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Predicting fertility from sperm motility landscapes
Pol Fernández-López 1, Joan Garriga1, Isabel Casas2,3, Marc Yeste 2,3,4 & Frederic Bartumeus 1,4,5✉

Understanding the organisational principles of sperm motility has both evolutionary and

applied impact. The emergence of computer aided systems in this field came with the

promise of automated quantification and classification, potentially improving our under-

standing of the determinants of reproductive success. Yet, nowadays the relationship

between sperm variability and fertility remains unclear. Here, we characterize pig sperm

motility using t-SNE, an embedding method adequate to study behavioural variability. T-SNE

reveals a hierarchical organization of sperm motility across ejaculates and individuals,

enabling accurate fertility predictions by means of Bayesian logistic regression. Our results

show that sperm motility features, like high-speed and straight-lined motion, correlate

positively with fertility and are more relevant than other sources of variability. We propose

the combined use of embedding methods with Bayesian inference frameworks in order to

achieve a better understanding of the relationship between fertility and sperm motility in

animals, including humans.
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Gametes are the fundamental transferable units carrying the
genetic variability and information that drive the evolu-
tion of populations, and ultimately, the survival of species.

In farm animals, such as pigs or cattle, the information content in
gametes is adjusted to millions of years of selective pressure
conducted by breeders and, in more modern times, artificial
insemination centres1. This pressure is targeted to augment the
fertility of animals2, and therein meat production, potentially
ignoring other traits.

To accurately predict fertility outcomes, numerous sperm
characteristics are examined3–5, being sperm motility one of the
most frequent6–8. In the attempt to make quantitative and
objective measures of motility, Computer-Assisted Sperm Ana-
lysis (CASA) systems have played a prominent role7,9–11. CASA
algorithms quantify different parameters in single sperm cells,
providing big datasets of sperm motile properties12.

The ability to move, from single cells to complex organisms,
impacts on encounter success in a wide range of ecological contexts:
food search, mating, reproduction, and species dispersion amongst
others13. The motile capability of sperm, one of the few cell types
common in all mammals, is expected to be shaped at optimising
oocyte encounter and fertilisation. Many studies have tried to
unravel the underlying physiological mechanisms and the relevance
of sperm motility in reproductive success. However, the relationship
between sperm motile properties and fertilising ability remains
unclear. While literature points out some association between
motility parameters and fertility (e.g., ref. 14–17), most reports
acknowledge poor predictability and practical application. This is so
by a number of reasons. First of all, fertility depends on a number of
interrelated factors other than sperm motility, where full genotype to
phenotype individual mapping might be needed. Second, sperm
motility is in itself highly variable, and characterising such baseline
variability is not an easy task. Moreover, sperm undergo capacitation
in the oviduct, a process that transforms several phenotypic aspects
of sperm, including changes in motility patterns18. Only a capaci-
tated spermatozoon is able to fertilise an oocyte, but it is difficult to
mimic the oviduct conditions in the laboratory. Another big chal-
lenge is that fertility is not uniquely defined. Some of the commonly
used traits to characterise fertility are: (i) the offspring at each
delivery (litter size)19,20, (ii) the proportion of inseminated females
that do not return to the oestrus (non-return rate)21–23, (iii) the
proportion of inseminated females that become pregnant (concep-
tion rate)24 and (iv) the proportion of inseminated females that
reach farrowing (farrowing rate, FR)16. Finally, the selective pressure
that farms and artificial insemination centres exert on animals
clearly limits our ability to understand the role of natural sperm
motility variation in overall fertility for such productive species25.

In the present study, we shed light on the relationship between
fertility and sperm motility, using the pig as a model organism.
We focused on two main aspects: the need for a proper char-
acterisation of sperm motility, and the need for a proper esti-
mation of fertility, using the farrowing rate as metrics. To that
extent, we propose: (i) a multivariate and discrete characterisation
of the sperm movement to determine elementary behavioural
modes or stereotypes26–28, and (ii) a Bayesian multi-level
regression framework to model determinants of fertility varia-
tion, and compare motility behavioural modes with other
potential sources of sperm motility variation, which in turn,
requires a proper assessment of the uncertainty associated to both
regression coefficients and fertility estimates.

Results
High variability in boar sperm motility. Sperm were char-
acterised based on four motile-related properties: Curvilinear

velocity (VCL), straight-line velocity (VSL), amplitude of lateral
head displacement (ALH) and beat-cross frequency (BCF). These
are parameters that describe different aspects of sperm move-
ment, and in principle, do not correlate or depend on one
another. Using these four variables, we used a t-SNE algorithm to
depict a bi-dimensional landscape where similar motile properties
were packed together, conforming high-density peaks. In Figure
S1 (Supplementary Note 1), we display the features that were used
to characterise sperm motility.

Briefly, t-SNE computes pairwise distances in multivariate
space, and represents the data in a 2D embedded map
responding to one fundamental principle: similar behaviours
should be close together. Accordingly, the closer the values of the
four variables describing sperm motion are, the closer these
motility behaviours are to one another, and thus, the closer they
are found in the 2D embedding. In consequence, this two-
dimensional space conforms to a complex landscape of peaks
and valleys, where high densities of points evidence similar
behaviours that are observed frequently (i.e., behavioural modes
or stereotypes), whereas low-density areas depict uncommon
behaviours. In order to unravel this structure, we computed a
kernel of density over the position coordinates of this space
(Fig. 1a) and discretized the landscape into behavioural clusters,
using a watershed algorithm (Fig. 1b). As a result of this whole
procedure, the motion patterns of more than 63,000 sperm cells’
were grouped into 39 clusters.

The highly heterogeneous distribution of sperm motility patterns
(Fig. 1) shows the existence of stereotypical behaviours in between a
large space of variability. Stereotypes are sperm motility patterns
that are recurrent and more abundant than others. Therefore, these
are more likely to have important biological meaning.

We can map (Fig. S2 and Supplementary Note 2) the values of
the four motility features (VCL, VSL, ALH and BCF) in the
embedded motility landscape. In Fig. S2c we also show other
variables that are derivatives of the four used to build up the
landscape. This visualisation allows us to identify regions of well-
differentiated behaviours (e.g., where are the faster sperm located)
and some global patterns for each input feature (e.g., VSL mainly
follows a vertical trend, with low values at the bottom of the
landscape and high values at the top).

Fig. 1 Sperm motility landscape resulting from a (Barnes-Hut
approximation) t-SNE dimensional reduction. a Kernel density showing
the high- and low-density regions within the landscape, computed in a
200 × 200 cell grid with a neighbouring parameter representing a 1% of the
dataset size (perplexity= 639). b Clustering using a watershed algorithm
allowing the discretization of data into clusters (delimited by the white
lines), and depicting the highest density peak within each cluster (black
triangles). The legend describes the colour gradient in the density kernel.
This analysis involves functions "bdm.pakde" and "bdm.wtt" in the bigMap
R package. See also "Sperm motility landscape" in Methods and Garriga &
Bartumeus 201875).
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Interestingly, VCL and ALH shared quite similar distributions,
while VSL and BCF were distributed differently, pointing out that
VCL and ALH are somehow related.

One of the strengths of t-SNE methods is obtaining a
comprehensive multivariate visualisation, that offers a complete
perspective across scales of all the information contained in the
landscape. We provide here a clear example by contrasting a
t-SNE approximation to the supervised bi-variate sperm classi-
fication of CASA based on average path velocity (VAP) and
straightness (STR= 100 × VAP/VSL). Figure S2b shows that
CASA sperm motility classes match almost perfectly with VAP
patterns, and therefore, explain a limited diversity of the motility
variability found in the population.

Sources of variability in sperm motility exist at different levels:
among cells (spermatozoon), among ejaculates (from the same
individual), and among individuals29. Some examples of this inter-
and intra-individual variability are depicted in Fig. S3 (Supplemen-
tary Note 2). In nature, inter-individual diversity at genotypic and
phenotypic levels usually defines individual fitness, and acts as the
pool for further adaptation and survival improvement. However, in
the case of sperm, intra-individual variability may also be important
for fitness. Interestingly, we observed that the sperm collected from
a particular boar on different days (different ejaculates) showed the
same amount of variation in terms of motility patterns as the one
observed between individuals; in addition, some males had much
more restricted sperm motility landscapes than others. This could
mean that no particular sperm behaviour can be attributed to a
given individual, but rather boars share a spectrum of sperm
motility patterns that may have separate functions in the ejaculate,
including their suitability for fertilisation.

Sperm motility influences fertility. A simple approach to assess
fertility is to consider the proportion of successes versus the number
of attempts. This quotient is known as the farrowing rate (FR) and
corresponds to the number of successful delivery (farrowing) with
respect to the times that mating (or insemination) has occurred.
Notwithstanding, this estimate is sensitive to sampling efforts and
can be misleading and overrate or underrate "true" fertility (e.g.,
1 single success in 1 attempt would be interpreted as a 100%
chances of success). Consequently, we used Bayesian logistic
regressions to estimate individual fertility as the probability of
success per reproductive event. Such framework provided us with
median fertility estimates, i.e., unbiased statistical estimates of the
FR, and their associated credible intervals, controlling for sampling
effort by adding each boar as a random effect.

We conducted a series of models, from simple to complex,
assessing different sources of variability with potential impact on
fertility (see Methods, Section "Modelling Fertility"). We first
explored how intra- and inter-variability at the boar level, and sow
parity (number of pregnancies per sow) affected the predictability
of boar fertility (Table 1, models M0-M2). These three models
(M0-M2) represented simple estimations of boar fertility that do
not require sperm motility data, but are likely an accurate estimate
of a FR. Model M3 (Table 1) incorporates the information of
sperm motility per each of the boars, as the relative proportions of
sperm distributed in 11 motility clusters. Indeed, we evaluated the
predictive capabilities of model M3 with different landscape
partitions (see Method Section "Modelling fertility" and Fig. 6).
We tested an informative subset of landscape configurations
(namely from 15 to two clusters) being the landscape with 11
clusters the one with the largest predictive capability, i.e., ELPD,
expected log pointwise predictive density.

Our results (Table 1) show that adding information on sow
parity and sperm motility (model M3) appears to be increasing
the predictive accuracy (i.e., larger ELPD). On the contrary, the

ejaculate variation does not seem to be adding significant
information to the models (ELPDM2 < ELPDM1). However, the
differences between all the models are small, and not too relevant
when considering the corresponding errors. We selected model
M3 for further analysis and to assess which predictors in the
model had a higher influence in FR.

In order to evaluate the impact of each parameter in the model,
both coefficient values and uncertainties need to be taken into
account. Coefficients close to zero, or with large overlap across
zero are much less meaningful.

Contrarily, coefficients whose 50% credible intervals are on
entirely positive or negative regimes are expected to be more
relevant and robust, as a greater portion of their distribution
surpasses the zero value. Although a positive contribution of the
sow parity coefficient was observed (Fig. 2a), the major effects in
the model were due to the 11 sperm motility clusters (Fig. 2b).
Moreover, one should note that male variability was not much
relevant, as the intercepts (and their distributions) showed little
variation around zero (Fig. 2a). This is consistent with the results
shown in Table 1, in which both sow parity and sperm motility
behaviours appear to improve model performance.

Our results showed that sperm motility clusters could be either
positively or negatively associated with fertility (Fig. 2b). We
assessed which general sperm motility variables were character-
istic of each cluster in order to infer what sperm motility
behaviours may correlate positively or negatively with fertility.
Broadly, larger values for VCL, VSL, ALH, VAP, LIN, STR and
WOB were associated with reproductive success (Fig. 3a).
Contrarily, larger values of BCF had a negative correlation to
fertility. Even though all differences reported here exhibited a p
value < 10−3, not all of them were relevant to the same extent.
Namely, ALH, VAP, STR, LIN, and VSL, had differences that
ranged from 1.2 to 1.5 fold, whilst BCF, WOB and VCL displayed
<1.2-fold differences.

We also colour-depicted the landscape, according to regression
coefficient signs (Fig. 3b). This visualisation divides the landscape
in two regions: the upper left region corresponds to clusters that
have positive regression coefficients (positive impact on fertility),
and the bottom right clusters have negative regression coeffi-
cients, thus, a negative effect on fertility. Clusters four and eight
break this pattern, as their sperm motility features show a positive
and a negative impact on fertility, respectively (Figs. 2b and 3b).
A more detailed (per cluster) analysis is shown in Supplementary
Note 3 and Fig. S4.

Finally, we assessed the overall predictive performance of the
model. We compared the FR of each animal with the fertility
estimates obtained from the model (Fig. 4). Most of the males

Table 1 Model comparison.

Model Boar Sow parity Ejaculate Motility ELPD
difference

SE

M0 x - - - −2.8 3.0
M1 x x - - −1.9 1.9
M2 x x x - −2.6 1.9
M3 x x - x 0 0

A series of models were constructed as described in methods, "Fertility modelling" section. Null
models (M0, M1, and M2, without motility information) were compared to models based on
different landscape configurations, M3 being selected with an 11-cluster configuration, using an
approximation of leave-one-out cross-validation and relative predictive performances (ELPDs) as
scoring metrics (ELPD= 0 corresponds to the highest predictive ability). The model parameters
are: Boar= inter-boar variability (as random effect), Sow parity= number of cycles of pregnancy of
the sow, Ejaculate= intra-boar variability (as random effect), Motility= proportions of sperm in
motility clusters, and the proportion of static spermatozoa of each boar. The last column (SE)
shows the standard error of the ELPD difference, relative to the model with the highest ELPD (M3).
See details about ELPD in loo R package documentation and Vehtari et al, 201779).
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exhibited similar predicted fertility and FR, with slight differences
both in values and ranking (average Kendall’s tau ≈ 0.826,
p < 10−5 under 1000 permutations, Fig. 4a). Despite the high
similarity between FRs and the predicted estimates, the later allow

quantifying the uncertainty of our predictions (Fig. 4b), providing
fair information about the reliability of the estimated fertility,
crucial in statistical inference30,31.

Our results suggest the presence of three main groups: (i) boars
with high fertility rate estimates (above 0.9) (positions 1–7); (ii)
boars with intermediate fertility rates (between 0.8 and 0.9) and
higher uncertainty (positions 8–13); (iii) boars with low fertility
rates (below 0.8) and high uncertainty in the estimates (positions
14–17).

Both the relatively high uncertainties in some of the individual
fertility predictions, and the similar fertility estimates of some of
the boars, can affect the overall ranking (Fig. 4b). This is due to
differences in sampling from the posterior distribution when
predicting. For this reason, two measures are presented along
with the estimated fertility to assess their robustness (Fig. 4a): a
pseudo-probability of a particular boar to be ranked in a
particular position, and the entropy of these probabilities
(diversity in ranking of each boar). These two measures are key
for the interpretation of the results. For instance, Boars 11 and 5
(Fig. 4a) showed a relatively low probability of being ranked in
the second and third positions, respectively. However, the entropy
in these particular boars is low, meaning that the range of
positions in which they could be ranked is small, likely comprised
between the second and the fifth position. In general, boars in the
middle of the ranking (i.e., from positions 7–14) were found to be
more sensitive to this variation (lower probabilities and higher
entropies) than boars in the top or the bottom of the ranking.

We also tested whether the whole protocol of analysis was robust
across different dimension reduction methods (see Supplementary
Note 5). As depicted in Figs. S6 and S7, the results did not change
qualitatively. While the ranking obtained through each method had
some variations (most likely due to the large prediction uncertain-
ties), the same boars were consistently found either at the top or at
the bottom of the ranking regardless of the method, and were ranked
in a similar position (Kendall correlations: cor(BH∣FIT)= 0.779, p

Fig. 3 Impact of sperm motility features on fertility. a Boxplots of the motility features (VCL, curvilinear velocity; VSL, straight-line velocity; ALH lateral
amplitude of head displacement; BCF, beat-cross frequency; VAP, average path velocity; LIN, linearity; STR, straightness; and WOB, wobble) grouped by their
effect (either positive or negative) on fertility, according to model M3. Mean values (positive-negative) for each motility variable: ALH (3.94−3.26 μm), VAP
(48.72−40.29 μm/s), STR (71.61−54.26%), LIN (39.60−28.49%), VSL (34.94−23.64 μm/s), BCF (10.03−10.14 Hz), WOB (54.50−48.52%) and VCL
(90.80−79.19 μm/s). Mean comparisons between the two groups (two-sided unpaired T-student tests; number of samples per group: positive= 36482,
negative= 32688) yielded a p value < 10−15 in all motility variables, except for BCF (p value < 10−3). Both groups met the assumptions of T-student test in all
variables tested. b 11-cluster motility landscape showing the clusters with positive (light green) and negative (dark green) correlation with fertility, according to
model M3. The high-density peaks (labelled with the cluster number) are also depicted, as well as contour lines to help visualise the stereotypes (as in Fig. 1).

Fig. 2 Estimates of the coefficients and their uncertainty in the fertility
model. The medians of the coefficients are depicted with a clear point, thick
black bars represent the 50% credible intervals (C.I.), and the thin lines
represent 95% C.I. a Coefficients of animal-related factors (sow parity,
individual boars). Sow parity corresponds to the number of times that the
sow completed a cycle of insemination. The boars (from 1 to 17) are
intercepts that vary amongst individuals (usually known as random effect).
b Coefficients corresponding to sperm behaviour related factors (the
proportion of non-motile sperm, and the relative proportions of sperm in
each of the motility clusters represented in the landscape). Note the
different values in the x-axis (coefficient magnitude) for a, b.
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value= 1.3 × 10−5; cor(BH∣UMAP)= 0.647, p value= 2.9 × 10−4;
cor(FIT∣UMAP)= 0.662, p value= 2.1 × 10−4). This reinforces the
presence of 3 groups of breeding males, as described above: (i) boars
with high fertility rate estimates (above 0.9), (ii) boars with
intermediate fertility rates (between 0.8 and 0.9) and higher
uncertainty and (iii) boars with low fertility rates (below 0.8) and
high uncertainty in the estimates.

Capacitated sperm motility. Sperm are ejaculated along with
seminal plasma, which, amongst other functions, protect them
from the harsh environment of the female reproductive tract32.
As sperm progress in their journey towards the site of fertilisa-
tion, they encounter a gradient of molecules that modulate their
behaviour. In addition, late capacitation events occur in the
female oviduct (also known as Fallopian tube in humans) and
consist of a series of physiological changes that modulate sperm
function33–35, including alterations in their motility patterns.
Meanwhile in vivo imaging technologies are being developed and
optimised36, it is possible to mimic, in vitro, the biological context
these sperm cells encounter along their journey through the
oviduct. As capacitation is mandatory for a sperm cell to be able
to fertilise the oocyte, we explored how this event transforms the
behaviour of sperm in terms of motility.

We generated a dataset consisting of sperm capacitated
in vitro. These new data accounted for 3851 motile spermatozoa,
coming from nine different individuals. In order to evaluate
whether or not new motility patterns were emerging in response
to this process, we applied a similar t-SNE protocol to a combined
dataset that included both capacitated and fresh sperm. A quick
exploration of the data, showed that ~92% (3543 of 3851) of
capacitated sperm represented new combinations of the four
motility parameters assessed (VCL, VSL, ALH and BCF). That is,

most of the sperm in capacitating conditions exhibited new
motile properties that were not present in the fresh sperm dataset.

In a deeper analysis, the behavioural landscape revealed that
~52% (1853 of 3543) of capacitated sperm were concentrated in a
very delimited region, the island-like cluster at the top of the
embedded landscape (Fig. 5). Indeed, this area represents extreme
values in VSL (Fig. 5a), with an interquartile range from 89 μm/s
to 139 μm/s, and maximum values up to 200 μm/s (not observed
in fresh sperm). The other half of capacitated sperm were
allocated mainly in three other regions; the top left corner, the
middle left and the middle right (Fig. 5b, c).

Such areas of the landscape were characterised by low values of
BCF (BCF < 10 Hz), and low values of VSL, especially in the more
peripheral clusters (top left corner and middle right). Arguably,
these could be non-capacitated sperm, that did not yet respond to
the capacitating medium, or contrarily, responded too early and
were thus found in a state of decay. Yet, in general, capacitated
sperm accounted high-density peaks (behavioural stereotypes) in
specific regions of the landscape where the density of fresh sperm
was visibly lower or even null (Fig. 5c).

Discussion
A promise of the current behavioural data revolution and asso-
ciated methods37 is to generate new questions and shed light into
old unsolved ones. Despite being explored experimentally for long
time38–40, it is still difficult to unravel the main drivers of
reproductive success and, more specifically, knowing what is the
role of sperm motility. At the root of this problem, there are very
fundamental questions about how to quantify sperm motility or
adequately address different sources of variability when making
inferences between sperm motility and fertility. To gain knowl-
edge on these issues, we have combined the use of large datasets,

Fig. 4 Predicted fertility per boar. The values represent the median predicted fertility, expressed as probability of success (successful oocyte fertilisation).
a Table of comparison between the estimated (posterior median) fertility, and the farrowing rate (FR), a commonly used measure of fertility. The boars are
ranked in descending order according to the predictions of the model. The pseudo-probability (in a 1000 iteration bootstrap) is presented for each boar to
be ranked in the current position. Additionally, entropy (calculated as �∑17

i¼1 pi lnðpiÞ, where p is the probability of belonging to ith position) is used as a
measure of position diversity for each of the boars. Namely, a higher entropy corresponds to boars that can be found in a broader range of positions,
whereas a lower entropy corresponds to more robust boars. The Kendall's correlation between the predicted rank and the FR rank was calculated at each
bootstrap iteration, yielding a mean correlation of 0.826 ± 0.055 (ranging from 0.662 to 1.000), with a mean p value of 1.7 × 10−6 ± 6.2 × 10−6 (ranging
from 5.5 × 10−15 to 8.2 × 10−5). b Predictions with their corresponding uncertainty around the median (open dot). 50% credible intervals (C.I.) are
represented by thick, black lines, while 95% C.I. are represented with blue thin lines. Boars are sorted in descending order, according to their estimated
fertility (median). The vertical dotted lines represent thresholds at 0.8 and 0.9, corresponding with the categorisation of boars (relatively low or high
fertility, respectively).
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dimension reduction machine learning methods to characterise
sperm motility behaviour, and Bayesian statistical inference.

Previous work on sperm motility used K-means and similar
multivariate classification methods, leading from two to 11
clusters4,17. These studies put their focus on identifying sperm
subpopulations and their possible biological functions. These
methods are certainly a step forward in the characterisation of
sperm behaviour. Yet, these methodologies have some limitations
compared to t-SNE based and similar methods. Amongst them,
(i) they offer limited options for visualisation, that is, exploration
of comprehensive behavioural landscape across scales, (ii) some
of them are supervised (i.e., a number of expected clusters must
be specified as a parameter for the algorithm), and (iii) do not

explicitly consider behavioural modularity on the basis of simi-
larity, i.e., motility stereotypes, as t-SNE (and other machine
learning) methods do.

The presumption of motility stereotypes stems on a much
broader view of behaviour as shaped by hierarchical and modular
organisational principles26,37. The underlying concept is that
behavioural variability comes in modules and is hierarchically
organised. Such a view can be assessed comprehensively by using
different perplexities and by merging clusters with some rea-
sonable criteria (Garriga and Bartumeus, 2021, bigMap R
package41). Choosing the right scale of observation is always
difficult and depends on the scientific question or goal. Here, we
have subordinated the choice of the scale of observation, and
hence the number of clusters, to statistical inference (fertility
predictions). As a potential drawback, statistically driven land-
scape partitions may limit their biological meaning or interpret-
ability. Nonetheless, we found reasonable interpretations of the
resulting landscape partition (the one that optimised the pre-
dictability of male fertility) enabling us to find specific motility
features that contribute positively to fertility, and other than play
the contrary role. These results are robust, as variations in our
procedure (i.e., use of different machine learning methods to
build the behavioural embeddings) ended up with qualitatively
comparable landscapes, with 8–15 clusters presenting similar
predictive capacities and sperm behavioural semantics.

Another key aspect is that the highly variable and multi-
factorial nature of reproductive success translates into large
uncertainties in any fertility prediction. Notwithstanding, pre-
dictions are possible, and indeed, male fertility ranks obtained
with Bayesian inference methods are not very different from
crude FR quotients. The latter is often interpreted as a ground
truth measure of fertility. However, the FR is just an estimate of
fertility, also subject to biases as any other (e.g., due to sampling
effort). The value of our method, in this case, is to generate a
more accurate and less biased estimate of fertility30,31, with a
well-defined uncertainty associated with them. The approach
suggested is valid in many other contexts in which behavioural
landscapes may be used to infer other biological features.

In concordance with previous results29, we have observed that
sperm motility variation exists both at animal and ejaculate levels.
Hence, different boars cover different regions of the overall sperm
motility landscape, and ejaculates belonging to a particular boar
exhibit the same range of variation as the one observed for dif-
ferent individuals. Large variability in sperm motility may be
beneficial in contexts of constant change that demand adaptation
both at individual and population levels. Because sperm encounter
different types of obstacles in the female reproductive tract42,
greater sperm diversity could maximise the probabilities of over-
coming them, increasing the chances of success. Our data suggest
that, despite decades of artificial pig selection, some sperm beha-
viours promote better reproductive performance than others.
Importantly, stereotyped behaviours (frequent and characteristic)
occur in regions of the landscape with a positive and negative
correlation to fertility. We identified that behavioural patterns
producing linear and straight trajectories (mean LIN= 40%; mean
STR= 72%) and high velocities (mean VCL= 91 μm/s; mean
VSL= 35 μm/s; mean VAP= 49 μm/s) were related to more fer-
tile boars. On the contrary, boar sperm cells showing lower and
more variable speeds and less directional motion, correlated
negatively with fertility.

Altogether, these results point out the existence of an optimal
subpopulation of sperm within a much more heterogeneous pool
of behaviours that are not related to oocyte fertilisation. Further
studies to understand the role of the large variability observed in
sperm motility, and in particular, the presence of suboptimal
motility sperm behaviours, are much warranted. Of discussion is

Fig. 5 Sperm motility features of fresh and capacitated sperm. a Quantile
map of the motility features used in the t-SNE (VCL curvilinear velocity,
VSL straight-line velocity, ALH lateral amplitude of the head displacement,
and BCF beat-cross frequency). Colours represent an interval of values
(eight percentiles, from 0–12.5 to 87.5–100) of each variable amended for a
gradient visualisation. b Location of fresh sperm (purple) and capacitated
sperm (green). Sperm labelled as capacitated were kept in a medium that
elicits in vitro capacitation (containing albumin, bicarbonate and calcium,
amongst others). The left panel is a pointwise representation of capacitated
and fresh sperm. The right panel depicts a cell-wise hard clustering in a
200 × 200 grid. Cells were assigned "capacitated" or "fresh" depending on
the density of points in each category (i.e., if a cell had a higher proportion
of fresh sperm, it was labelled as fresh, and capacitated otherwise).
c Heatmap of the landscape distribution of capacitated (left panel) and
fresh sperm (right panel).
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whether suboptimal sperm could serve as the basis for further
sperm motility selection43,44, or else become relevant when
combined with other external factors affecting reproductive suc-
cess. For instance, there is evidence that the oviduct of the female
responds to insemination at a transcriptomic level45, pointing out
the existence of adaptive mechanisms that could have a role in
sperm selection.

Of note, we selected young males to maximise variability in FR,
as old boars have already been selected based on their fertility.
Hence it is possible that older boars (positively selected for high
FRs) would exhibit less sperm variability, and a larger prevalence
of stereotyped behaviours positively correlated with fertility.
Similarly, it might well be the case that natural variability could be
even much larger than the one observed in these young pigs.
Comparing natural and artificially selected sperm motility pat-
terns across ages, could provide useful information to understand
which specific sperm behaviours have survived this selection in
domestic animals, and potentially identify their role in
reproduction.

Contrary to the diversity of behaviours that fresh sperm dis-
play, capacitation exerts a dramatic transforming effect, reducing
this heterogeneity to a rather characteristic, unique behaviour.
Although capacitation is known to shape sperm motion, there is a
discrepancy in regards to what its actual effect is. While some
authors have reported an increase in velocity, linearity and
straightness18,46, others claim a decrease in linearity paired with
an increase in VCL47.

We have observed two distinctive behaviours in sperm cells
that were incubated in capacitating conditions. The most repre-
sentative behaviour was characterised by extremely high values of
VSL, in comparison to the distribution observed in fresh, unca-
pacitated sperm. The rest of the experimentally-conditioned
sperm were localised in two areas of the landscape, both depicting
low values of BCF, and mostly low VSL values. This latter
behaviour is possibly due to differences in the sensitivity of each
cell to experimental conditions48, or because of the agglutination
that occurs in the presence of Ca2+49 and prevents the free
movement of the sperm. It is worth noting that both the “fast”
and “slow” behaviours were located in the upper half of the
landscape, in regions with the lowest range of BCF values.
Although our characterisation of movement was made based on
the head of sperm, this low BCF may correspond to the so-called
vigorous flagellar beats: more strength in the flagellar movement
seems necessary to achieve higher velocities with low frequency in
the head movement (BCF).

According to our results, there is a notable distinction between
fresh and capacitated sperm behaviours. These two differentiated
patterns could indeed respond to two different needs or
functions50. On the one hand, sperm cells have to reach the site of
fertilisation (i.e., the oviduct). There are evidence that sperm
transport along the female tract is aided by contractions of the
myometrium51–53. This could relegate fresh sperm behaviour to a
different role, which would not only be focused on reaching the
oviduct, but also on a more plastic and diverse motion. Therefore,
fresh sperm diversity could respond to a more elusive reactive
behaviour, better at evading the immune system of the female,
penetrating the cervical mucus, etc.

On the other hand, sperm motility would have a much more
specific role in oocyte fertilisation, and their behaviour would
change accordingly. For that purpose, sperm are known to be
transported to a reservoir in a region of the oviduct54–57, where
they bind the epithelium58,59 and await the arrival of the oocyte.
Only then, capacitation gradually enhances the penetrating
behaviour, shifting to the higher speed needed for sperm to
release from the reservoir60,61, penetrate the zona pellucida62–64

and ultimately fertilise the oocyte.

Previous works have reported the existence of different factors
that correlate to fertility in mammal species. Amongst them,
sperm motility and morphology have been repeatedly studied to
find easily measurable parameters that could be useful for fertility
inference (e.g., 14–17). These studies have observed a certain
predictive value in sperm motility and morphology, characteris-
ing it through single-point estimates (i.e., mean values). In
addition to these features, sperm DNA integrity has also been
described as an important factor that (negatively) affects
fertility65–67. DNA damage (as well as other non-apparent phy-
siological defects) could indeed affect sperm functionality and
behaviour. DNA integrity evaluation, however, is not as routinely
performed as sperm motility and morphology analyses because it
is more difficult to implement on a daily basis.

Behavioural landscapes seem more useful to study fertility than
previously used methods, as the 2D embedding of sperm beha-
viour encompasses all the variability of the data, which indeed is
hierarchically organised in behavioural modules. This allows us to
study the relative prevalence of the different modes in explaining
male fertility and how determinant sperm motility on fertility is,
compared to other sources of variability (boar, ejaculate, sow
parity). The predicted posterior distributions of male reproduc-
tion success revealed their estimated ratio according to our
model, which turned out to be quite similar to FR, both in value
and in ranking. While most boars showed small ranking differ-
ences between the model and the FR, some noticeable differences
also existed (e.g., Boar 10). This could be due to either a higher
uncertainty in these particular males, or in some of the regression
coefficients. Likely, more data could improve the model and
increase the accuracy of predictions.

In general, our model corroborated that most boars have high
fertility ratios, despite our dataset consisting of young individuals
where a decade-time artificial selection based on reproductive
success was not expected to be the main driver (as it happens in
old boars). This selective pressure on farm animals clearly limits
access to animals with low fertility, hindering the possibility to
obtain unbiased datasets. In any case, a proper estimation of the
errors in both the coefficients and predictions is crucial to assess
the potential limitations of the model and correctly interpret its
accuracy. With the addition of sperm motility features, the
uncertainties in the predictions diminished, resulting in a gain in
the accuracy of the model.

This work represents a further step in understanding the
complex interaction between sperm motility and fertility in a
mammalian model. However, motility is only a part of a much
wider network of factors. It is likely that some additional infor-
mation at the cell level could shed some light on the mechanisms
underlying the relationship between sperm behaviour and ferti-
lisation success. Along these lines, coupling sperm motility with
sperm morphology, or other information reflecting the cell's
physiological state (such as DNA integrity) could provide some
insight into the specific role of sperm motility behaviour. Fur-
thermore, it could potentially reveal the importance of sperm
motility stereotypes, and whether there is a relationship between
the distinct motility behaviours and the internal state of the cell. It
is also worth exploring the relationship between sperm motility
and other factors indirectly related to fertility, such as sensitivity
to capacitation. Remarkably, the analysis pipeline used in this
paper is not restricted to sperm motility and could be applied to
multivariate datasets obtained with flow cytometry (such as
sperm chromatin structure assays) or other methods.

All in all, we developed a framework (i.e., characterisation of
sperm behaviour, identification of stereotypes, and Bayesian
inference modelling) that (i) is able to predict and reproduce
other fertility estimates (i.e., FR), (ii) visualise the uncertainties
associated to fertility (i.e., discriminate robust and weak
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estimation of fertility) and (iii) be further improved as new
information becomes available (i.e., potential for decreasing
uncertainty around the predictions). This framework could be
applicable to several species, including humans, provided a
dataset with multiple inseminations per male (i.e., as in repro-
duction clinics, where artificial insemination or in vitro fecun-
dation are regularly practised).

Methods
Data collection and processing. A first fertility dataset was provided by Batallé
S.A. (Riudarenes, Girona). Only data comprised in the Spring period (from March
to June) and corresponding to young boars (<13 months) were considered. This
selection was meant to avoid possible seasonal and age effects. According to these
criteria, we analysed a total of 36 ejaculates belonging to 17 different boars of
Piétrain breed. Each ejaculate was used to inseminate from 1 to 25 sows, yielding
from 4 to 32 total inseminations per boar. All animals were healthy and sexually
mature, fed with a diet according to their nutritional requirements and provided
with water ad libitum.

Sperm used to inseminate the sows previously passed different selection criteria.
Namely, the ejaculates had at least a 70% sperm with normal morphology and
motility. Progressive sperm motility was evaluated using a subjective scale, in which
at least a score of 3 (in a scale from 0 to 5) was needed. The ejaculates passing these
criteria were diluted in Duragen (Megapor SL, Zaragoza, Spain) and distributed in
45 mL insemination doses, at a concentration of 30 million spermatozoa/ mL. A
total of three doses were used to inseminate (multiparous) sows. Sows that had not
undergone parity (nulliparous) were inseminated with six doses instead.

Videos of fresh sperm (satisfying the aforementioned criteria) were recorded by
Batallé S.A. as part of the usual procedure of semen quality analysis at the moment
of semen collection. These videos were retrieved and further analysed by us to
obtain individual motile properties for each spermatozoon, using ISAS software
(Integrated Sperm Analysis System V1.0; Proiser SL, Valencia, Spain) with default
settings.

Our dataset consisted of 98,020 spermatozoa, from which 28,850 were non-
motile (not available motility parameters) and 69,170 were motile. For each
spermatozoon, the available motility parameters were: (I) the area of the
spermatozoon head (area, squared microns), (II) VCL (in μm/s), (III) straight-line
velocity (VSL, in μm/s), (IV) averaged-path velocity (VAP, in μm/s), (V) linearity
(LIN= 100 × VSL ÷ VCL, in %), (VI) straightness (STR= 100 × VSL ÷ VAP, in %),
(VII) wobble (WOB= 100 × VAP ÷ VCL, in %), (VIII) amplitude of lateral head
displacement (ALH, in μm) and (IX) beat-cross frequency (BCF, in Hz). Only
motile sperm were considered to build the motility landscapes. Non-motile sperm
were considered as proportion of static sperm per boar in the models.

A second dataset of sperm in capacitating conditions was obtained from other
nine ejaculates belonging to nine different boars of the Piétrain breed, housed and
fed under the same facilities and conditions than the boars in the first dataset.
Ejaculates were transported refrigerated (15 ∘C) to TechnoSperm Laboratory,
University of Girona (Girona, Spain), where sperm samples were incubated at
38.5 ∘C and 5% CO2, in a medium containing bicarbonate, albumin, calcium and
other molecules (Table 2)68–70. This medium is known to elicit sperm capacitation,
and thus modulate their physiology. This dataset consisted of 3851 motile sperm
cells.

Sperm motility landscape. In order to build a motility landscape from a set of
sperm motile properties, we used an implementation of the t-distributed stochastic
neighbouring embedding (t-SNE) algorithm that uses Barnes–Hut approximation
to accelerate the computation of the landscape71. This functionality is present in

the bigMap R package (version 4.5.3, function "bdm.bhtsne"), available in github72.
To explore the robustness of our results, we also used the Fast-Fourier Inter-
polation-based t-SNE (FIt-SNE)73 and the Uniform Manifold Approximation and
Projection (UMAP)74 with the same dataset. We observed that, in qualitative
terms, the results did not depend on the methods used to generate the motility
landscape (Supplementary Note 5).

A matrix of 63,931 rows and four columns was used as input data. From the
initial 98,020 sperm cells analysed, we excluded the non-motile ones (28,850 of
98,020, representing ~29.4 % of the dataset). After that, we removed the duplicated
rows, which represented approximately a 7.5% of the motile sperm cells (5239 of
69,170 rows), as having redundant information in the dataset does not contribute
to improving the landscape obtained by the t-SNE. Furthermore, duplicated points
can strongly influence the forces of attraction and repulsion along the datapoints in
the embedding. These forces are calculated based on the similarity between
datapoints; because identical points have dissimilarity 0, they have a significant
impact on the t-SNE landscape. This may result in a landscape organisation that
revolves around the duplicated points, altering the structure of other regions in the
embedding, and worsening the overall quality of the obtained landscape.

As for the columns, we used the four main motility parameters: VCL, VSL, ALH
and BCF. Other parameters obtainable from ISAS software were excluded due to
their high correlation with the previous variables or because they were quotients of
the aforementioned features. In Fig. S1, we show a visual representation of these
motility parameters to ease their interpretation.

The key steps to obtain the behavioural landscape are summarised as a
sequential protocol using several functionalities of the bigMap R package41,72

(https://github.com/jgarriga65/bigMap). For further information, refer to the
documentation of bigMap R package and Garriga & Bartumeus (2018)75.

Firstly, raw data were pre-processed ("bdm.data" function in bigMap with
default values) through a principal components analysis (PCA) to homogenise
ranges and weights. Afterwards, data were whitened to avoid unequal influence of
the variables on the landscape. Then, we assessed a range of values on the critical
parameter of the t-SNE algorithm: perplexity. Briefly, this parameter corresponds
to the number of neighbours considered when computing pairwise similarities
between datapoints. Low perplexities focus on accomplishing a landscape with
better local structure, whereas high perplexities improve the global structure of the
embedding76. We selected a perplexity of 639, corresponding to 1% of the dataset
size, which was the best trade-off between local and global structure41 (refer to
Supplementary Note 4 and Fig. S5 for more details).

From the resulting 2D embedding, we computed an adaptive kernel density
where the reference bandwidth parameter is also represented by perplexity, KDEppx
("bdm.pakde" function in bigMap). This results in a point density heatmap showing
high and low-density regions, corresponding to highly frequent (stereotypes) and
non-frequent motile behaviours, respectively. This parameter (KDEppx) was set to
639 (1 % of the dataset size) in concordance with the perplexity used to build the
landscape (t-SNE), in order to maintain consistent scales of analysis.

The last step, the clusterization of the landscape, was performed using the water
track transform function in bigMap ("bdm.wtt"), a watershed algorithm that
classifies behaviours based on density peaks.

The initial landscape discretization is highly-resolved, yielding from tens to
hundreds of clusters. We can coarse-grain landscape information into a smaller
number of broad clusters, less sensitive to initial conditions, through a hierarchical
merging process that can be conducted on the initial clusters. Coarse-grained
clusters incorporate more variability, but facilitate annotation and characterisation
of the stereotyped, frequent behaviours. We used a hierarchical and recursive
integration of clusters, according to a signal-to-noise ratio (S2NR) heuristic
(function "bdm.s2nr.merge" in bigMap). Broadly, this computes each cluster
variance vs. landscape variance ratio, to assess which cluster is the less informative
in the embedding, and to which "parent" cluster it belongs in order to merge it. This
heuristics can improve the signal-to-noise ratios in the overall landscape but also
accounts for significant drops of information, when changes in cluster hierarchies
occur and the landscape is strongly re-build to accommodate larger clusters. The
hierarchical merging of clusters also allows identifying strongly preserved and
frequent behaviours. The latter is represented as highly significant clusters that
survive the coarse-graining process and attract the surrounding clusters. Each
merged cluster encompasses the variability of a region of the landscape often ruled
by one or a small subset of child clusters, the stereotypes, that represent to a good
extent the behavioural features of the merged cluster.

Modelling fertility. To achieve a fair and robust estimate of reproduction success,
measured as a fertility rate (usually called conception or farrowing rate), we used
Bayesian multi-level logistic regression models. Broadly, logistic regressions are
suitable to predict binary outcomes (i.e., success/failure), as is the case of FR
estimates. On top of that, multi-level approaches are required to control for inter-
individual variability (i.e., inter-boar variability). Multi-level logistic regressions can
be implemented in Bayesian frameworks, which approximate the whole (predicted)
posterior distribution of the outcomes, providing a better estimate than (95%)
confidence intervals or single-point estimates. Furthermore, Bayesian frameworks
allow introducing expected or known information (e.g., distribution shape, mean
and dispersion) about the predictors in the model, potentially improving its

Table 2 Components of the capacitating medium.

Component Quantity (grams)

Hepes (buffer) 0.1431 g
NaCl 0.1965 g
KCl 0.0069 g
Glucose 0.0270 g
Na2HPO4 0.0033 g
MgSO4 0.0030 g
CaCl2 0.0198 g
Sodium lactate 0.0729 g
Sodium pyruvate 0.0033 g
Bovine serum albumin 0.1452 g
Sodium bicarbonate (15 mM) 0.0378 g

The represented amounts are calculated to prepare 30 mL of medium. All reagents were
purchased from Sigma Aldrich (Saint Louis, Missouri, USA).
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accuracy, as well as reducing the uncertainty associated with predictors and
predictions.

We generated a set of Bayesian multi-level logistic regression models in a three-
step analysis, using combinations of the parameters described in Table 3. To this
purpose, we used rstanarm R package (version 2.21.1)77,78. Briefly, this package
provides a great variety of modelling functions, model diagnosis and posterior
distribution analysis. For details see "rstanarm" documentation.

As a first step, we built a null model (M0= Boar), only containing male
information, introduced as a level (random intercept) to obtain an estimate of
fertility just based on boar variability. From this simple model, we sequentially
added layers of complexity and assessed the influence on the predictability of each
model. The next model included the boar information, as well as some information
about the sow, namely the sow parity (M1= Boar + Sow). The following model
had, in addition to boar and sow information, the ejaculate information as a
random intercept (M2= Boar + Sow + Ejaculate). By comparing these three
models (M0, M1 and M2), we observed that sow information improved
predictions, whilst adding the ejaculate information had the opposite effect (worse
predictability).

The next step consisted of adding the motility effect to the models. Because the
best of the three models was the M1, we built a new model, including the boar and
sow information, in addition to the motility features of sperm (M3= Boar + Sow
+ Sperm motility). All models (M0 to M3) are summarised in Table 1 (results
section), with their relative predictive ability (ELPD), all models exhibiting similar
prediction capability (similar ELPD).

Sperm motility was introduced in model M3 as proportions of sperm in each
motility cluster of the landscape, for each of the boars. As the landscape was highly
complex (39 clusters), we first merged them one-by-one following a recursive,
spatially hierarchical strategy based on signal-to-noise ratio (S2NR) heuristics (see

section above). As clusters were merged, the S2NR progressively augmented so that
the overall clustering information increased over noise, but only up to certain levels
where abrupt drops of information took place (when reaching 11 and five clusters).
After these drops, subsequent merging reorganised the landscape and brought the
S2NR back to larger values (Fig. 6a). This procedure allowed us to find levels of
granularity in our landscape, which showed good enough statistical signal (i.e.,
inter/intra cluster variance) and a reasonable number of clusters for us to be able to
interpret sperm motility modes and infer male fertility. Considering all this, we
chose the subset of landscape partitions comprised between 15 and two clusters
(Fig. 6a), which emerged as the most adequate behavioural scales in order to infer
male fertility.

A logistic regression model was performed for each landscape configuration, (from
two to 15 clusters) using "stan_glmer" function in rstanarm R package, with the
following parameters: chains= 4; adapt_delta= 0.99; family= binomial(link= "logit");
iter= 4000; prior= normal(0, 5, autoscale=TRUE). For details, check "rstanarm"
documentation and https://mc-stan.org/users/interfaces/rstan.

The models obtained at each of these scales were compared using a leave-one-
out based ("loo" function in loo R package, version 2.3.1)79,80 cross-validation
method (Fig. 6b). Briefly, this method computes approximate leave-one-out cross-
validation without the need of re-fitting the model with different training sets (see
details in Vehtari et al.79). Our results showed that the largest ELPD (expected log
pointwise predictive density) was obtained when including 11 sperm motility
clusters (Fig. 6b), coinciding with the most informative configuration of the
landscape (largest S2NR), right before a substantial change in the landscape
hierarchy (drop in SN2R). In other words, this particular landscape partition
(Fig. 6c) is highly interpretable and informative (low number of clusters and large
S2NR) and is the best to infer boar fertility (large ELPD). Therefore, model version
M3 (Table 1) contains the sperm motility behaviours at this particular scale.

Table 3 Parameters used for inference of boar fertility.

Parameter Description

Sow parity The number of litters a sow has carried. This parameter introduces some information about the sow reproductive history in the model.
Boar Boar variability at the individual level was included in the models as a level (random effect). This parameter represents non-controlled

inter-boar variability.
Ejaculate Ejaculate variability was included in the models as a level (random effect). This parameter represents non-controlled intra-boar

variability.
Static sperm Relative proportion of non-motile spermatozoa present in the ejaculates from boars.
Motile sperm Relative proportions of spermatozoa (from each boar) on different motility clusters in the landscape.

The distinct parameters explored to model boar fertility are presented, along with a brief description.

Fig. 6 Model selection based on sperm motility landscape configurations. a Signal-to noise ratio (S2NR) as an heuristic of information gain, along the
process of merging. The information generally increases along the merging process. However, there were some drops, that corresponded with significant
changes in the hierarchical organisation of the landscape. b Leave-one out method for cross-validation, used to assess model performance (loo R package,
"loo" and "loo_compare" functions, see details in Vehtari et al., 201779). The ELPD corresponds to the expected log pointwise predictive density, as a
measure of predictive capability of the model. Models of different landscape configurations (merging scales) were compared, 11 clusters being the best
partition for model performance (ELPD= 0). c Motility landscape with 11 merged clusters that encompass the variability of the whole landscape. This
represented both a good compromise between information and interpretability, and a good model performance.
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Statistics and reproducibility. R software was used to perform all analysis, and
the required packages and functions are cited in the corresponding sections of
methods. The main pipeline of analysis consisted of (i) pre-processing data, (ii)
building a behavioural landscape, (iii) discretizing the landscape in clusters and (iv)
using the proportion of sperm in each cluster to model boar fertility. Reported
results for the coefficients and predictions are represented as medians with their
50% and 95% associated credible intervals. Mean values for the motility features are
described in the main (results) text. Figure legends include information about
statistics used, and any possible descriptive metrics about means, errors and p
values. The data used in the figures are available in Mendeley Data (DOI: 10.17632/
jd38jhxpg6.4)81 and the corresponding code is available in github (https://github.
com/Polfe94/sperm_move) and zenodo (https://doi.org/10.5281/zenodo.
7015571)82.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Fresh and capacitated sperm motility data and boar fertility data are available in a
publicly accessible Mendeley Data repository (https://doi.org/10.17632/jd38jhxpg6.4)81.
In the same repository, source data for the figures of this manuscript can also be found.
Please check the related github repository and read the instructions about how to
reproduce this work.

Code availability
R and Python code used for building the behavioural landscape and Bayesian modelling
is publicly available in a github repository (https://github.com/Polfe94/sperm_move) and
zenodo (https://doi.org/10.5281/zenodo.7015571)82. Codes for reproducing the figures of
the present manuscript are also available in the aforementioned repositories.
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