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Adaptive stress response genes associated with breast cancer
subtypes and survival outcomes reveal race-related differences
Muthana Al Abo1, Larisa Gearhart-Serna2, Steven Van Laere3, Jennifer A. Freedman1,4, Steven R. Patierno 1,4, Eun-Sil Shelley. Hwang1,2,
Savitri Krishnamurthy5, Kevin P. Williams6 and Gayathri R. Devi 1,2✉

Aggressive breast cancer variants, like triple negative and inflammatory breast cancer, contribute to disparities in survival and
clinical outcomes among African American (AA) patients compared to White (W) patients. We previously identified the dominant
role of anti-apoptotic protein XIAP in regulating tumor cell adaptive stress response (ASR) that promotes a hyperproliferative, drug
resistant phenotype. Using The Cancer Genome Atlas (TCGA), we identified 46–88 ASR genes that are differentially expressed (2-
fold-change and adjusted p-value < 0.05) depending on PAM50 breast cancer subtype. On average, 20% of all 226 ASR genes
exhibited race-related differential expression. These genes were functionally relevant in cell cycle, DNA damage response, signal
transduction, and regulation of cell death-related processes. Moreover, 23% of the differentially expressed ASR genes were
associated with AA and/or W breast cancer patient survival. These identified genes represent potential therapeutic targets to
improve breast cancer outcomes and mitigate associated health disparities.
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INTRODUCTION
According to the American Cancer Society (ACS)1, in recent years
(2012–2016) there has been a continuous decline in the breast
cancer death rate. Despite this, at the global level, notable
differences in breast cancer mortality is observed among ethnic
groups including younger age of onset2,3. These race-related
disparities are likely driven by a complex interplay among
sociocultural differences in societal-level (e.g., racism),
neighborhood-level (e.g., pollution), and institutional-level (e.g.,
access to care) determinants of health4. Analysis of The Cancer
Genome Atlas (TCGA) dataset adjusted for intrinsic subtype
frequency differences has reported that patients estimated to
have >50% African ancestry exhibit a worse breast cancer-free
interval compared to patients with >50% European ancestry5.
Underlying these ancestry-related disparities are likely individual-
level differences in physiology, genetics and genomics arising
from forced and voluntary migrations of human populations
around the world. Further interactions among societal-level,
neighborhood-level, institutional-level and individual-level deter-
minants of health also likely contribute to cancer disparities by
influencing allostatic load6.
Emerging evidence indicates that this race-related survival gap

is largely due to higher incidence of aggressive subtypes of breast
cancer, including basal-like, triple negative, human epidermal
growth factor receptor 2 (ERBB2/HER2)-enriched subtypes, which
are frequently associated with early metastasis in AA compared to
W patients7. A highly representative example of an aggressive
breast cancer designated as a cancer health disparity by NIH
(NCATS/GARD)8 is inflammatory breast cancer (IBC). Of all clinically
distinct breast cancer subtypes, IBC is the most lethal variant with
high rate of metastasis, disproportionately higher incidence at
younger ages in non-W patients, and disparity in relative 5-year

survival rate ranging from 29.9 to 42.5% (higher survival outcomes
in W patients)9,10.
AA patients with IBC present more frequently with higher stage

and triple-negative (TN) [i.e., negative for estrogen (ER), proges-
terone receptor (PR), and human epidermal growth factor receptor
2 (ERBB2)] or basal subtype [similar to triple negative, but with
epidermal growth factor receptor 1 (EGFR) activation]11, and
exhibit shorter median survival (20 months) compared with W
patients (32 months)12–16. Epidemiological studies suggest a
distinct profile of risk factors such as high body mass index
(BMI), early age at first pregnancy, multiparity, and lack of
breastfeeding, factors that can lead to chronic pro-inflammatory
cellular stress to be associated with poor therapeutic outcomes
and survival in AA IBC patients compared with W patients11,17.
Furthermore, comparative gene expression studies from preclini-
cal models and pretreatment patient samples, collected as part of
the International IBC Consortium’s effort to understand differences
between IBC and non-IBC and to define IBC-specific molecular
profiles, revealed highly activated mitogen activated protein
kinase (MAPK) and nuclear factor kappa B (NFκB) transcriptional
profiles associated with increased pro-inflammatory and prolif-
erative signals in IBC compared with subtype and stage-matched
locally advanced breast cancer18–22.
Preclinical studies using various breast cancer in vitro and

in vivo models23–28 from our group identified a critical role for the
most potent caspase inhibitor, X-linked inhibitor of apoptosis
protein (XIAP), in linking EGFR-mediated MAPK activation and
NFκB hyperactivity. In addition, higher XIAP staining was observed
in invasive breast cancers compared to normal, benign ductal
carcinoma in situ (DCIS), and higher XIAP also correlated with poor
event free survival and increased lymph node involvement29,30.
Importantly, XIAP has a unique element called an internal
ribosomal entry sequence (IRES) in its 5’ untranslated region,
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Fig. 1 Number of breast cancer samples in TCGA by definition, race, and PAM50 subtypes. Pie charts depicting the number of breast
cancer samples in TCGA PAM50 subtypes: Basal, Her2, LumB, LumA, Normal-like for all samples (a), for samples from AA patients (b), or for
samples from W patients (c). d Scores of the expression level of XIAP, OSR-, Immune-, and TGFβ-related gene signatures in breast cancer
subtypes. Box plots overlaid with scatter plots depicting the calculated score for XIAP-, OSR-, immune-, and TGFβ-related ASR gene signatures
in the indicated breast cancer subtypes and stratified by patient race, AA or W. The Wilcoxon signed-rank test was used to examine
significance (*adjusted p-value < 0.05; **adjusted p-value < 0.001; ***adjusted p-value < 0.0001; and ns, not significant). The center line
represent the medians and the bounds of box represent the confidence intervals.
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which is critical for XIAP protein translation during response to
cellular stress31. Using triple-negative cell lines, novel isotype-
matched clonal isolates of tumor cells surviving exposure to acute/
chronic stress stimuli, and genetically modified breast cancer cell
variants with differential XIAP expression, we reported that XIAP
upregulation allows tumor cells to survive in the presence of
stressors like oxidative-24,28 and immune-mediated27,32 cell death
stimuli, leading to clonal outgrowth of multi-drug resistant tumor
cell populations26,33. Analysis of XIAP-overexpressing tumors
exhibiting the characteristics of an adaptive stress response
(ASR) revealed a dominance of proliferative, invasive, and
immunosuppressive networks of NFκB target genes, which we
term the “adaptive stress response (ASR) gene set”. This is highly
relevant, as NFκB is recognized as a crucial mediator of
inflammatory, immune, anti-apoptotic, and antioxidant signals as
well as an important modulator of cancer stem cell biology, tumor
surveillance, and tumor rejection34. The genes in the ASR gene set
have also been reported to be part of an IBC-specific 79-gene
signature enriched with activated gene networks in immune
pathways and the TGFβ pathway that captured nearly 25% of IBC
patient samples identified in the TCGA database as IBC-like35,36.
In the present study, we investigated the expression profile of

the XIAP-driven ASR gene set in breast cancer subtypes, identified
race-related differentially expressed genes within this gene set,
and determined associations between ASR gene expression and
poor survival outcomes.

RESULTS
Proportion of subtypes, AA, and W patient samples in the
TCGA breast cancer dataset
As of June 15, 2021, TCGA repository included 1222 breast cancer
patient samples (1109 tumor and 113 matched normal). Further-
more, TCGA includes the Prosigna Prognostic Gene Signature Assay
(formerly called the PAM50 test) to categorize breast tumors into
five subtypes [luminal A (LumA), luminal B (LumB), Her2, Basal, and
Normal-like] based on the expression level of genes, which have
been found to be associated with breast cancer prognosis. In the
present study, we focused on primary tumor samples [1090 Primary
Solid Tumor] and normal tissue samples adjacent to the tumors [113
Solid Tissue Normal] (referred to in the present study as Normal-
adjacent). Within these, our sample set included 559 lumA, 207

lumB, 82 Her2, 190 Basal, and 40 Normal-like (Fig. 1a; Supplementary
Table 1). Metastatic samples and those lacking PAM50 subtype
information were excluded. When more than one sample belonged
to the same patient, we selected the one with highest RNA
sequencing depth.
Racial designations in TCGA are based on patient self-

identification. In the present study, race-related analysis focused
on AA and W breast cancer patient datasets from TCGA (179 AA
and 744W). It is important to note that among the 113 Normal-
adjacent samples, there are 105 W and only 6 AA samples.
PAM50 subtyping within the AA and W patient tumor datasets are
shown in Fig. 1b, c; Supplementary Table 1.

ASR genes associated with oxidative stress and immune
response pathways score highly in basal breast cancer
subtype
To build and expand on our previous analysis of IBC tumor cells
surviving under chronic stress stimuli, which identified genes in
the anti-apoptotic signaling, oxidative stress response, immune,
and TGFβ-related genes, we calculated the gene signature scores
for the above pathways in the TCGA breast cancer subtypes and
by patient race, AA and W (Fig. 1d). The gene sets are listed in
Table 1 and are part of the overarching ASR gene set. We sorted
the genes in each signature into up- or downregulated genes
according to the expression levels reported in our previous
preclinical studies23,30,35,37. The results from this analysis demon-
strated that the score of ASR gene signatures differed among
breast cancer subtypes and by patient race. We found that the
XIAP downregulated gene set exhibits differential score between
AA and W patients in LumA, LumB, and Her2 subtypes, and the
XIAP upregulated gene set exhibits differential score between AA
and W patients in Basal, Her2, LumB, and LumA subtypes. The
differential score of OSR signature is highest in Basal, followed by
Her2, and LumB, and lowest in Normal-like subtype, compared
with Normal-adjacent. Comparing the OSR signature scores by
patient race indicated that scores differed in the breast cancer
subtypes between samples from AA and W patients, especially for
the OSR downregulated genes. The score analysis also showed
that immune-related upregulated genes generally exhibited
higher scores in tumors compared to normal. However, the
immune-related downregulated genes did not exhibit a distinct
pattern in different tumor subtypes. Importantly, immune-related

Table 1. The list of ASR genes and their functional pathways.

Pathway ASR genes

XIAP XIAP, SPANXA1, SPANXB1, SPANXC, SULT1E1, SLPI, AGFG2, POPDC3, ZIC1, CDC45, TNFSF9, SLC26A6, KYNU, H2BC11, MCM5, GINS2, CDKN2D,
OBSL1, SNAI1, TP53I3, AIM2, LIG1, PIMREG, ALDOC, MCM10,ASF1B, ZNF165, CDKN1C, H2AC8, TMEM40, DBP, SLCO1B3, E2F8, LRP4, KLRC1,
RALGDS, BLM, CCNE2, POLE2, ZNF26, PITPNC1, NEU1, VASH2, PLAU, GLYR1, H2BC21, NRN1, TBC1D3, COPZ2, H2BC8, KLRC2, RPL5, SEPTIN6,
CRYBG3, PRR16, WDR37, TBC1D3C, FOSB, ASTE1, CLCN6, PDE4DIP, N4BP2L1, LEF1, HSPG2, POLA1, WBP1L, ZMYM5, B3GNT2, DHFR, ZNF331,
ACSM3, MANSC1, ARAP2, TMEM100, SLC1A4, GPR137B, LIPG, LMAN1, LPAR6, SNX19, CYP4B1, GEM, ARHGAP29, ZFPM2, SLC14A1, PCDH7,
HSD11B1, CAVIN2, ABAT, STC1, NRIP3, NAT1, PCDH9, LMAN2L, REXO5, DLEU2L, DLEU2, SYBU, MRM2, LINC-PINT, LINC00115

OSR HSPA1A, METTL7A, BLM, TYMS, KRT6B, LIG1, SCD5, POLE2, CDT1, CCNE2, SKP2, E2F8, ORC1, MCM4, CCN3, IRF4, MCM10, NAP1L3, MCM3,
ASF1B, FGF2, TREM1, ABCA6, CTH, ECM2, OASL, CEBPD, TP63, RAB5A, SLC4A7, MBNL2, RBMS3, KLHL24, TXNIP, FCAR, AREG, ANXA3, PTGS2, NRG1,
INHBE

NFkB NFKB1, RELA, IL6, CXCL8, IRF2, FAS, IL1B, BCL2, BIRC5, SOD1, MYC

MNK MKNK1, MKNK2, EIF4G1, EIF4E, SPRY2, HNRNPA1, HNRNPA2B1, NONO, KAT5, RPS6

Immune CTSA, PNP, MYCBP2, TMC6, IFI44L, NUDT1, MELK, STAT4, INHBC, ARPC2, EHD1, SART3, MBD4, ACOX1, PRKCB, NFATC3, FOLR1, MAK16, WNK1,
JMJD6, IQGAP1, ABCC10, SRSF7, IGLV1-44, NUP85, SEPTIN6, ESF1, NAA15, PGS1, ANKRD11, TNPO1, PAX5, DHFR, CTBP2, BCKDK, PEX11B, CUL2,
GABPB1, ATP7A, ATF2, DNAJB6, CANX, PAK2, ANXA7, TMCO1, PBXIP1, SP3, TGIF2, TOMM22, INTS12, SLC30A5, TMEM50B, TSPAN14, TBL1XR1,
MRM2

TGFβ TGFB1, NDUFAF3, DAB2, RPL27A, MARCKS, CD72, HSP90B1, PPARD, ACTG1, CRK, TGFB2, AUTS2, RYK, TGIF2

JAG1-Notch JAG1, NOTCH1, DLL4, BRD4, IL6, IL1B, TNF, SNAI1, ZEB1

The ASR genes were grouped according to their function in the listed pathways. The ASR genes that are bolded represent the genes belonging to more than
one of the indicated pathways.
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Fig. 2 Identification of DE-SN and DE-SS in PAM50 subtypes. Volcano plots depicting the level of ASR genes in the indicated
PAM50 subtypes compared to Normal-adjacent (a) or to each other (b). The log2 fold-change differential expression and the –log10 (adjusted
p-value) are shown on the x-axis and y-axis, respectively. The points correspond to all ASR genes and the blue highlighted points represent the
DE-SN (a) and DE-SS (c), which exhibit fold-change greater than 2 and adjusted p-value less than 0.05. b and d Bar plots depicting the number
of DE-SN and DE-SS in a and c, respectively. The colors of the bars indicate whether the DE-SN (b) or DE-SS (d) are upregulated (green) or
downregulated (blue). The numbers inside the bar correspond to the number of upregulated or downregulated DE-SN (b) or DE-SS (d).
Comparisons are shown under each bar and the number of DE-SN (# of DE-SN) or DE-SS (# of DE-SS) are shown on the y-axis.
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downregulated gene expression in Her2 and Basal subtypes
showed significant differences (adjusted p-value < 0.0001)
between AA and W patients. We also observed that the score of
TGFβ-related downregulated genes in Her2 subtype exhibited a
marked difference between AA and W patients.

Identification of differential ASR gene sets in PAM50 subtypes
To identify the expression levels (combined level of all transcript
variants of any given gene) of the adaptive stress response (ASR)
gene sets (Table 1) in relation to PAM50 subtypes, we performed
analyses comparing gene expression in samples of each
PAM50 subtype with Normal-adjacent samples (Fig. 2a). We
determined differentially expressed genes between
PAM50 subtypes compared with Normal-adjacent (designated DE-
SN) with > 2-fold-change in mean expression and adjusted p-value
< 0.05. In total, we identified 88 DE-SN in Basal, 81 in Her2, 87 in
luminal B, 64 in luminal A and 46 in Normal-like samples (Fig. 2b and
Supplementary Table 2). We also determined the number of
upregulated and downregulated DE-SN in each subtype.
Similarly, to identify differentially expressed genes within ASR

gene sets between subtypes, we compared expression levels of
the 226 genes in each PAM50-subtype to every other subtype
(designated DE-SS). This analysis revealed 24 DE-SS in Basal vs.
Her2, 36 in Basal vs. LumB, 59 Basal vs. LumA, 49 Basal vs. Normal-
like, 19 Her2 vs. LumB, 35 Her2 vs. LumA, 44 Her2 vs. Normal-like,
25 LumB vs. LumA, 60 LumB vs. Normal-like, and 30 LumA vs.
Normal-like samples (Fig. 2c, d and Supplementary Table 3).
Collectively, this analysis identified upregulated or downregulated
DE-SS in a given subtype compared to the other subtype in each
comparison.
We noted differences between DE-SN and DE-SS gene sets. In

the case of DE-SN, an equal number of genes (about half) were
either upregulated or downregulated compared with Normal-
adjacent, regardless of the tumor subtypes (Fig. 2b). In contrast,

the number of upregulated or downregulated DE-SS varied
depending on the comparison between subtypes (Fig. 2d). For
example, DE-SS in LumA vs. Normal-like were more frequently
downregulated (26 downregulated and 4 upregulated). In
contrast, DE-SS in Basal vs. LumA tended to be upregulated (39
upregulated and 20 downregulated).
The proportion of DE-SN among the 226 genes was 69.4% when

comparing subtypes to Normal-adjacent samples and 34.8% when
comparing subtypes to each other. As a control, we identified DE-SN
and DE-SS among 226 randomly selected genes. Unlike the ASR
gene set, the proportion of DE-SN was less than 3% when comparing
subtypes to Normal-adjacent samples and the proportion of DE-SS
was less than 3% when comparing subtypes to each other.

DE-SN and DE-SS exhibit distinct expression changes in breast
cancer molecular subtypes
Next, we investigated whether DE-SN are shared among subtypes.
The vast majority of DE-SN are differentially expressed in more
than one subtype, with only a few of the DE-SN being unique to a
particular subtype (Fig. 3a). Thirty-five DE-SN were identified as
being commonly differentially expressed across all subtypes
compared with Normal-adjacent samples (Fig. 3b and Supple-
mentary Table 2). We did not find any tendency toward
enrichment in upregulated or downregulated commonly differ-
entially expressed genes across all subtypes, as 17 DE-SN were
upregulated and 18 were downregulated among all subtypes
compared with Normal-adjacent (Supplementary Fig. 1a, b).
Expression levels of a number of DE-SN fluctuate dynamically

among different subtypes (Fig. 3c). For example, 4-Aminobutyrate
aminotransferase (ABAT) (member of XIAP pathway/Table 1)
expression level was decreased 4-fold in Basal subtype compared
with Normal-adjacent but increased 3-fold in LumA compared
with Normal-adjacent. We also found other XIAP pathway genes,
Arylamine N-acetyltransferase (NAT1), Lipase G (LIPG),

Fig. 3 Intersection among DE-SN. a Venn diagrams depicting the common DE-SN after comparing PAM50 subtypes to Normal-adjacent
samples. b and c Heatmaps depicting the expression fold-change for DE-SN that are significantly changed in all PAM50 subtypes (b) or for DE-
SN that are dynamically differentially expressed across PAM50 subtypes (c).
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Sulfotransferase Family 1E Member 1 (SULT1E1), and Zic Family
Member 1 (ZIC1) genes and Keratin 6B (KRT6B) (member of the OSR
pathway/Table 1) that were differentially expressed with varying
magnitudes depending on the subtype (Fig. 3c).

Identification of distinct DE-SN and DE-SS in AA and W breast
cancer patients
Interrogating the differential expression of the ASR gene sets in
breast cancer TCGA samples from AA or W patients has the

potential to identify key biological factors that contribute to breast
cancer disparities. Therefore, we compared the expression of the
226 genes in PAM50 subtypes to Normal-adjacent or to other
subtypes in either samples from AA patients only or from W
patients only (AA-DE-SN, AA-DE-SS, W-DE-SN, W-DE-SS, respec-
tively) (Fig. 4 and Supplementary Tables 4 and 5). The number of
AA-DE-SN ranged from 36 to 71 and the number of AA-DE-SS
ranged from 12 to 52 (Fig. 4a, b). The number of W-DE-SN ranged
from 35 to 87 and the number of W-DE-SS ranged from 15 to 61

Fig. 4 Identification of DE-SN or DE-SS in PAM50 subtypes from either AA or W patients. Bar plots depicting the number of DE-SN (a) or
DE-SS (b) in breast cancer samples from AA patients. Similar to a and b, c and d depict the number of DE-SN or DE-SS in breast cancer samples
from W patients, respectively. The colors of the bars, the numbers inside the bars, and the axes are as described in Fig. 2. b As in a, but the DE-
SS are identified after comparison of PAM50 subtypes to each other. Intersection among DE-SN (e) or DE-SS (f) with or without stratification of
samples by patient race. e and f Venn diagrams depicting the common DE-SN identified after comparison between samples of the indicated
PAM50 subtype with Normal-adjacent samples or after comparison between samples of the indicated PAM50 subtypes, respectively. Light
blue circles represent the DE-SN identified without stratification by patient race, the light purple circles represent the DE-SN identified among
breast cancer samples from W patients only and the yellow circles represent the DE-SN identified among breast cancer samples from AA
patients only.
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(Fig. 4c, d). Although the majority of the DE-SN or DE-SS identified
among all samples, samples from AA patients only, or samples
from W patients only overlapped, a number of AA- or W-DE-SN
and AA- or W-DE-SS were only identified after race stratification
(Fig. 4e, f). Therefore, importantly, identification of a number of
DE-SN and DE-SS are race-related. For example, in Basal subtype,
we identified 88 DE-SN, 72 AA-DE-SN and 81 W-DE-SN. There were
61 overlapping genes among DE-SN, AA-DE-SN, and W-DE-SN, 7
genes specific to samples from AA patients only, and 3 genes
specific to samples from W patients only. There were only 4 shared
genes between DE-SN and AA-DE-SN compared to 19 shared
genes between DE-SN and W-DE-SN in Basal subtype (Fig. 4e). The
genes that are specifically differentially expressed as part of ASR
pathways studied (Table 1) in Basal tumors of AA patients are
Nucleoporin 85 (NUP85) (member of the immune pathway), Solute
Carrier Family 26 Member 6 (SLC26A6) (member of the XIAP
pathway), Cathepsin A (CTSA) (member of the immune pathway),
ATPase Copper Transporting Alpha (ATP7A) (member of the
immune pathway), TNF Superfamily Member 9 (TNFSF9) (member
of the XIAP pathway), Snail Family Transcriptional Repressor 1
(SNAI1) (member of the XIAP and JAG1-Notch pathways), and
Nuclear Receptor Interacting Protein 3 (NRIP3) (member of the XIAP
pathway). The genes that are specifically differentially expressed in
Basal tumors of W patients are TGFB Induced Factor Homeobox 2
(TGIF2) (member of the immune and TGFβ pathways), SPANX
Family Member B1 (SPANXB1) (member of the XIAP pathway), and
Transmembrane Protein 40 (TMEM40) (member of the XIAP
pathway).

Identification of race-related differentially expressed ASR
genes within PAM50 subtypes
Next, we investigated if any of the ASR genes exhibited race-
related differential expression by comparing TCGA breast cancer
samples of a given PAM50 subtype between AA and W patients.
This analysis identified a number of race-related differentially
expressed ASR genes, which included 1 in Basal, 7 in Her2, 4 in
LumB, 3 in LumA, and 14 in Normal-like samples (Table 2). Among
the identified race-related differentially expressed ASR genes, we
found that Crystallin Beta-Gamma Domain Containing 3 (CRYBG3)
(member of the XIAP pathway/Table 1) is a race-related
differentially expressed ASR gene in Her2 and LumA subtypes,
CXCL8 (member of the NFkB pathway/Table 1) and Stanniocalcin 1
(STC1) (member of the XIAP pathway/Table 1) are race-related
differentially expressed ASR genes in Her2 and normal-like
subtypes, and Transmembrane Protein 100 (TMEM100) (member
of XIAP pathway/Table 1) is a race-related differentially expressed
ASR gene in LumA and normal-like subtypes.

Gene ontology analysis of AA- and W-DE-SN reveals
differential ontology enrichment
To understand the functions of the identified DE-SN in breast
cancer samples from AA or W patients, we first queried for
associated Gene Ontology (GO) categories and then submitted for
GO enrichment analysis. This GO enrichment analysis of AA- or W-
DE-SN in a given PAM50 subtype revealed GO enrichment in cell
cycle, DNA damage response, signal transduction, and regulation
of cell death processes (KS < 0.05) (Fig. 5a, b).
Notably, DNA replication, metabolism, and damage response

processes were enriched in Basal and Her2 subtypes. We
compared the enriched GOs for AA-DE-SN and W-DE-SN within
each subtype and found differential GO enrichment, especially in
Her2 and Normal-like subtypes. For example, the regulation of cell
death, ERK1 ERK2 cascade, and epithelial cell migration processes
were enriched among AA-DE-SN in the Her2 subtype, but not
among W-DE-SN in the Her2 subtype, and the DNA recombination
and chromosomal organization processes were enriched among
AA-DE-SN in the Normal-like subtype, but not among W-DE-SN in

the Normal-like subtype. The functional annotation of race-related
DE highlights their potential function in oncogenesis and are
included in Table 2.

Association of DE-SN with breast cancer patient survival
To gain insight into the potential clinical relevance of race-related
DE-SN identified, we performed overall survival analysis using
TCGA clinical data. The expression levels of DE-SN and patient
survival data were fitted into Cox regression models to compute
the hazard ratio (HR) for each DE-SN. Survival data of all patients of
each PAM50 subtype (excluding ones with metastases), were
included in the survival analysis. In all our analyses, a given DE-SN
was significantly associated with patient overall survival if HR > 1.5
or HR < 0.58 and p-value < 0.05. As shown in Fig. 6a–c, a number of
DE-SN were associated with the survival of all patients (regardless
of patient race), as follows: COPI Coat Complex Subunit Zeta 2
(COPZ2) in Basal; Cyclin Dependent Kinase Inhibitor 1C (CDKN1C);
LEF1, CCAAT/enhancer-binding protein delta (CEBPD), Stearoyl-CoA
desaturase (SCD5) in Her2; and BCL2 Apoptosis Regulator (BCL2),
Aldolase, Fructose-Bisphosphate C (ALDOC), Plasminogen Activator,
Urokinase (PLAU) and Caveolae Associated Protein 2 (CAVIN2) in
Normal-like samples. The above genes listed are all members in
the XIAP pathway except BCL2 (member of NFkB pathway), CEBPD
and SCD5 (both members of the OSR pathway).
Next, we investigated the association between DE-SN and

overall survival within each breast cancer subtype stratified by
race (HR > 1.5 or HR < 0.58 and p-value < 0.05). From this analysis,
we identified the following race-related survival associations:
among the 88 DE-SN in Basal subtype, 7 DE-SN associated with
survival among AA patients, 4 among W patients, and 1 among
both AA and W patients; among the 81 DE-SN in Her2 subtype, 17
DE-SN associated with survival among AA patients, 2 among W
patients, and 3 among both AA and W patients; among the 87 DE-
SN in LumB subtype, 7 DE-SN associated with survival among AA
patients and 5 among W patients; among the 64 DE-SN in LumA
subtype, 14 DE-SN associated with survival among AA patients;
and among the 46 DE-SN in Normal-like subtype, 1 associated
with survival among AA patients (Fig. 6d and Table 3). Of particular
interest in the context of breast cancer disparities are the DE-SN
whose levels were specifically associated with AA breast cancer
patient overall survival, which included members of XIAP and OSR
pathway [BLM RecQ Like Helicase (BLM) and E2F Transcription Factor
8 (E2F8)] in Basal; the members of XIAP pathway [Cyclin Dependent
Kinase Inhibitor 1C (CDKN1C), Cell division cycle 45 (CDC45), Cyclin
Dependent Kinase Inhibitor 2D (CDKN2D)] and the member of the
OSR pathway [Minichromosome Maintenance Complex Component
3 (MCM3)] in Her2; and the members of OSR pathways [Tumor
Protein P63 (TP63) and Chromatin Licensing And DNA Replication
Factor 1 (CDT1)] in LumA breast cancer, and the member of NFkB
pathway, MYC in Lum A breast cancer (Table 3).

DISCUSSION
Disproportionate rates of incidence, metastatic progression and
poor survival outcomes are associated with aggressive subtypes of
breast cancer in self-identified African American women2,3. Much
of this disparity in clinical outcome among African American
patients with advanced breast cancer remains after controlling for
medical coverage, diagnosis, and treatment access16,38–42. This
suggests that additional societal-level, neighborhood-level and
institutional-level, and possibly individual-level, factors contribute
to their poorer prognosis. Furthermore, multiple epidemiological
studies identify distinct non-genetic risk factors in AA women that
induce accumulation of inflammatory and oxidative factors
leading to chronic stress microenvironment2,7,11,13,16. Tumor cells
co-opt anti-apoptotic mechanisms, a hallmark of cancer43, to
rapidly adapt to microenvironmental and therapeutic stress
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stimuli that can lead to clonal evolution of death resistant
populations44. A recent retrospective analysis of a large cohort of
non-metastatic, non-IBC, primary invasive breast cancer samples
for the apoptotic regulator, XIAP, revealed that XIAP mRNA
expression is independently associated with poor outcomes and
lower pathological complete response (pCR) to anthracycline-bsed
neoadjuvant chemotherapy45. Based on these clinical observa-
tions and our previous preclinical studies identifying ASR path-
ways linking mitogen activated ser/thr kinase (MNK), X-linked
inhibitor of anti-apoptotic protein (XIAP), and nuclear transcription
factor (NFκB)-mediated proliferative, invasive, and immunosup-
pressive breast tumor phenotype27,30,46, the present study
investigated the expression of these ASR gene sets in TCGA
breast cancer samples to identify differentially expressed genes in
the PAM50 subtypes and for which there are observed disparities,
between AA and W breast cancer patients. We report herein that
out of the 226 genes, which can be grouped into three
overarching biological processes or signaling axes (XIAP-MNK-
NFκB, immune, or TGFβ related), 69.4% were differentially
expressed with fold-change > 2 and adjusted p-value < 0.05
among the breast cancer subtypes compared to Normal-adjacent
samples, or in comparison of subtypes to each other.
Our comparative analysis of the ASR gene sets in TCGA samples

stratified by AA and W race identified 29 race-related differentially
expressed ASR genes, all of which play a role in cancer biology. For
example, C-X-C Motif Chemokine Ligand 8 (CXCL8), reported to
promote breast cancer progression47, in our analysis was
significantly decreased (3-fold-change) among AA patients

compared with W patients of Her2 subtype, MBNL2 (member of
the OSR pathway), TMC6 (member of the immune pathway/Table
1), PCDH7 (member of the XIAP pathway), and ACSM3 (member of
the XIAP pathway) to be of significance in AA-Basal subtype
patients. Interestingly, MBNL2 has been recently reported to
control hypoxia response in breast cancer cells and PCDH7 was
reported to induce bone metastasis of breast cancer cells48,49.
In conjunction, race-stratified survival analysis identified the

association of a set of DE-SN (such as CDKN1C, CDKN2D, TP63,
STAT4, MYC, and MYCBP2) with known functions in oncogenic
pathways to be distinct in AA or W patient samples, which
strongly highlights the importance of stratifying tumors by patient
race in survival outcomes. Notably, score analysis for the ASR
pathways identified the OSR gene sets score were amplified in
advanced breast cancer subtypes and in tumors from AA patients.
The GO analysis of differentially expressed ASR genes between
tumor and normal breast cancer samples from AAs or Ws reveal
race-related molecular pathways. For example, our results suggest
that dysregulation of cell death, the ERK1 ERK2 cascade, and the
epithelial cell migration processes in Her2 subtype breast cancers
in AA but not in W breast cancers has potentially significant
implications for treatment approaches. Likewise, these findings
suggest that targeting these pathways could achieve different
responses when breast cancers of AAs or Ws are treated with
similar drugs.
These datasets provide a molecular basis for the epidemiolo-

gical findings that AA patients’ breast tumors exhibit higher
oxidative stress markers compared to W patients50,51. Therefore,
understanding the underlying biology of aggressive breast cancer
subtypes and variants, wherein race- and/or ancestry-related
disparities exist in incidence, treatment, and survival outcomes,
has the potential to aid in development of new biomarkers and
treatment strategies to mitigate these disparities.
Recently, Carrot-Zhang et al. have reported estimated global

ancestry for 10,678 patients across 33 cancer types in TCGA52.
Therefore, we compared the self-identified race and the estimated
global ancestry for all the patients from whom we analyzed
samples in this study. Our analysis reveals that the self-identified
race and estimated global ancestry of the patients to be largely
concordant (Supplementary Fig. 2). Therefore, it is possible that
ancestry-related individual-level differences and differences in
allostatic load also contribute to the differences in ASR genes that
we have identified and found to be associated with breast cancer
subtype and survival. To further understand the determinants of
health underlying differences in ASR genes associated with breast
cancer subtype and survival, future studies should focus on
estimating local ancestry of chromosomal regions of ASR genes
and assessing association with breast cancer subtype and survival.
Although TCGA has a larger number of breast cancer samples

from AA patients than for other cancers, a major challenge is the
limited number of breast cancer datasets available from AA
patients after sorting for PAM50 subtype, with just 6 samples that
are designated Normal, rendering limited power for race-related
comparative differential gene expression analysis, and eclipsing
any potential differences in survival between breast cancer
patients of different races or ancestries. Mechanistic studies of
ASR genes in breast cancer are ongoing along with the under-
standing that larger independent cohorts with samples annotated
for societal-level, neighborhood-level and institutional-level deter-
minants of health are needed to identify and validate biomarkers.

METHODS
Datasets and race assignment
The results shown here are in whole based upon data generated by the
TCGA Research Network: https://www.cancer.gov/tcga, which are publicly
available with prior patient’s consent and institutional review board
agreements in place from original authors. The TCGA RNAseq raw counts

Fig. 5 GO enrichment analysis of DE-SN. Bar plots depicting the
significantly, p-value < 0.05, enriched GO terms of the DE-SN in
PAM50 subtypes from either AA patients only (a) or from W patients
only (b). The x-axis in a and b depicts the –log10 p-value yielded
from the Kolmogorov–Smirnov test. The enriched GO terms are
included next to the bars.
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Fig. 6 Survival analysis of the DE-SN. Kaplan–Meier plots for the DE-SN depicting the association of DE-SN level in Basal (a), Her2 (b), and
Normal-like (c) with breast cancer patient overall survival probability. The DE-SN exhibit HR > 1.5 or < 0.58 and p-value < 0.05. The survival
probabilities were compared in breast cancer patients of indicated PAM50 subtypes expressing high, low, or intermediate (75th, 25th, or
25th–75th percentiles) levels of the indicated DE-SN The number of patients (pt#) of high, low, or intermediate groups are indicated. d Venn
diagrams showing the number of DE-SN associated with AA or W breast cancer patient overall survival probability in the indicated
PAM50 subtypes.
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data from TCGA repository was downloaded (June 15, 2021) using
TCGAbiolinks R package (version 2.16.4)53. The downloaded RNAseq raw
count expression data were normalized for RNAseq library size and
dispersion utilizing Limma R package (version 3.44.3)54,55. The following
multivariate experimental design was employed: sample definition (primary
solid tumor, metastatic and solid tissue normal), PAM50 subtype (Basal, Her2,
LumB, LumA, and Normal-like), self-identified race of the patient (African
American (AA), White (W), Asian, Alaska native American and not reported).
Note that despite being described as Normal-like, the Normal-like subtype
include tumor samples, not Normal-adjacent.

Gene expression analysis
A total of 226 genes (Table 1) in the ASR gene sets, which included 101
XIAP-related, 11 NFκB targets, 10 MNK targets, 33 Oxidative Stress
Response (OSR)-related, 13 TGFβ-related, 6 JAG1-Notch targets and 52
immune-related, in addition to 14 genes that belong to more than one ASR
set, were submitted for comparative analysis using the TCGA breast
invasive carcinoma expression dataset. Differential gene expression
analysis was performed by applying the linear model of weighted or
generalized least squares for series of arrays in limma, and the adjusted p-
value was calculated using Benjamini-Hochberg method, as described
previously56. Using R random function, set.seed(1991), we selected 226
random genes to perform the same analysis as a control.

Gene ontology enrichment analysis
The gene ontology (GO) terms were queried using biomaRt R package
(version 2.45.8) as described57. The GO terms were matched to the gene in
TCGA expression datasets using ensemble identification names. Using the
GO terms, we performed enrichment analysis by topGO (version 2.40.0) and
org.Hs.eg.db (version 3.11.4) R packages58,59. For this analysis, we selected
ASR genes that demonstrated differential expression, with a differential fold-
change >2 as well as adjusted p-value < 0.05, between the compared
samples. The selected node size in topGo analysis was 10, the algorithm was
classic, which tests the over-representation of GO terms within the group of
differentially expressed genes, and the statistic test was
Kolmogorov–Smirnov60. We determined KS < 0.05 as a cutoff for statistical
significance. The GO terms were further reduced using rrvgo (version 1.0.2)61.

Survival analysis
The clinical data associated with TCGA expression data were used to
perform survival analyses. The vital status and time until death for all
patients (including AA, W, Asian and Alaska native American and not
reported) belonging to the indicated PAM50 subtype were appropriately
annotated and fitted into Cox Proportional-Hazards Model. The survival R
package (version 3.2.11)62 was used to compute the hazard ratio per unit
and p-value of a given differentially expressed ASR gene using Breslow
method for the maximum likelihood estimator for the cumulative baseline
hazard function. Kaplan–Meier plots for a given differentially expressed

ASR gene were generated by comparing the survival probability of the
75th or 25th percentile, with patients grouped by the expression level of
the differentially expressed ASR gene. The Kaplan–Meier plots were
generated using survminer R package (version 0.4.9)63.

Analysis of gene signature scores
To analyze the score of each ASR gene signature (XIAP, OSR, Immune, and
TGFβ pathways as shown in Table 1), we submitted the gene set of each
signature for score analysis using GSVA R package (version 1.36.3)64. Based
on the reported change of expression, we classified the genes in each gene
set into up or downregulated. After calculating the score of each gene
signature in each sample, we evaluated the score by breast cancer subtype
and by patient race, AA or W. To determine the statistical significance of
differences in score among different breast cancer subtypes and between
AA and W, we employed the Wilcoxon signed-rank test.

Data analysis
We handled the data and performed analyses using R. Rstudio was used as
an interface for R. The following packages: tidyverse, SummarizedExperi-
ment (version 1.18.2), plyr, dplyr, DT, VennDiagram, ggrepel, cowplot, and
ggplot2 were also used for data analysis and visualization.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The datasets used in this manuscript can be downloaded from TCGA repository. The
retrieved data from TCGA repository is available from the corresponding author on
reasonable request.

CODE AVAILABILITY
The code for downloading the datasets, normalizing, and performing the differential
expression analysis can be found on GitHub (https://github.com/muthalpy/
ASRgenes_TCGA).

Received: 29 June 2021; Accepted: 5 April 2022;

REFERENCES
1. DeSantis, C. E. et al. Breast cancer statistics, 2019. CA: Cancer J. Clin. 69, 438–451

(2019).

Table 3. DE-SN associated with patient overall survival in AA only, W only, or both AA and W.

AA W AA and W

Basal ACSM3, COPZ2, MCM5, POLE2, E2F8, BLM (XIAP pathway); DLL4
(Jag1-Notch pathway); BIRC5 (NFkB pathway)

COPZ2, PLAU, ABAT (XIAP pathway); TREM1
(OSR pathway), CCNE2 (XIAP and OSR
pathways)

COPZ2 (XIAP pathway)

Her2 ACSM3, MCM10, GPR137B, CDC45, LIG1, SLC1A4, PLAU,
HIST1H2BJ, CDKN2D, CDKN1C, LEF1, SLC14A1 (XIAP pathway);
MCM3, CCN3, PTGS2, SCD5, NRG1, NAP1L3, TXNIP (OSR
pathway); NUDT1 (Immune pathway)

LIG1, LEF1 (XIAP pathway); CD72 (TGFβ
pathway); SCD5, CEBPD (OSR pathway)

LIG1, LEF1 (XIAP pathway);
SCD5 (OSR pathway)

LumB MYCBP2, STAT4 (Immune pathway); LIPG, CDKN1C, KLRC1 (XIAP
pathway); FGF2 ABCA6 (OSR pathway)

PLAU, NRN1, ZFPM2 (XIAP pathway);
NAP1L3 (OSR pathway); DAB2 (TGFβ
pathway)

-

LumA MCM10, LIG1, FOSB, PIMREG, GINS2, ABAT (XIAP pathway);
METTL7A, TP63, MCM4, CDT1, ANXA3 (OSR pathway); MYC,
BIRC5 (NFkB pathway); MELK (Immune pathway)

- -

Normal-like FOSB (XIAP pathway) - -

DE-SN associated with breast cancer patient overall survival among AA patients only, W patients only, or both AA and W patients. The pathway, to which the
ASR genes belong, are shown in parentheses and are bolded.

M. Al Abo et al.

11

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2022)    73 

https://github.com/muthalpy/ASRgenes_TCGA
https://github.com/muthalpy/ASRgenes_TCGA


2. Heer, E. et al. Global burden and trends in premenopausal and postmenopausal
breast cancer: a population-based study. Lancet Glob. Health 8, e1027–e1037
(2020).

3. Yedjou, C. G. et al. Health and Racial Disparity in Breast Cancer. Adv. Exp. Med. Biol.
1152, 31–49 (2019).

4. National Academies of Sciences, E. & Medicine. Communities in Action: Pathways
to Health Equity (The National Academies Press, 2017).

5. Huo, D. et al. Comparison of breast cancer molecular features and survival by
African and European Ancestry in The Cancer Genome Atlas. JAMA Oncol. https://
doi.org/10.1001/jamaoncol.2017.0595 (2017).

6. Freedman, J. A. et al. Biological aspects of cancer health disparities. Annu. Rev.
Med. 72, 229–241 (2021).

7. Keenan, T. et al. Comparison of the genomic landscape between primary breast
cancer in African American Versus white women and the association of racial
differences with tumor recurrence. J. Clin. Oncol. 33, 3621–3627 (2015).

8. SEER. Inflammatory Breast Cancer https://www.cancer.gov/types/breast/ibc-fact-
sheet (SEER, 2016).

9. Robertson, F. M. et al. Inflammatory breast cancer: the disease, the biology, the
treatment. CA Cancer J. Clin. 60, 351–375 (2010).

10. Abraham, H. G., Xia, Y., Mukherjee, B. & Merajver, S. D. Incidence and survival of
inflammatory breast cancer between 1973 and 2015 in the SEER database. Breast
Cancer Res. Treat. 185, 229–238 (2021).

11. Fouad, T. M. et al. Distinct epidemiological profiles associated with inflammatory
breast cancer (IBC): a comprehensive analysis of the IBC registry at The University
of Texas MD Anderson Cancer Center. PLoS ONE 13, e0204372 (2018).

12. Dawood, S. et al. Differences in survival among women with stage III inflam-
matory and noninflammatory locally advanced breast cancer appear early: a
large population-based study. Cancer 117, 1819–1826 (2011).

13. Fouad, T. M. et al. Overall survival differences between patients with inflamma-
tory and noninflammatory breast cancer presenting with distant metastasis at
diagnosis. Breast Cancer Res. Treat. 152, 407–416 (2015).

14. Anderson, W. F., Schairer, C., Chen, B. E., Hance, K. W. & Levine, P. H. Epidemiology
of inflammatory breast cancer (IBC). Breast Dis. 22, 9–23 (2005).

15. Hance, K. W., Anderson, W. F., Devesa, S. S., Young, H. A. & Levine, P. H. Trends in
inflammatory breast carcinoma incidence and survival: the surveillance, epide-
miology, and end results program at the National Cancer Institute. J. Natl Cancer
Inst. 97, 966–975 (2005).

16. Schinkel, J. K. et al. Racial/ethnic differences in breast cancer survival by
inflammatory status and hormonal receptor status: an analysis of the surveillance,
epidemiology, and end results data. Cancer Causes Control 25, 959–968 (2014).

17. Lim, B., Woodward, W. A., Wang, X., Reuben, J. M. & Ueno, N. T. Inflammatory
breast cancer biology: the tumour microenvironment is key. Nature Reviews
Cancer 18, 485–499 (2018).

18. van Golen, K. L. et al. Mitogen activated protein kinase pathway is involved in
RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast
cancer. Clin. Exp. Metastasis 19, 301–311 (2002).

19. Van Laere, S. J. et al. Nuclear factor-kappaB signature of inflammatory breast
cancer by cDNA microarray validated by quantitative real-time reverse tran-
scription-PCR, immunohistochemistry, and nuclear factor-kappaB DNA-binding.
Clin. Cancer Res. 12, 3249–3256 (2006).

20. Van Laere, S. J. et al. NF-kappaB activation in inflammatory breast cancer is
associated with oestrogen receptor downregulation, secondary to EGFR and/or
ErbB2 overexpression and MAPK hyperactivation. Br. J. Cancer 97, 659–669 (2007).

21. Lerebours, F. et al. NF-kappa B genes have a major role in inflammatory breast
cancer. BMC Cancer 8, 41 (2008).

22. Rypens, C. et al. Comparative transcriptional analyses of preclinical models and
patient samples reveal MYC and RELA driven expression patterns that define the
molecular landscape of IBC. NPJ Breast Cancer 8, 12 (2022).

23. Allensworth, J. L. et al. Disulfiram (DSF) acts as a copper ionophore to induce
copper-dependent oxidative stress and mediate anti-tumor efficacy in inflam-
matory breast cancer. Mol. Oncol. 9, 1155–1168 (2015).

24. Aird, K. M. et al. ErbB1/2 tyrosine kinase inhibitor mediates oxidative stress-
induced apoptosis in inflammatory breast cancer cells. Breast Cancer Res. Treat.
132, 109–119 (2012).

25. Aird, K. M., Ghanayem, R. B., Peplinski, S., Lyerly, H. K. & Devi, G. R. X-linked
inhibitor of apoptosis protein inhibits apoptosis in inflammatory breast cancer
cells with acquired resistance to an ErbB1/2 tyrosine kinase inhibitor. Mol. Cancer
Ther. 9, 1432–1442 (2010).

26. Williams, K. P. et al. Quantitative high-throughput efficacy profiling of approved
oncology drugs in inflammatory breast cancer models of acquired drug resis-
tance and re-sensitization. Cancer Lett 337, 77–89 (2013).

27. Evans, M. K. et al. X-linked inhibitor of apoptosis protein mediates tumor cell
resistance to antibody-dependent cellular cytotoxicity. Cell Death Dis. 7, e2073
(2016).

28. Allensworth, J. L., Aird, K. M., Aldrich, A. J., Batinic-Haberle, I. & Devi, G. R. XIAP
inhibition and generation of reactive oxygen species enhances TRAIL sensitivity
in inflammatory breast cancer cells. Mol Cancer Ther. 11, 1518–1527 (2012).

29. Arora, J. et al. Inflammatory breast cancer tumor emboli express high levels of
anti-apoptotic proteins: use of a quantitative high content and high-throughput
3D IBC spheroid assay to identify targeting strategies. Oncotarget 8, 25848–25863
(2017).

30. Evans, M. K. et al. XIAP regulation by MNK links MAPK and NFκB signaling to
determine an aggressive breast cancer phenotype. Cancer Res. 78, 1726–1738
(2018).

31. Holcik, M., Lefebvre, C., Yeh, C., Chow, T. & Korneluk, R. G. A new internal-
ribosome-entry-site motif potentiates XIAP-mediated cytoprotection. Nat. Cell
Biol. 1, 190–192 (1999).

32. Nair, S. et al. Immunologic targeting of FOXP3 in inflammatory breast cancer cells.
PLoS ONE 8, e53150 (2013).

33. Allensworth, J. L., Sauer, S. J., Lyerly, H. K., Morse, M. A. & Devi, G. R. Smac mimetic
Birinapant induces apoptosis and enhances TRAIL potency in inflammatory
breast cancer cells in an IAP-dependent and TNF-alpha-independent mechanism.
Breast Cancer Res. Treat. 137, 359–371 (2013).

34. Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature
441, 431–436 (2006).

35. Van Laere, S. J. et al. Uncovering the molecular secrets of inflammatory breast
cancer biology: an integrated analysis of three distinct affymetrix gene expres-
sion datasets. Clin. Cancer Res. 19, 4685–4696 (2013).

36. Robertson, F. M. et al. Genomic profiling of pre-clinical models of inflammatory
breast cancer identifies a signature of epithelial plasticity and suppression of
TGFβ signaling. J. Clin. Exp. Path. 2, 119 (2012).

37. Bocci, F. et al. Toward understanding cancer stem cell heterogeneity in the tumor
microenvironment. Proc. Natl Acad. Sci. USA 116, 148–157 (2019).

38. Baquet, C. R. & Commiskey, P. Socioeconomic factors and breast carcinoma in
multicultural women. Cancer 88, 1256–1264 (2000).

39. Il’yasova, D. et al. What can we learn from the age- and race/ethnicity-specific
rates of inflammatory breast carcinoma? Breast Cancer Res. Treat. 130, 691–697
(2011).

40. Schlichting, J. A. et al. Association of inflammatory and non-inflammatory breast
cancer with socioeconomic characteristics in the surveillance, epidemiology, and
end results database, 2000–2007. Cancer Epidemiol. Biomarkers Prev. https://doi.
org/10.1158/1055-9965.EPI-11-0833 (2011).

41. Gudina, A. T., Copeland G., Soliman A. S. & Hirko K. A. Racial/ethnic disparities in
inflammatory breast cancer survival in the Michigan Cancer Surveillance Pro-
gram. Breast Cancer Res. Treat. 1–7 https://doi.org/10.1007/s10549-018-5037-y
(2018).

42. Denu, R. A. et al. Racial and socioeconomic disparities are more pronounced in
inflammatory breast cancer than other breast cancers. J. Cancer Epidemiol. 2017,
7574946 (2017).

43. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144,
646–674 (2011).

44. Fulda, S., Gorman, A. M., Hori, O. & Samali, A. Cellular stress responses: cell survival
and cell death. Int. J. Cell Biol. 2010, 214074 (2010).

45. Devi, G. R. et al. Expression of X-linked inhibitor of apoptosis protein (XIAP) in
breast cancer is associated with shorter survival and resistance to chemotherapy.
Cancers (Basel) 13, https://doi.org/10.3390/cancers13112807 (2021).

46. Gearhart-Serna, L. M. et al. A polycyclic aromatic hydrocarbon-enriched envir-
onmental chemical mixture enhances AhR, antiapoptotic signaling and a pro-
liferative phenotype in breast cancer cells. Carcinogenesis https://doi.org/10.1093/
carcin/bgaa047 (2020).

47. Singh, J. K., Simões, B. M., Howell, S. J., Farnie, G. & Clarke, R. B. Recent advances
reveal IL-8 signaling as a potential key to targeting breast cancer stem cells.
Breast Cancer Res. 15, 210 (2013).

48. Fischer, S. et al. Muscleblind-like 2 controls the hypoxia response of cancer cells.
RNA 26, 648–663 (2020).

49. Li, A. M. et al. Protocadherin-7 induces bone metastasis of breast cancer. Biochem.
Biophys. Res. Commun. 436, 486–490 (2013).

50. Feairheller, D. L. et al. Racial differences in oxidative stress and inflammation:
in vitro and in vivo. Clin. Transl. Sci. 4, 32–37 (2011).

51. Zhang, J., Ye, Z. W., Townsend, D. M., Hughes-Halbert, C. & Tew, K. D. Racial
disparities, cancer and response to oxidative stress. Adv. Cancer. Res. 144,
343–383 (2019).

52. Carrot-Zhang, J. et al. Comprehensive analysis of genetic ancestry and its
molecular correlates in cancer. Cancer Cell 37, 639–654 e636 (2020).

53. Colaprico, A. et al. TCGAbiolinks: an R/Bioconductor package for integrative
analysis of TCGA data. Nucleic Acids Res. 44, e71 (2016).

54. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

M. Al Abo et al.

12

npj Breast Cancer (2022)    73 Published in partnership with the Breast Cancer Research Foundation

https://doi.org/10.1001/jamaoncol.2017.0595
https://doi.org/10.1001/jamaoncol.2017.0595
https://www.cancer.gov/types/breast/ibc-fact-sheet
https://www.cancer.gov/types/breast/ibc-fact-sheet
https://doi.org/10.1158/1055-9965.EPI-11-0833
https://doi.org/10.1158/1055-9965.EPI-11-0833
https://doi.org/10.1007/s10549-018-5037-y
https://doi.org/10.3390/cancers13112807
https://doi.org/10.1093/carcin/bgaa047
https://doi.org/10.1093/carcin/bgaa047


55. Phipson, B., Lee, S., Majewski, I. J., Alexander, W. S. & Smyth, G. K. Robust
hyperparameter estimation protects against hypervariable genes and improves
power to detect differential expression. Ann. Appl. Stat. 10, 946–963 (2016).

56. Haynes, W. in Encyclopedia of Systems Biology (eds Dubitzky, W., Wolkenhauer, O.,
Cho, K.H., Yokota, H.) 78–78 (Springer New York, 2013).

57. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the
integration of genomic datasets with the R/Bioconductor package biomaRt. Nat.
Protoc. 4, 1184–1191 (2009).

58. Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for gene ontology. R
package version 2.48.0 (2010).

59. Carlson, M., Falcon, S., Pages, H. & Li, N. org. Hs. eg. db: Genome wide annotation
for human. R package version 3.8.2 (2013).

60. Warner, E. T. et al. Racial and ethnic differences in breast cancer survival: med-
iating effect of tumor characteristics and sociodemographic and treatment fac-
tors. J. Clin. Oncol. 33, 2254–2261 (2015).

61. Sayols, S. rrvgo: a Bioconductor package to reduce and visualize Gene Ontology
terms. https://ssayols.github.io/rrvgo (2020).

62. Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox
Model (Springer, 2000).

63. Kassambara, A., Kosinski, M., Biecek, P. & Fabian, S. survminer: drawing survival
curves using’ggplot2’. R package version 0.3 (2017).

64. Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinformatics 14, 7 (2013).

ACKNOWLEDGEMENTS
This work was supported in part by Duke School of Medicine Bridge Award (GRD); NCI-
P20 NCCU-Duke Cancer Disparities Translational Research Partnership (S.P.; G.R.D., K.P.
W., J.F.); NCI-P20 Project 2 (G.R.D., K.P.W.); NCI-P20 Predoctoral Diversity Supplement
3P20CA202925-04S2 (L.G.S.), Department of Defense Breast Cancer Breakthrough level
2 Award W81XWH-17-1-0297 (G.R.D.), NCI of NIH Award R01CA264529 (G.R.D.), The IBC
Network Foundation Gift (G.R.D.), NIH Basic Research in Cancer Health Disparities R01
Award R01CA220314 (S.P., J.F.), Prostate Cancer Foundation Movember Challenge
Award #18CHAL04 (S.P., J.F., M.A.). The authors would like to thank Dr. Michael Morse
and Dr. Susan Dent for helpful discussions and Alexandra Bennion at Duke
Undergraduate Trinity School of Arts and Science for editorial assistance.

AUTHOR CONTRIBUTIONS
M.A.: conceptualization, methodology, formal analysis, visualization, writing—original
draft preparation, writing—reviewing and editing. L.G.: methodology, visualization,

validation, writing- original draft preparation, writing—reviewing and editing. S.V.:
conceptualization, methodology, writing—reviewing and editing. J.A.F. & S.R.P.:
supervision, funding acquisition, writing—reviewing and editing. E.S.H., S.K., & K.P.W.:
critical expertize, writing—reviewing and editing. G.R.D.: supervision, conceptualiza-
tion, funding acquisition, methodology, writing—original draft preparation, writing—
reviewing and editing.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41523-022-00431-z.

Correspondence and requests for materials should be addressed to Gayathri R. Devi.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

M. Al Abo et al.

13

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2022)    73 

https://ssayols.github.io/rrvgo
https://doi.org/10.1038/s41523-022-00431-z
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Adaptive stress response genes associated with breast cancer subtypes and survival outcomes reveal race-related differences
	Introduction
	Results
	Proportion of subtypes, AA, and W patient samples in the TCGA breast cancer dataset
	ASR genes associated with oxidative stress and immune response pathways score highly in basal breast cancer subtype
	Identification of differential ASR gene sets in PAM50�subtypes
	DE-SN and DE-SS exhibit distinct expression changes in breast cancer molecular subtypes
	Identification of distinct DE-SN and DE-SS in AA and W breast cancer patients
	Identification of race-related differentially expressed ASR genes within PAM50�subtypes
	Gene ontology analysis of AA- and W-DE-SN reveals differential ontology enrichment
	Association of DE-SN with breast cancer patient survival

	Discussion
	Methods
	Datasets and race assignment
	Gene expression analysis
	Gene ontology enrichment analysis
	Survival analysis
	Analysis of gene signature scores
	Data analysis
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




