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Purpose: The current algorithms for measuring ventilation images from 4D cone-beam
computed tomography (CBCT) are affected by the accuracy of deformable image
registration (DIR). This study proposes a new deep learning (DL) method that does not
rely on DIR to derive ventilation images from 4D-CBCT (CBCT-VI), which was validated
with the gold-standard single-photon emission-computed tomography ventilation image
(SPECT-VI).

Materials and Methods: This study consists of 4D-CBCT and 99mTc-Technegas
SPECT/CT scans of 28 esophagus or lung cancer patients. The scans were rigidly
registered for each patient. Using these data, CBCT-VI was derived using a deep learning-
based model. Two types of model input data are studied, namely, (a) 10 phases of 4D-
CBCT and (b) two phases of peak-exhalation and peak-inhalation of 4D-CBCT. A
sevenfold cross-validation was applied to train and evaluate the model. The DIR-
dependent methods (density-change-based and Jacobian-based methods) were used
to measure the CBCT-VIs for comparison. The correlation was calculated between each
CBCT-VI and SPECT-VI using voxel-wise Spearman’s correlation. The ventilation images
were divided into high, medium, and low functional lung regions. The similarity of different
functional lung regions between SPECT-VI and each CBCT-VI was evaluated using the
dice similarity coefficient (DSC). One-factor ANONAmodel was used for statistical analysis
of the averaged DSC for the different methods of generating ventilation images.

Results: The correlation values were 0.02 ± 0.10, 0.02 ± 0.09, and 0.65 ± 0.13/0.65 ±
0.15, and the averaged DSC values were 0.34 ± 0.04, 0.34 ± 0.03, and 0.59 ± 0.08/0.58 ±
0.09 for the density change, Jacobian, and deep learning methods, respectively. The
strongest correlation and the highest similarity with SPECT-VI were observed for the deep
learning method compared to the density change and Jacobian methods.

Conclusion: The results showed that the deep learning method improved the accuracy of
correlation and similarity significantly, and the derived CBCT-VIs have the potential to
monitor the lung function dynamic changes during radiotherapy.
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INTRODUCTION

The side effects of damage to normal lung tissue limit the
delivered dose for thoracic cancer patients during radiotherapy
treatment and may thus hamper tumor control. It is necessary to
assess lung function during radiotherapy. Ventilation imaging
can quantify vital lung function regions and be useful for
functional avoidance in thoracic cancer radiotherapy treatment
planning (1, 2), or adaptive ventilation-guided radiotherapy on
measuring how the lung ventilation changes during
treatment (3).

There are several typical standard techniques, including
single-photon emission computed tomography (4) (SPECT),
positron emission tomography (5) (PET), and magnetic
resonance imaging (6) (MRI), for acquiring the spatial
ventilation images, but those imaging techniques are not
commonly applied during radiation therapy of thoracic cancer
in clinical practice. Ventilation images derived from four-
dimensional computed tomography (4D-CT) scans are already
available (7, 8), in many institutions and routinely acquired for
thoracic cancer patients before radiotherapy, which can be used
for functional avoidance radiotherapy treatment planning. The
four-dimensional cone-beam computed tomography (4D-
CBCT) imaging is already available for many institutions, and
this can be taken as part of the daily patient position verification
and motion management during radiotherapy. Ventilation
images derived from 4D-CBCT (CBCT-VI) have the potential
to provide details on lung function changes during radiotherapy.
These kinds of images have a higher resolution and no extra
monetary or dosimetric cost to the patient compared with typical
standard techniques. Earlier studies have investigated variations
over time in 4D-CBCT-based ventilation measures (9). It has
also been shown that ventilation derived from high-quality 4D-
CBCT scans has high correlations with ventilation derived from
4D-CT (10, 11).

However, there is no validation of CBCT-VI with a clinical
gold-standard ventilation image. Furthermore, the current
algorithms on deriving a ventilation image are highly
dependent on deformable image registration (DIR) (8, 12, 13).
The reduced image quality of 4D-CBCT compared to 4D-CT
further impacts the precision of the DIR. Inaccuracies in the DIR
can lead directly to errors in deriving a ventilation image. This
study proposes a DIR-independent deep learning model for
deriving ventilation images from 4D-CBCT, makes a clinical
validation against the gold-standard SPECT ventilation image
(SPECT-VI), and also investigates whether the accuracy could be
improved compared to DIR-dependent methods.
MATERIALS AND METHODS

Data Collection
This study consists of 4D-CBCT and SPECT/CT scans of 28
patients with esophagus or lung cancer who underwent thoracic
radiotherapy in our hospital between 2015 and 2018. All patient
images were acquired with approval by the Clinical Research
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Committee and the Ethics Committee at the Cancer Hospital,
Chinese Academy of Medical Sciences. The 4D-CBCT images
were acquired on an Elekta XVI system of Versa HD linear
accelerator, and these images included about 1,200 projections
covering an arc of 200°, and each projection had an exposure
level of 0.32 mAs. The 10 phases of 4D-CBCT images were
created and represented as from T00 to T90, from which T00 and
T50 are the peak-inhalation phase and the peak-exhalation
phase. Averaged CBCT (AVG-CBCT) was obtained from 10
phases of data. The dimension of the 4D-CBCT images with a
pixel size of 2 mm × 2 mm is 205 × 205 on the axial plane. The
slice thickness of the 4D-CBCT image is 2 mm. The SPECT-VIs
were acquired on a Discovery NM 670 SPECT/CT scanner.
Before the scan, each patient, in the supine position, inhaled
99mTc-Technegas, an ultra-fine suspension of carbon
nanoparticles labeled with technetium, to assure 30 MBq of
activity within the lungs, followed by SPECT acquisition
performed using 3° steps through a 360° acquisition at 20 s per
view. A co-registered low-dose CT image was acquired for
attenuation correction and anatomical reference, and the
SPECT-VI was reconstructed with a dimension of 64 × 64 ×
64 and a pixel size of 8.8 mm × 8.8 mm × 8.8 mm. The 4D-CBCT
and SPECT-VIs were acquired with time intervals of 7
days (median).

Image Preprocessing
The SPECT ventilation images and 4D-CBCT images were
registered using a two-step scheme. Firstly, the low-dose CT
image, simultaneously acquired with the SPECT ventilation
image, was rigidly registered with AVG-CBCT using MIMvista
6.8 (MIM Software Inc., Cleveland, OH, USA). Then, the
registration shift was applied to align the SPECT ventilation
image and AVG-CBCT. The aligned SPECT ventilation image
was interpolated to maintain the spatial resolution consistent
with 4D-CBCT images, and then all images were cropped to a
dimension of 192 × 192 in the axial plane.

Using an intensity-based segmentation algorithm in
MIMvista, the lung parenchyma was segmented on each phase
of 4D-CBCT images with CT Hounsfield units in the range
[−999, −250]. The main-stem bronchi and trachea were removed
from each phase of the lung parenchyma. The binary lung masks
of each phase of 4D-CBCT were generated and applied to define
the spatial region for lung function quantification and following
analysis. For patients whose imaging field-of-view (FOV) does
not cover the lungs completely, we only analyzed the lungs
within the FOV.

Computation of Deep Learning-Based
CBCT-VI
The workflow of training and testing a deep learning model for
deriving the lung CBCT-VI is shown in Figure 1.

The training processes included (a) segmentation of 4D-
CBCT and SPECT images in lung binary masks; (b) the 10
phases of 4D-CBCT (T00-T90) and the two phases of 4D-CBCT
(T00 and T50) with sizes of 192 × 192 × 10 and 192 × 192 × 2 as
model input, respectively, and the SPECT-VI with size of 192 ×
May 2022 | Volume 12 | Article 889266
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192 × 1 as model label; (c) the models trained on single slices; and
(d) two models for deriving the CBCT-VIs [CBCT-VIDL(1) for 10
phases and CBCT-VIDL(2) for two phases] obtained.

The testing processes included (a) segmentation of a new
patient 4D-CBCT image in lung binary masks, (b) the new
patient CBCT-VI derived from the trained model, and (c) the
SPECT-VI and CBCT-VI compared to evaluate the performance
of the trained model.

The deep learning model used in this study, as shown in
Figure 2, is from the modified U-net (14), which was revised to
use different phases of clinical 4D-CBCT images as network
input and yield lung ventilation images. The architecture of the
deep learning model consists of a contractive path and an
expansive path. The contractive path to achieve down-
sampling applies duplicated two 3 × 3 convolutions, each
coming after a rectified linear unit (ReLU) and 2 × 2 max
pooling with stride 2. The dropout technique was used to
avoid over-fitting during the down-sampling. The expansive
Frontiers in Oncology | www.frontiersin.org 3
path of every step to achieve up-sampling consists of 2 × 2 up-
sampling added with one 3 × 3 convolution and ReLU, a
concatenation with the correspondingly contractive path, and
two 3 × 3 convolutions, each coming after a ReLU. The
architecture concludes with one 3 × 3 convolution and one 1 ×
1 convolution, and each comes after a ReLU.

The training and testing processes included 1,338 slice
samples in 28 patients. A sevenfold cross-validation process
was applied to train and test the model. The 28 patients were
randomly separated into seven equal parts, each of which was
called a fold. The model was trained (80% data) and validated
(20% data) on six folds of the data samples at a time and then
tested on the remaining fold data samples. This process was
repeated seven times so that each fold of the data has a chance to
become the test dataset.

The model was trained from scratch, and the filter weights for
rectifiers were initialized using “he_normal” method, allowing
for extremely deep models to converge (15). The RMSprop
FIGURE 1 | Workflow for the training and testing pipelines for deriving lung 4D cone-beam computed tomography ventilation images (CBCT-VI) and comparing it to
the ground truth of a clinical gold-standard lung SPECT ventilation image (SPECT-VI).
May 2022 | Volume 12 | Article 889266
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algorithm (16) was adopted to minimize the loss function of
mean squared error with a mini-batch size of 4. The loss function
values in the validation datasets were monitored during training
process. The initial learning rate was set to 0.0001 and
automatically reduced with a drop rate of 0.2 if the validation
loss value did not decrease after 10 epochs. The early-stopping
technique (the training process stopped when the validation loss
value did not decrease after 15 epochs) and data augmentation
(flip, rotate, scale, or shift training data) were used to avoid over-
fitting. The minimum loss function value in validation datasets
corresponding to the well-trained model was kept for testing new
patients. The model was implemented in Keras with Tensorflow
as the backend. One NVIDIA 2080Ti GPU graphics card with 11
GB memory was used in this study, and it takes approximately a
few seconds to obtain CBCT-VI for a new patient.

Computation of DIR-Based CBCT-VI
For computation of the DIR-based CBCT-VI, the density-change-
and Jacobian-based (HU and JAC) methods were applied to
compute the CBCT-VIHU and CBCT-VIJAC. The computation
process of DIR-based CBCT-VI was described as follows: the
peak-inhalation T00 and peak-exhalation T50 images of 4D-
CBCT were deformed registration using a constrained intensity-
based, free-form DIR algorithm (17) from the MIMvista 6.8
software, and then the deformable vector fields (DVFs) between
T00 and T50 images were obtained for computing the DIR-based
CBCT-VIHU and CBCT-VIJAC.

For the computation of CBCT-VIHU, the DVFs can project
the unit of inhale lung CBCT voxels into the exhale image field.
The density change-based CBCT-VIHU can be calculated using
the method proposed by Castillo et al. (8):

CBCT − VIHU = 1000
(~HVOI

T00 −HUT50)

HUT50(1000 + ~HVOI
T00 )

(1)
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Where ~HVOI
T00 was the average of the set of inhale lung CBCT

voxels. Equation (1) was used for calculating each peak-
exhalation T50 voxels in the lung CBCT binary masks. Finally,
the density-change-based CBCT-VIHU can be gained.

For the computation of CBCT-VIJAC, the changes of local
lung volume were computed using the DVFs of Jacobian
transformation that projects peak-inhalation T00 to peak-
exhalation T50. The Jacobian-based CBCT-VIJAC was
computed using the formula from Reinhardt’s study (12):

CBCT − VIJAC = J − 1, (2)

where J was the Jacobian determinant of the displacement vector
u and computed using the following formula:

J =

1 + ∂ ux
∂ x
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(3)

Finally, the Jacobian-based CBCT-VIJAC was obtained.

Post-Processing of CBCT-VIs
For each patient, the CBCT-VIs obtained from those methods were
firstly multiplied with peak-exhalation T50 lung binary masks, and
then these CBCT-VIswere normalized by 90th percentile ventilation
values. To reduce the influence of image noise, the CBCT-VIs finally
went through a smoothing with a 9 × 9 × 9 box median filter.

Spearman’s Correlation and Dice
Similarity Between CBCT-VIs
and SPECT-VI
In voxel-wise correlation comparisons, Spearman’s correlation rs
was calculated through the whole lung between each of CBCT-VIs
FIGURE 2 | Architecture of the deep learning model for deriving CBCT-VI.
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and SPECT-VI for each subject. The value rs represents the degree
of correlation between two distributions, and the correlation rs is in
the range of [-1, 1], with -1 indicating a perfect negative correlation
and +1 indicating a perfect positive correlation.

In similarity comparisons, the CBCT-VIs and SPECT-VI
were equally divided into high, medium, and low functional
lung (HFL, MFL, and LFL) regions using one-third of the highest
and lowest ventilation values for each patient. The similarity of
different functional lung regions between SPECT-VI and each
CBCT-VI was evaluated using a dice similarity coefficient (DSC)
for each patient:

DSC(A,B) =
2 A ∩ Bj j
Aj j + Bj j , (4)

where A indicates functional lung volumes in SPECT-VI, and B
indicates the same functional lung volumes in CBCT-VIDL(1),
CBCT-VIDL(2), CBCT-VIHU, or CBCT-VIJAC.

An averaged DSC for a different functional lung was
computed to evaluate the overall similarity.

DSCavg =
1
3o

3
i=1DSCi (5)

where i indicates different functional lung. One-factor ANONA
model was applied for the statistical analysis of the averaged DSC
for different methods using Tukey’s honestly significant
difference procedure, where this model is a four-level factor
consisting of DSCavg

DL(1), DSC
avg
DL(2), DSC

avg
HU, and DSCavg

JAC.
RESULTS

For qualitative results, Figure 3 demonstrates the distributions of
derived ventilation images from different methods against the
Frontiers in Oncology | www.frontiersin.org 5
clinical gold-standard SPECT ventilation image for a specific
patient. The lung ventilation images generated from different
methods look very different, among which the lung ventilation
image produced by the deep learning method looks closer to the
clinical gold-standard SPECT ventilation image when compared
with images generated from density-change-based and Jacobian-
based methods.

For voxel-wise quantitative results, Spearman’s correlation rs
values between CBCT-VI and SPECT-VI for the different
methods are presented in Figure 4 for all the subjects. The
correlation values (mean ± SD) for HU and JAC methods were
0.02 ± 0.10 and 0.02 ± 0.10, respectively. This showed a weak
correlation. The correlation values for the deep learning method
were 0.65 ± 0.13 and 0.65 ± 0.15 for different input data formats.
The correlation was greatly improved in comparison with HU
and JAC methods, and the different input data format had no
effect on the correlation results.

For similarity quantitative results, the sevenfold cross-validation
DSC values between CBCT-VI and SPECT-VI of different
functional lung regions for the deep learning method are
summarized in Table 1 for all the subjects. For 10 phases of 4D-
CBCT as model input, the averaged DSC values of HFL, MFL, and
LFL were 0.60 ± 0.08, 0.47 ± 0.05, and 0.70 ± 0.06 across the seven
folds. For peak-inhalation and peak-exhalation of 4D-CBCT as
model input, the averaged DSC values of HFL, MFL, and LFL were
0.59 ± 0.08, 0.46± 0.07, and 0.70 ± 0.08 across the seven folds. These
two averaged DSC values have no significant statistical difference.

Furthermore, the similarity quantitative results of different
functional lung regions between CBCT-VI and SPECT-VI from
the different methods are presented in Figure 5 for all the subjects,
and theDSCvaluesof different functional lung regions are shown in
Table2. The averagedDSCwere0.34±0.04, 0.34±0.03, 0.59±0.08,
and 0.58 ± 0.09 for CBCT-VIHU, CBCT-VIJAC, CBCT-VIDL(1) and
CBCT-VIDL(2) methods, respectively.
FIGURE 3 | Lung ventilation images are superimposed on the peak-exhalation phase of 4D-CBCT in axial and coronal planes. (A) Clinical gold-standard SPECT
ventilation image and (B) ventilation image derived from density-change-based method, (C) Jacobian-based method, and (D) deep learning-based method (10
phases as input).
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We found in the DSC values that there were significant
differences between the DIR-based algorithm and the deep
learning-based algorithm in deriving CBCT ventilation images.
The deep learning-based method for generating CBCT ventilation
images has the greatest similarity to the clinical-standard SPECT
ventilation image compared toHUand JACmethods with p-values
<10−8 (as shown inTable 2), and there was no significant difference
for the two forms of data as deep learning model input.
DISCUSSION

It is necessary to monitor the lung function changes of thoracic
cancer patients during radiotherapy. 4D-CT imaging is usually
used for simulation positioning in clinical practice before
radiotherapy and not used as routine position verification
during radiotherapy, while 4D-CBCT imaging as patient
position verification during treatment is already available for
many institutions. Ventilation images derived from 4D-CBCT
can monitor the lung function changes during radiotherapy.
Frontiers in Oncology | www.frontiersin.org 6
However, the existing algorithms on computing ventilation
images are highly dependent on the DIR (8, 12, 13). Inaccuracies
from the DIR algorithms would affect the accuracy of the derived
ventilation images. Compared to 4D-CT, the reduced image
quality of 4D-CBCT would further impact the precision of the
DIR. It is difficult to use the existing algorithms to obtain
accurate results of ventilation images from 4D-CBCT. As far as
we know, the current study is the first to apply the DIR-
independent deep learning method to derive ventilation images
from 4D-CBCT. The generation process of CBCT-VIDL did not
involve any calculation of DIR. Unlike DIR-dependent methods,
the deep learning method avoids any inaccuracies caused by DIR
algorithms. Furthermore, previous studies have mainly
investigated the correlations between 4D-CBCT and 4D-CT
scan-based ventilation images (10, 11), unlike the previous
studies which focused on the correlation between 4D-CT and
4D-CBCT ventilation images. In this study, we investigated the
clinical gold-standard SPECT ventilation image as the output
data to train the deep learning model, and this is also, for the first
time, to validate a CBCT ventilation image with a SPECT
ventilation image. The current study also makes an extensive
comparison with the DIR-based HU and JAC methods to
investigate the accuracy of the ventilation images derived from
deep learning method. A significant improvement in correlation
and similarity between CBCT-VI and SPECT-VI is observed
when compared with DIR-based HU and JAC methods. The
voxel-wise correlation was 0.02 ± 0.10 and 0.02 ± 0.09 for HU
and JAC methods, while the correlation values were greatly
improved with 0.65 ± 0.13/0.65 ± 0.15 for DL method. The
averaged DSC values for HU, JAC, and DL methods were 0.34 ±
0.04, 0.34 ± 0.03, and 0.59 ± 0.08/0.58 ± 0.09, respectively. The
deep learning method demonstrated the highest correlation and
similarity (P-value <10−8) in deriving ventilation images. We
here also investigated two forms of 4D images as model input.
The analytic algorithms usually used two phases of peak-
inhalation and peak-exhalation of 4D images to calculate
ventilation images. Except for those two phases of 4D images,
10 phases of 4D images as input are also tested. The current
study found that there was no significant difference between the
two different forms of deep learning model input.

In theory, if the 2.5-dimensional (2.5D) or 3D network
considered more spatial information, it achieve better results.
Therefore, we also investigated 2.5D network to derive CBCT-
TABLE 1 | The sevenfold cross-validation dice similarity coefficient (DSC) results between CBCT-VIDL [CBCT-VIDL(1) and CBCT-VIDL(2)] and SPECT-VI of high functional
lung (HFL), medium functional lung (MFL), and low functional lung (LFL) regions and their average values are summarized.

Fold number DSC [CBCT-VIDL(1)] DSC [CBCT-VIDL(2)]

HFL MFL LFL AVG HFL MFL LFL AVG

Fold 1 0.62 ± 0.05 0.46 ± 0.02 0.69 ± 0.05 0.59 ± 0.03 0.69 ± 0.03 0.52 ± 0.04 0.75 ± 0.04 0.65 ± 0.04
Fold 2 0.56 ± 0.10 0.43 ± 0.05 0.68 ± 0.04 0.55 ± 0.06 0.50 ± 0.06 0.39 ± 0.04 0.66 ± 0.04 0.52 ± 0.04
Fold 3 0.64 ± 0.11 0.50 ± 0.07 0.72 ± 0.07 0.61 ± 0.08 0.65 ± 0.10 0.51 ± 0.09 0.74 ± 0.09 0.63 ± 0.09
Fold 4 0.52 ± 0.12 0.41 ± 0.09 0.67 ± 0.10 0.53 ± 0.10 0.57 ± 0.12 0.46 ± 0.08 0.70 ± 0.14 0.58 ± 0.11
Fold 5 0.70 ± 0.05 0.55 ± 0.05 0.77 ± 0.04 0.67 ± 0.05 0.57 ± 0.11 0.43 ± 0.09 0.69 ± 0.07 0.56 ± 0.09
Fold 6 0.49 ± 0.06 0.42 ± 0.03 0.66 ± 0.04 0.52 ± 0.03 0.50 ± 0.08 0.42 ± 0.05 0.63 ± 0.05 0.52 ± 0.06
Fold 7 0.66 ± 0.08 0.51 ± 0.04 0.75 ± 0.05 0.64 ± 0.05 0.66 ± 0.07 0.52 ± 0.07 0.73 ± 0.11 0.64 ± 0.08
May 2022
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FIGURE 4 | The voxel-wise Spearman correlation rs values between the 4D
cone-beam computed tomography ventilation image and the clinical gold-
standard SPECT ventilation image are presented in box plot format for
different methods (density-change-based method, Jacobian-based method,
and deep learning-based method).
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VI. The 2.5D network not only considered the adjacent spatial
information but also had the advantage of having relatively larger
training samples, maintaining an in-plane finer resolution, and
requiring a lower GPU memory compared with 3D network. In
this study, the training and testing datasets only have 28 patients
but including 1,338 slice samples, so the model was trained based
on single slices with or without considering the adjacent slices.
Meanwhile, a sevenfold cross-validation process was applied to
train and test the model to make sure of the stability of the
results. For 2.5D network, taking input data of 10 phases of 4D-
CBCT as an example, the dimension of input data was changed
from 192 × 192 × 10 to 192 × 192 × 30, in which an adjacent one
slice was added for each phase. The averaged Spearman
correlation was 0.67 (0.65 for 2D network), and the similarity
of averaged functional lungs was 0.60 (0.59 for 2D network) for
all subjects. These results are presented as supplementary
materials (Supplementary Tables S1 , S2). From the
preliminary experimental results, we can see that the Spearman
correlation and the similarity of different functional lungs make a
Frontiers in Oncology | www.frontiersin.org 7
little improvement but have no significant difference. The 2.5D
network is not obviously superior to the 2D network in the task
of deriving ventilation from 4D-CBCT. A possible explanation,
we think, is that the motion information from different phases,
not spatial information, is the key for the task, and this has
already been considered in different channels for the 2D network.

In previous studies, ventilation images derived from high-quality
4D-CBCT scans have high correlations with ventilation images
derived from 4D-CT. The authors Woodruff et al. (10) and Jensen
et al. (11) from different groups used two different methods to
improve the image quality of 4D-CBCT to help improve the
accuracy of the generated ventilation images. In the study by
Woodruff et al., the 4D-CBCT images were acquired by
increasing the projection images, that is, by increasing the
acquisition time to improve the image quality, where a correlation
of 0.64 between 4D-CT- and 4D-CBCT-based ventilation images
was observed. In the study by Jensen et al., they utilized a fast 4D-
CBCT image acquisition technique, but the 4D-CBCT image quality
was improved using modified projection correction and iterative
reconstruction algorithms, where a sample mean correlation of 0.38
between 4D-CT- and 4D-CBCT-based ventilation images was
observed. The current study acquired the 4D-CBCT images
without increasing the projection images and applying any
algorithms to improve the image quality, and a correlation of 0.65
between 4D-CBCT- and SPECT-based ventilation images was
observed. These results can reflect the ability of the deep learning
model to correlate features of 4D-CBCT with SPECT ventilation
image. The model architecture includes many convolutional layers
used for feature extraction of 4D-CBCT images. In fact, the
convolutional process would also have played a role in improving
the image quality of 4D-CBCT images. These results were also
consistent with our previous study (18) on deriving 4D-CT
ventilation images using deep learning method, and a correlation
of 0.73 between 4D-CT- and SPECT-based ventilation images was
reported. The correlation improvement for lung ventilation images
may mainly come from the difference in image quality between 4D-
CT and 4D-CBCT. Meanwhile, the results from this and our
previous study were also consistent with the work of Porter et al.
TABLE 2 | The dice similarity coefficient (DSC) values between 4D cone-beam computed tomography (CBCT) ventilation images from different methods and clinical
standard SPECT ventilation image for different functional lung regions and the statistical differences for these different methods.

DSC P-value

High functional lung
(HFL) region

Medium functional lung
(MFL) region

Low functional lung
(LFL) region

Average HFL MFL LFL Average

CBCT-VI derived methods
HU 0.34 ± 0.04 0.34 ± 0.02 0.34 ± 0.06 0.34 ± 0.04
JAC 0.34 ± 0.04 0.34 ± 0.03 0.34 ± 0.04 0.34 ± 0.03
DL (1) 0.60 ± 0.10 0.47 ± 0.07 0.70 ± 0.07 0.59 ± 0.08
DL (2) 0.59 ± 0.10 0.46 ± 0.08 0.70 ± 0.08 0.58 ± 0.09
Comparison for the different methods
HU and DL (1)/HU
and DL (2)

<10−8/
10−8

<10−8/
10−8

<10−8/
10−8

<10−8/
10−8

JAC and DL (1)/JAC
and DL (2)

<10−8/
10−8

<10−8/
10−8

<10−8/
10−8

<10−8/
10−8

HU and JAC 0.9999 0.9868 1.0000 1.0000
DL (1) and DL (2) 0.9964 0.9916 0.9971 0.9953
M
ay 2022
 | Volume
 12 | Artic
FIGURE 5 | The dice similarity coefficient values between CBCT-VI and
SPECT-VI of different functional lung (high, medium, and low and their
average) regions for different methods (density-change-based method,
Jacobian-based method, and deep learning-based method) are displayed in
the form of a box plot.
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(19) on synthetic pulmonary perfusion images from 4D-CT, and a
Spearman correlation of 0.7 between 4D-CT- and SPECT-based
perfusion images was reported. In this study, to reduce the influence
of image noise, all the ventilation images finally went through a
smoothing with a 9 × 9 × 9 box median filter. The filter size would
affect the correlation results, and we investigated how the box filter
size would impact the correlation results. We recalculated the
correlations by using 7 × 7 × 7 and 11 × 11 × 11 box median
filters, and the averaged correlations were 0.62 ± 0.14 and 0.68 ±
0.13, respectively. The preliminary results show that the correlations
have been significantly improved with the increase of the box
filter size.

Furthermore, the study by Jensen et al. found that the image
acquisition time interval between 4D-CT and 4D-CBCT would
be a factor affecting the accuracy of the generated ventilation
images. In the study byWoodruff et al., it was mentioned that the
acquisition of 4D-CT and 4D-CBCT data was on the same day,
and the study by Jensen et al. mentioned that the acquisition time
interval of 4D-CT and 4D-CBCT was a median of 10 days. The
correlation result from the study by Woodruff et al. looks better.
The time interval of our study was a median of 7 days between
the acquisition of 4D-CBCT and SPECT images. Even though
the time interval in this study is longer than that in the study of
Woodruff et al., the correlation between 4D-CBCT- and SPECT-
based ventilation images derived using deep learning method
looks better than the correlation between 4D-CBCT- and 4D-
CT-based ventilation images measured using a DIR-based
method. Additionally, further efforts are needed to update the
current network performance to further improve the accuracy of
CBCT-VI to make a better preparation for clinical application in
the future. The 4D-CBCT and SPECT image data are limited in
the current study. It would have been more helpful to improve
the accuracy and to extract dynamic lung function changes
during radiotherapy if more image data had been available.
CONCLUSIONS

In summary, this study demonstrated a deep learning method for
deriving CBCT-VI from clinical 4D-CBCT data and made a
validation of CBCT-VI with the clinical gold-standard SPECT-VI.
The results from the current study show that the deep learning
model can be a steppingstone to improve the accuracy and efficiency
of the derived ventilation images from clinical 4D-CBCT data. The
model can be used for generating CBCT-VI, which could be
potentially used for monitoring the regional lung function (20) in
the future and guiding the adjustment of following treatments to
avoid irradiating the high functional lung region during treatment.
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