the screen into either the category

in the top left or the category in the top right of the screen. For example, in this figure, the correct response would be to sort the word

“Chemistry” to the left, as chemistry belongs in the “Science” category. Critically, categories at the top of the screen were comprised

of one group (e.g. male or female) paired with one attribute (e.g. science or art). Implicit bias was measured by comparing the speed

of sorting stimuli into bias-congruent categories (such as those pictured, where science is associated with male and art is associated

with female) with the speed of sorting stimuli into bias-incongruent categories (such as male/arts and female/science).

https://doi.org/10.1371/journal.pone.0211416.g002
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the opposite order of their baseline IATs. This differed slightly from the order randomization

in Hu et al. [6], as reported in [6].

Counter-bias training. Participants completed one counter-bias training task for gender

bias and one for racial bias, with order counterbalanced. Both counter-bias training tasks

included 360 trials, with an intertrial interval of 1sec, completed in three blocks with breaks in

between. In each trial, a picture of a face was presented with a word below it–a Black or White

face paired with a positive or negative word in the race version, or a male or female face paired

with a science- or art-related word in the gender version. In each version of the task, the target

counter-bias trials (Black/positive and female/science) appeared 180 times; the remaining 180

trials were divided evenly between the other three possible pairings for that version. The words

and faces used in the counter-bias training and the sound-cue retrieval task (see below) were

chosen by Hu et al. [6] from the same sources [30–33] as were the words and faces used in the

IATs, but were a different set that those used in the IATs.

For the gender counter-bias training, participants were instructed to press the spacebar if

they saw a female face paired with a science-related word, and not to respond to any other

pairing. Similarly, for the race counter-bias training, participants were instructed to press the

spacebar only for the Black-positive pairing. Participants were instructed to respond as quickly

and accurately as possible, in order to maximize the effect of the training [6]. A 1sec sound cue

was played as positive feedback when participants correctly pressed the spacebar for female-

science pairings, and another distinct 1sec sound cue was played as positive feedback for cor-

rect Black-positive responses; both at approximately 46 dB SPL. The assignment of each sound

cue to gender and race counter-bias training was counterbalanced across participants. The

sound cue files can be found in the Supplementary Materials for Hu et al. [6] at www.

sciencemag.org/content/348/6238/1013/suppl/DC1.

Sound-cue retrieval task. Participants completed the sound-cue retrieval task after the

second, prenap IAT. The purpose of the task was to strengthen the association between the

sound cues and the counter-bias training, thus facilitating TMR during the nap [6]. There

were six blocks of 20 trials each, with an interstimulus interval of 1sec. In each trial, a picture

of a female or Black face was presented on the left side of the screen, the corresponding sound

cue was played, and a randomly chosen and positioned (top or bottom) science-related word

and positive word were presented on the right side of the screen. Participants were instructed

to use the mouse to drag the picture of the face to the corresponding word (female-science or

Black-positive), and to do so as quickly and accurately as possible.

Results

IAT comparisons

All data were analysed in the same manner as in Hu et al. [6]. Participants demonstrated

implicit social biases on the baseline IATs, with scores for gender and racial bias significantly

greater than zero (gender t(30) = 7.60, p< .001; race t(30) = 7.79, p< .001; see Table 2 and Fig

Table 2. Race and gender implicit bias levels.

Baseline Prenap

mean ±SD mean ±SD t p
Race .62 .44 .20 .56 5.78 < .001

Gender .49 .36 .31 .37 2.47 .02

Implicit bias values are the average D600 score for each timepoint.

https://doi.org/10.1371/journal.pone.0211416.t002
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3). Bias levels were significantly reduced following counter-bias training (F(1,30) = 33.75, p<
.001, ηp

2 = .53), from a mean IAT score of .56±.41 SD at baseline to .26±.48 SD at the prenap

test (Table 1). There was an interaction between Bias Type (racial vs. gender) and Time (F
(1,30) = 5.03, p = .03), such that although both racial and gender bias were reduced signifi-

cantly from baseline to prenap, the reduction in racial bias (t(30) = 5.78, p< .001, d = .83) was

larger in magnitude than the reduction in gender bias (t(30) = 2.47, p = .02, d = .49; Table 2)

In contrast to Hu et al. [6], we found that cueing did not affect implicit bias change from

the prenap to postnap test (Cueing x Time interaction: F(1,30) = 1.39, p = .25, ηp
2 = .044). This

interaction remained non-significant when bias type was included as a factor in the model

(Cueing x Time interaction: F(1,29) = 1.15, p = .29). While neither cued nor uncued bias

changed significantly from prenap to postnap (cued: t(30) = .98, p = .33, d = .20; uncued: t(30)

= .52, p = .60, d = .12), it should be noted that in contrast to the observations of Hu et al. [6],

cued bias scores numerically (and non-significantly) increased, while uncued bias scores

decreased (see Table 3, Fig 4).

There was again no effect of cueing on the change in implicit bias from the prenap test to

the 1-week delayed test (Cueing x Time interaction: F(1,30) = .61, p = .44, ηp
2 = .020), with

both cued and uncued bias increasing non-significantly (cued: t(30) = 1.63, p = .11, d = .42;

uncued: t(30) = 1.07, p = .29, d = .21; Table 3, Fig 4). Cueing also did not affect bias change

from the baseline to delayed test (F(1,30) = .48, p = .49, ηp
2 = .016). Unlike the findings of Hu

et al. [6], here uncued bias significantly decreased from the baseline to the delayed test (t(30) =

Fig 3. Average D600 scores at each IAT timepoint. Both cued and uncued bias significantly decreased from the baseline

to the prenap IATs, with a non-significant increase in cued bias and decrease in uncued bias from the prenap to postnap

IATs. Both cued and uncued bias non-significantly increased from the postnap to delayed IATs. The crucial Cueing (cued

vs. uncued) x Time (prenap vs. postnap) interaction effect was not significant. Error bars ±SEM.

https://doi.org/10.1371/journal.pone.0211416.g003
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2.22, p = .034, d = .43), while cued bias did not significantly change (t(30) = 1.31, p = .20, d =

.31; Table 3).

Polysomnography

In contrast to the observation of Hu et al. [6], we found that differential bias change (calculated

as the baseline minus delayed score for uncued bias subtracted from the baseline minus

delayed score for cued bias) did not correlate with the number of minutes spent in SWS multi-

plied by the number of minutes spent in REM (r(31) = -.09, p = .65; see Fig 5). The number of

minutes spent in SWS and REM individually also did not correlate with differential bias

change (SWS: r(31) = -.04, p = .85; REM: r(31) = -.13, p = .49). We performed additional

exploratory correlations between differential bias change and the number of minutes the cue

was played (r(31) = -.17, p = .37), the number of minutes spent in NREM1 (r(31) = .24 p = .20),

the number of minutes spent in NREM2 (r(31) = .02, p = .94), and the total number of minutes

spent asleep (r(31) = -.03, p = .87). None of these associations approached statistical signifi-

cance. On average, participants spent 5.00±4.17 SD minutes in NREM1, 29.23±11.45 SD min-

utes in NREM2, 25.48±12.13 SD minutes in SWS (NREM3), and 11.52±7.95 SD minutes in

REM (see Table B in S1 Appendix for comparison to sleep architecture reported by Hu et al.

[6]).

Verbal report and exit questionnaire

Immediately upon awakening, each participant was asked a verbal, non-leading question

about whether they heard any noise during the nap; their response was recorded by the experi-

menter as either a “Yes,” a “No,” or “Maybe/unsure/unclear” (S2 File, Table 4). Participants

were also explicitly asked in the final exit questionnaire (S1 File) whether they had heard the

sound cue during the nap, with the option to choose one of three responses: “Yes,” “Not sure,”

or “No” (Table 4). In the open-ended portion of the exit questionnaire, n = 2 participants men-

tioned a sound when asked if anything during the IAT or counterbias training indicated the

purpose of the experiment to them, but no participants mentioned the sound cue in response

to any other questions. None of the n = 31 participants in our analysis reported hearing the

sound cue in either the verbal report or exit questionnaire. No verbal postnap response was

recorded for n = 1 participant; we included this participant in our analyses because they chose

“No” on the exit questionnaire. There were no participants who reported hearing the sound

cue verbally, and then reported not hearing it on the exit questionnaire, and we are thus confi-

dent that the n = 1 participant whose verbal response was not recorded did not hear the sound

cue during the nap.

Table 3. Implicit bias levels by condition.

Cued Uncued

mean ±SD mean ±SD
Baseline .52 .36 .60 .45

Prenap .21 .51 .30 .44

Postnap .31 .44 .25 .48

1-week delay .40 .39 .40 .47

Implicit bias values are the average D600 score for each timepoint.

https://doi.org/10.1371/journal.pone.0211416.t003
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Discussion

In this replication study, we failed to find evidence that TMR strengthens the effects of

counter-bias training, either immediately or after a 1-week delay. This decreases our confi-

dence that TMR can be used to reduce implicit social biases.

Importantly, this failure to replicate does not necessarily indicate that Hu et al.’s [6] report

was a false positive–our failure to detect a cueing effect could be a case of Type II error. At the

same time, there are several reasons why Type II error is not the most likely explanation for

our results. First, the current replication was well-powered to detect an effect of the size

reported by Hu et al. [6] (power of 0.9 to detect the originally reported effect of dz = 0.62).

While it is well known that published studies tend to overestimate the size of a true effect, in

this case, if the true effect of cueing on bias reduction were even 25% smaller than that

reported by Hu et al. [6] (dz = 0.47), power of this replication study would still be 0.7. Second,

the cueing effect we observed is in the opposite direction and is significantly different from the

effect reported by Hu et al. [6] (Fig 6). Finally, although the 95% confidence interval of our

non-significant effect is consistent with a very small decrease in cued bias (Hedges’ g = 0.19),

the size of this effect is too small to have been reliably detected by either the original study or

our replication. Taken together, these observations suggest that the current cueing effect is sig-

nificantly different from that reported by Hu et al. [6], and unlikely to indicate simply a noisy

estimate of the same underlying true effect.

There are some limitations of this study. First, at the outset of this study, a larger sample

size would have been ideal. However, our 95% confidence interval is non-overlapping with

Fig 4. Change in implicit bias levels at the immediate and one-week delay tests. Cued and uncued bias did not change

differentially from the prenap test to the postnap or 1-week delayed tests. Furthermore, cued bias increased numerically (though

non-significantly) at both points and relative to uncued bias.

https://doi.org/10.1371/journal.pone.0211416.g004
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that of Hu et al. [6] (Fig 6), encompassing only bias reductions too small to have been detected

by the original study. This suggests that the precision of this replication is sufficient to draw

meaningful conclusions [35]. Second, it is possible that there was a difference between our pro-

cedure or participant sample and that of Hu et al. [6] that influenced the results. There were a

few minor procedural differences: The post-nap verbal inquiry about noise was asked immedi-

ately after the nap in our study, and after the post-nap IATs in Hu et al. [6]; and the partici-

pants in Hu et al. [6] were compensated through course credits, whereas in the current study

n = 19 received course credits and n = 12 received a cash payment (Table A in S1 Appendix).

Though it is possible that these differences could have influenced the results, there is no a pri-
ori reason to believe so; moreover, when taking compensation type into account, there was still

no effect of cueing (prenap vs. postnap, Cueing x Time interaction: F(1,29) = .91, p = .35).

Additionally, a larger portion of our participants entered REM sleep (81%, Table B in S1

Fig 5. No association between minutes in SWS x minutes in REM and differential bias change.

https://doi.org/10.1371/journal.pone.0211416.g005

Table 4. Sound cue reporting.

Reported Hearing Cue on Verbal Report?

Reported Hearing Cue on Exit Questionnaire? No Maybe Total
No 26 2 28
Maybe 2 0 2
Total 28 2 30

Participants’ responses to the postnap verbal inquiry and to the exit questionnaire. A response was not recorded for

n = 1 participant; this participant reported that they did not hear the sound cue on the final exit questionnaire.

https://doi.org/10.1371/journal.pone.0211416.t004
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Appendix) than did the participants in Hu et al. [6] (60%). Here, we note that an increased

amount of REM in our sample would, if anything, have been expected to increase the effect of

cueing, as REM is identified as a crucial mediator of the effect in Hu et al. [6].

Finally, we reiterate the possibility that our results could reflect an underestimation of a

true effect that was overestimated in Hu et al. [6]. Although we do not consider this to be the

most likely scenario, if this were the case, a meta-analytic summary effect derived from com-

bining the two studies would be a useful guide as to the probable size of this effect. Using a ran-

dom-effects model weighted by study precision, this summary effect is estimated to be quite

small, at Hedges’ g = -.198. This effect would be difficult to detect in future studies, and argu-

ably of little practical consequence in thinking about effective interventions to apply at the

individual level.

Although we do not find evidence that TMR can make counter-bias training more effective,

our data are somewhat consistent with the hypothesis that the computerized counter-bias

training procedure employed in these studies is effective [7]. Implicit bias as measured by the

IAT was reduced by 67% for race and 37% for gender after training, and was significantly

reduced after one week (ηp
2 = 0.15). While this reduction in bias is consistent with an effect of

the counter-bias training, it could also represent an unrelated effect of repeated testing on the

IAT, as neither our current study nor Hu et al. [6] included a control group who was not pro-

vided with counter-bias training.

It may be possible to adapt or modify this counter-bias training procedure in other ways in

order to make it more effective. However, recent research using counter-bias procedures to

Fig 6. 95% CIs for the immediate postnap effect of cueing in Hu et al. [6] and in our replication attempt. The

confidence intervals do not overlap, suggesting that the two studies are not estimates of the same effect. However, our

confidence interval overlaps with 0, allowing the possibility of a small effect (Hedges’ g = -0.18) in the direction

observed by Hu et al. [6].

https://doi.org/10.1371/journal.pone.0211416.g006
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reduce implicit social biases has had mixed success, and has not demonstrated that such proce-

dures can in turn reduce explicit biases or affect behavior [7,36–40]. In summary, this failure

to replicate casts doubt on the claim that TMR could be used to strengthen counter-bias train-

ing and meaningfully reduce implicit social biases.
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